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ABSTRACT

This paper presents an asymptotic analysis of the eigen value
decomposition (EVD) of the sample covariance matrix as-
sociated with independent identically distributed (IID) non
necessarily circular and Gaussian data that extends the well
known analysis presented in the literature for circular and
Gaussian data. Closed-form expressions of the asymptotic
bias and variance of the sample eigenvalues and eigenvec-
tors are given. As an application of these extended expres-
sions, the statistical performance analysis of the minimum
description length (MDL) criterion applied to the detection of
the number of noncircular or/and nonGaussian components is
considered.

Index Terms— Eigen value decomposition, sample co-
variance matrix, eigenvalue, eigenvector, minimum descrip-
tion length, source detection, noncircular, nonGaussian.

1. INTRODUCTION

Eigenvalues and eigenvectors of sample covariance matrices
are used in the solution of a wide range of statistical signal
processing problems. The first and second-order statistics of
this EVD are needed to assess the performance in terms of
bias/variance of estimators or probability of events derived
from these eigenvalues and eigenvectors. The statistics of the
sample eigenvalues and eigenvectors have been widely stud-
ied in the statistical literature (e.g., [1],[2]) and are quoted
in standard texts such as [3] and [4]. But to the best of our
knowledge, all the published results has been derived only un-
der the assumption of real-valued or circular complex-valued
Gaussian distributions of the data.

The main aim of this paper is to extend these results to ar-
bitrary real or complex fourth-order distributions of the data,
where closed-form expressions of asymptotic bias and vari-
ance of the sample eigenvalues and eigenvectors are derived.
As an application of these extended expressions, the statistical
performance analysis of the widely-used MDL criterion intro-
duced by Rissanen [5] and popularized by Wax and Kailath
[6], is considered to the detection of the number of noncircu-
lar or/and nonGaussian components. But naturally, these ex-
tended expressions may find other applications in multivariate

analysis. We focus here on the probability of underestimating
the number of sources in the case of a single or two sources
under asymptotic conditions (with respect to the number of
snapshots) and around the threshold regions, following the
approach proposed in [7], and then recently improved in [8].
We show in particular that the numerical values of this prob-
ability of underestimating the number of sources given by the
MDL detector derived from the standard sample covariance
matrix is not robust to the noncircularity and/or the nonGaus-
sianity of the data.

2. ASYMPTOTIC STATISTICS OF EVD OF SAMPLE
COVARIANCE MATRICES

Consider a sequence xt=1,..,T ∈ Cn of IID zero-mean com-
plex multidimensional random variables (RV) with finite 4-th-
order moments. The standard covariance matrix, the comple-
mentary covariance matrix and the quadrivariance matrix of
xt are respectively given by R def= E(xtxH

t ), R′ def= E(xtxT
t )

and (Q)i+(j−1)n,l+(k−1)n
def= Cum(xt,i, x

∗
t,j , xt,k, x∗t,l)

where xt = (xt,1, xt,2, ..., xt,n)T . The sample covariance

estimate of R is usually defined as R̂ def= 1
T

∑T
t=1 xtxH

t =
R + δR which can be considered as a perturbation of R.
To derive the asymptotic distribution of the EVD of R̂, we
need the following extension of an identity derived under the
circular Gaussian distribution of the data in [4, p.114], that is
proved in [9]

Lemma 1 For arbitrary vectors (ai)i=1,...,4 ∈ Cn and dis-
tributions with finite 4-th-order moment of xt not necessarily
circular and Gaussian, we have

E[(aH
1 δRa2)(aH

3 δRa4)] =
1
T

{
(aH

1 Ra4)(aH
3 Ra2)

+(aH
1 R′a∗3)(a

T
2 R′∗a4) + (aT

2 ⊗ aH
1 )Q(a∗3 ⊗ a4)

}
.(1)

We assume that the eigenvalues (λi)i=1,..,n of R, ordered
in decreasing order satisfy the condition λ1 > ... > λr >
λr+1 = ... = λn = σ2. Let (vi)i=1,..,n be an arbitrary
set of associated orthonormal eigenvectors. We note that
(vi)i=r+1,..,n are defined up to an arbitrary unitary trans-
formation, in contrast to (vi)i=1,..,r that are defined up to



multiplicative unit modulus complex number, but which are
arbitrarily fixed1. Consider now for a ”small enough” pertur-
bation term δR of R, the EVD of R̂

R̂v̄i = λ̂iv̄i, i = 1, ..., n, (2)

where (λ̂i)i=1,...,n denotes the perturbation of λi that satisfies
λ̂1 > λ̂2 > ... > λ̂n, and where (v̄i)i=1,...,r are the associ-
ated eigenvectors uniquely determined from (vi)i=1,...,r by

v̄H
i vi = 1, i = 1, ..., r. (3)

