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This paper presents an asymptotic analysis of the eigen value decomposition (EVD) of the sample covariance matrix associated with independent identically distributed (IID) non necessarily circular and Gaussian data that extends the well known analysis presented in the literature for circular and Gaussian data. Closed-form expressions of the asymptotic bias and variance of the sample eigenvalues and eigenvectors are given. As an application of these extended expressions, the statistical performance analysis of the minimum description length (MDL) criterion applied to the detection of the number of noncircular or/and nonGaussian components is considered.

INTRODUCTION

Eigenvalues and eigenvectors of sample covariance matrices are used in the solution of a wide range of statistical signal processing problems. The first and second-order statistics of this EVD are needed to assess the performance in terms of bias/variance of estimators or probability of events derived from these eigenvalues and eigenvectors. The statistics of the sample eigenvalues and eigenvectors have been widely studied in the statistical literature (e.g., [START_REF] Anderson | Asymptotic theory for principal component analysis[END_REF], [START_REF] Gupta | Asymptotic theory for principal component analysis in the complex case[END_REF]) and are quoted in standard texts such as [START_REF] Wilkinson | The algebraic eigenvalue principles[END_REF] and [START_REF] Brillinger | Time series, data analysis and theory[END_REF]. But to the best of our knowledge, all the published results has been derived only under the assumption of real-valued or circular complex-valued Gaussian distributions of the data.

The main aim of this paper is to extend these results to arbitrary real or complex fourth-order distributions of the data, where closed-form expressions of asymptotic bias and variance of the sample eigenvalues and eigenvectors are derived. As an application of these extended expressions, the statistical performance analysis of the widely-used MDL criterion introduced by Rissanen [START_REF] Rissanen | Modeling by shortest data description[END_REF] and popularized by Wax and Kailath [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF], is considered to the detection of the number of noncircular or/and nonGaussian components. But naturally, these extended expressions may find other applications in multivariate analysis. We focus here on the probability of underestimating the number of sources in the case of a single or two sources under asymptotic conditions (with respect to the number of snapshots) and around the threshold regions, following the approach proposed in [START_REF] Wang | On the performance of signal subspace processing -Part I: narrow-band systems[END_REF], and then recently improved in [START_REF] Haddadi | Statistical performance analysis of MDL source enumeration in array proessing[END_REF]. We show in particular that the numerical values of this probability of underestimating the number of sources given by the MDL detector derived from the standard sample covariance matrix is not robust to the noncircularity and/or the nonGaussianity of the data.

ASYMPTOTIC STATISTICS OF EVD OF SAMPLE COVARIANCE MATRICES

Consider a sequence x t=1,..,T ∈ C n of IID zero-mean complex multidimensional random variables (RV) with finite 4-thorder moments. The standard covariance matrix, the complementary covariance matrix and the quadrivariance matrix of x t are respectively given by

R def = E(x t x H t ), R def = E(x t x T t ) and (Q) i+(j-1)n,l+(k-1)n def = Cum(x t,i , x * t,j , x t,k , x * t,l ) where x t = (x t,1 , x t,2 , ..., x t,n ) T . The sample covariance estimate of R is usually defined as R def = 1 T T t=1 x t x H t = R + δR
which can be considered as a perturbation of R. To derive the asymptotic distribution of the EVD of R, we need the following extension of an identity derived under the circular Gaussian distribution of the data in [4, p.114], that is proved in [START_REF] Delmas | On the second-order statistics of the EVD of sample covariance matrices -Application to the detection of noncircular or/and nonGaussian components[END_REF] Lemma 1 For arbitrary vectors (a i ) i=1,...,4 ∈ C n and distributions with finite 4-th-order moment of x t not necessarily circular and Gaussian, we have

E[(a H 1 δRa 2 )(a H 3 δRa 4 )] = 1 T (a H 1 Ra 4 )(a H 3 Ra 2 ) +(a H 1 R a * 3 )(a T 2 R * a 4 ) + (a T 2 ⊗ a H 1 )Q(a * 3 ⊗ a 4 ) . ( 1 
)
We assume that the eigenvalues (λ i ) i=1,..,n of R, ordered in decreasing order satisfy the condition λ 1 > ... > λ r > λ r+1 = ... = λ n = σ2 . Let (v i ) i=1,..,n be an arbitrary set of associated orthonormal eigenvectors. We note that (v i ) i=r+1,..,n are defined up to an arbitrary unitary transformation, in contrast to (v i ) i=1,..,r that are defined up to multiplicative unit modulus complex number, but which are arbitrarily fixed 1 . Consider now for a "small enough" perturbation term δR of R, the EVD of R

Rv i = λ i vi , i = 1, ..., n, (2) 
where ( λ i ) i=1,...,n denotes the perturbation of λ i that satisfies λ 1 > λ 2 > ... > λ n , and where (v i ) i=1,...,r are the associated eigenvectors uniquely determined from (v i ) i=1,...,r by

vH i v i = 1, i = 1, ..., r. (3) 
We consider in the following the eigenvectors ( v i ) i=1,...,r defined by v i = vi /||v i ||. We have proved in [START_REF] Delmas | On the second-order statistics of the EVD of sample covariance matrices -Application to the detection of noncircular or/and nonGaussian components[END_REF] that these estimates are asymptotically Gaussian distributed with the same convergence speed √ T whose first and second-order statistics of this asymptotic distribution are given by the following result

Result 1 The asymptotic first and second-order statistics of the estimates ( λ 1 , ..., λ r , v 1 , ..., v r ) for arbitrary distributions with finite 4-th-order moment of x t not necessarily circular and Gaussian are given by

E( λ i ) = λ i + 1 T 1≤k =i≤