We consider in the following the eigenvectors (v̂i)i=1,...,r de-
fined by v̂i = v̄i/||v̄i||. We have proved in [9] that these esti-
mates are asymptotically Gaussian distributed with the same
convergence speed

√
T whose first and second-order statis-

tics of this asymptotic distribution are given by the following
result

Result 1 The asymptotic first and second-order statistics
of the estimates (λ̂1, ..., λ̂r, v̂1, ..., v̂r) for arbitrary distri-
butions with finite 4-th-order moment of xt not necessarily
circular and Gaussian are given by

E(λ̂i) = λi+
1
T

∑

1≤k 6=i≤n

λiλk + |λi,k|2 + λi,k,i,k

λi − λk
+o(

1
T

) (4)

Cov(λ̂i, λ̂j) =
1
T

(
λ2

i δi,j + |λi,j |2 + λi,i,j,j

)
+ o(

1
T

) (5)

E(v̂i) =


1− 1

2T

∑

1≤k 6=i≤n

λiλk + |λi,k|2 + λi,k,i,k

(λi − λk)2


vi

+
1
T

∑

1≤k 6=i≤n

(
−λi,kλ∗i,i + λi,i,k,i

(λi − λk)2

+
∑

1≤l 6=i≤n

λk,lλ
∗
i,l + λl,k,l,i

(λi − λk)(λi − λl)


vk + o(

1
T

)

Cov(v̂i, v̂j) =
δi,j

T

∑

1≤k 6=i≤n

λiλk

(λi − λk)2
vkvH

k

+
1
T

∑

1≤k 6=i≤n

∑

1≤l 6=j≤n

λj,kλ∗i,l + λi,k,j,kl

(λi − λk)(λj − λl)
vkvH

l + o(
1
T

)

Cov(v̂i, v̂∗j ) = − (1− δi,j)
T

λiλj

(λi − λj)2
vjvT

i

+
1
T

∑

1≤k 6=i≤n

∑

1≤l 6=j≤n

λk,lλ
∗
i,j + λi,k,l,j

(λi − λk)(λj − λl)
vkvT

l + o(
1
T

)

Cov(λ̂i, v̂j) =
1
T

∑

1≤k 6=j≤n

(
λi,kλ∗i,j + λi,i,k,j

λj − λk

)
vk+o(

1
T

),

for i, j = 1, ...r and where δi,j is the Kronecker delta, λi,j
def=

vH
i R′v∗j and λi,j,k,l

def= (vT
i ⊗ vH

j )Q(v∗k ⊗ vl).

1For example, the MATLAB’s svd function produces a set of singular vec-
tors (which can be used in lieu of eigenvectors for the Hermitian covariance
matrix R) that are orthonormal and have a real first entry.

Remark 1: Naturally all the expressions of this result reduce
to the first and second-order statistics given in [4, Th.9.2.4]
(where the determination of v̂i is not specified) and in [10]
(where determination (3) is used) for the circular Gaussian
distribution of xt for which λi,j = 0 and λi,j,k,l = 0.

3. APPLICATION TO THE DETECTION OF
NONCIRCULAR AND/OR NONGAUSSIAN

COMPONENTS

The MDL criterion is one of the most successful information
theoretic criteria for estimating the number r of components
of

xt = Ast + nt (6)

where st = (st,1, ..., st,r), E(stsH
t ) is not singular, A is an

n × r full column rank matrix with r < n and st and nt

are uncorrelated with E(ntnH
t ) = σ2In. Under the assump-

tion that xt are independent identically zero-mean complex
circular Gaussian distributed RVs, and if no prior informa-
tion about A is used, the MDL estimator is based2 on the
eigenvalues of R̂ and is given by the following minimizer [6].
r̂ = Arg {mink Λk} with

Λk = T (n− k) ln
(

âk

ĝk

)
+

1
2
k(2n− k) ln T, (7)

with âk
def= 1

n−k

∑n
i=k+1 λ̂i and ĝk

def=
∏n

i=k+1 λ̂
1/(n−k)
i .

The events r̂ < r and r̂ > r are called underestimation
(or misdetection) and overestimation (or false alarm), respec-
tively. Since (Λk)k=0,..,n−1 are functions of the eigenvalues

(λ̂i)i=1,..,n of R̂, the derivation of the probabilities P (r̂ > r)
and P (r̂ < r) needs the joint exact or asymptotic distribu-
tion of (λi)i=1,..,n. Unfortunately, these two distributions
are only available for circular complex Gaussian distribution
[1], and are furthermore too complicated to be useful for the
statistical analysis of the estimator r̂. Therefore, for sim-
plifying the derivation of these probabilities, it has been ar-
gued [7],[8] and [11] by extended Monte Carlo experiments
that P (r̂ > r) ≈ P (r̂ = r + 1) ≈ P (Λr+1 < Λr) and
P (r̂ < r) ≈ P (r̂ = r − 1) ≈ P (Λr−1 < Λr). As the proba-
bility of overestimation is concerned, exact and approximate
asymptotic upper bound of this probability has been derived
in [11] showing that generally P (r̂ > r) ¿ 1. Therefore, we
concentrate on the probability of underestimation for which
(7) gives straightforwardly (see [8] for r = 1 and 2)

P (Λr−1 < Λr) = P

(
Hr

(
λ̂r

âr

)
< Tr

)
(8)

2Note that if A is parameterized by some parameters Θ or if xt is not
zero-mean complex circular Gaussian distributed, the MDL criterion is no
longer based on the eigenvalues of R̂ [12], but nevertheless criterion (7) is
often used for its simplicity.



where Hr(x) def= ln
(

1
x

(
1 + x−1

n−r+1

)n−r+1
)

and Tr
def=

1
2T (2n− 2r + 1) ln T . Because Hr(x) is an increasing func-
tion for x > 1 with Hr(1) = 0 and Tr > 0, (8) is given
by

P (Λr−1 < Λr) = P

(
λ̂r

âr
< T ′r

)
, (9)

where T ′r = H−1
r (Tr) is the unique solution of the equation

Hr(x) = Tr for x > 1.
To proceed, we must resort to the approximation, used

by all authors that have tackled this point, that the standard
deviation of âr can be considered as negligible with respect to
E(âr). Consequently âr ≈ E(âr), where [8] has refined the
approximation E(âr) ≈ σ2 used in [7] by taking into account
the bias of the estimates (λ̂i)i=1,..,r. Using E(âr) = σ2 +

1
n−r

∑r
i=1

(
λi − E(λ̂i)

)
and (4), we have âr ≈ mr with

mr
def= σ2− 1

T (n− r)

r∑

i=1

∑

1≤j 6=i≤n

λiλj +|λi,j |2+λi,j,i,j

λi − λj
. (10)

Consequently λ̂r/âr is approximately asymptotically Gaus-
sian distributed with mean µr = E(λ̂r)/mr and variance
σ2

r = Var(λ̂r)/m2
r where from (4) and (5)

µr =
1

mr


λr +

1
T

∑

1≤j 6=r≤n

λrλj + |λr,j |2 + λr,j,r,j

λr − λj


 (11)

σ2
r =

1
m2

rT

(
λ2

r + |λr,r|2 + λr,r,r,r

)
(12)

and the probability of underestimation is approximately
asymptotically given by

P (r̂ < r) ≈ 1−Q

(
T ′r − µr

σr

)
, (13)

with Q(x) def=
∫ +∞

x
1√
2π

e−
t2
2 dt.

4. DOA ILLUSTRATIONS

To illustrate these general results, the detection of the number
r = 1 or r = 2 of noncircular or/and nonGaussian sources
impinging on an array of n sensors is now considered. The
common model for the received signal xt is given by

xt = A(Θ)st + nt

where A(Θ) = (a1, ..., ar) with ak denotes the steering vec-
tor of the k-th source of DOA θk. nt is assumed circular
complex Gaussian distributed, but (st,k)k=1,...,r that have fi-
nite 4-th-order moments, are not necessarily circular complex
Gaussian distributed. E|s2

t,k| = σ2
sk

, E(s2
t,k) = σ2

sk
ρsk

e2iφsk

and Cum(st,k, s∗t,k, st,k, s∗t,k) = σ4
sk

κsk
where ρsk

∈ [0, 1],
φsk

∈ [0, π) and κsk
∈ [−2,+∞) denote the noncircularity

rate and phase, and the kurtosis of st,k, respectively.

In all the numerical illustrations and Monte Carlo experi-
ments, a uniform linear array of omni-directional n = 5 sen-
sors, and half-wavelength spacing is used. Its centroid at the
origin of the phase is used3. For each point on the figures,
T = 200 snapshots (except in Fig.1) are taken and 10000
Monte Carlo runs are carried out to estimate the probabilities
of underestimating.

We first consider the robustness of the MDL criterion to
the distribution of the sources. For a single source, it has been
derived in [9] that (10), (11) and (12) give

m1 = σ2

(
1− 1

T

(
1 +

σ2

‖a1‖2σ2
s1

))
(14)

µ1 =
σ2

s1

m1

(
‖a1‖2 +

σ2

σ2
s1

) (
1 +

n−1
T

σ2

‖a1‖2σ2
s1

)
(15)

σ2
1 =

‖a1‖4σ4
s1

Tm2
1

[(
1 +

σ2

‖a1‖2σ2
s1

)2

+ ρ2
s1

+ κs1

]
,(16)

that specify the probability of underestimation (13). Conse-
quently this probability of underestimation has the following
behavior: P (r̂ = 0/r = 1) = 1/2 for the value SNR1/2 of
the signal-to-noise-ratio σ2

s1
/σ2 solution of T ′1 = µ1 that does

not depend on the distribution of the source. With respect to
the circular Gaussian distribution, the probability of underes-
timation is larger ([resp. smaller]) for SNR > SNR1/2 ([resp.
for SNR < SNR1/2]) for noncircular or/and nonGaussian dis-
tributions such that ρ2

s1
+ κs1 > 0. The opposite behavior

happens for distributions such that ρ2
s1

+ κs1 < 0.
This behavior is illustrated in Fig.1 for the following

three distributions: circular Gaussian, BPSK and impulsive
that takes the values {−1, 0,+1}with respective probabilities
1/2p, 1− 1/p and 1/2p for which ρs1 = 1 and κs1 = p− 3.
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Fig.1 P (r̂ = 0/r = 1) for four distributions.
We see from this figure that the probability of underesti-

mation is sensitive to the distribution of the source, particu-
3For rectilinear sources, the DOA θk and phase φk of noncircularity pa-

rameters are coupled [14] and as the performance depends on ∆φ = φ2−φ1,
the centroid of the array must be specified for fixing the performance.



larly for sources of large kurtosis κs1 and for weak values of
the number T of snapshots as it explained by (16).

For possibly noncircular signals xt, it is well known that
the DOA estimation may be improved in terms of accuracy
[13] and resolving power [14] if the standard covariance
matrix Rx = E(xtxH

t ) is replaced by the augmented covari-
ance matrix Rx̃ = E(x̃tx̃H

t ) with x̃t
def= (xT

t ,xH
t )T . More

precisely, it is proved in [13],[14] that these performance
are drastically improved only for rectilinear uncorrelated
sources for which4 Rx =

∑r
k=1 σ2

sk
akaH

k + σ2In and Rx̃ =
∑r

k=1 σ2
sk

ãkãH
k + σ2I2n with ãk

def= (aT
k , e−2iφkaH

k )T .
Consequently, it is interesting to compare the probability of
underestimation given by the MDL criterion associated with
Rx and Rx̃ whose eigenvalues are denoted (λ̃i)i=1,...,2n.
For a single rectilinear source the gap between λ̃1 and
σ2 increases because now λ̃1 = 2‖a1‖2σ2

s1
+ σ2 against

to λ1 = ‖a1‖2σ2
s1

+ σ2 and thus the detection perfor-
mance ought to improve. This is proved by the compari-
son of the new expressions of m1, µ1 and σ2

1 deduced from
R′

x̃
def= E(x̃tx̃T

t ) and Qx̃ where (Qx̃)i+(j−1)2n,l+(k−1)2n
def=

Cum((x̃t)i, (x̃t)∗j , (x̃t)k, (x̃t)∗l ), that are given by (14),
(15) and (16) where ‖a1‖2 is replaced by 2‖a1‖2. We
obtain similar behaviors of the probability of underesti-
mation that for the MDL criterion associated with Rx,
but the performance is improved as it is shown in Fig.2
for which the MDL criterion associated with Rx̃ outper-
forms this criterion associated with Rx by about 1.5dB.
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Fig.2 P (r̂ = 0/r = 1) given by the MDL criterion associated with Rx

and Rx̃ for BPSK and impulsive (p = 20) distributions of the source.

For two sources, the rank of Rx̃ − σ2I2n of x̃t is r = 4
except for singularity cases. In particular for uncorrelated rec-
tilinear sources this rank is 2. Fig.3 shows the probability of
underestimation given by the MDL criterion for two equipow-
ered BPSK uncorrelated rectilinear sources where the SNR is
defined by the ratio σ2

s1
/σ2. The probabilities of underesti-

4We note that if the sources are nonrectilinear or/and correlated, the num-
ber of components (i.e., the rank of Rx̃ − σ2I2n) of x̃t is generally 2r.

mation given by the MDL criterion associated with Rx and
Rx̃ are compared as a function of the SNR for two DOA
separations. We see that the MDL criterion associated with
Rx̃ largely outperforms those based on Rx by about 1.5dB.

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SNR (dB)

P
ro

b
a
b
il
it
y
 o

f 
m

is
d
e
te

c
ti
o
n

standard R (th)

standard R (est)

augmented R (th)

augmented R (est)

standard R (th)

standard R (est)

augmented R (th)

augmented R (est)

standard R (th)

standard R (est)

augmented R (th)

augmented R (est)

Δθ = 3° Δθ = 2°

Fig.3 P (r̂ < 2/r = 2) given by the MDL criterion associated with Rx

and Rx̃ for two DOA separations ∆θ for two uncorrelated BPSK sources.
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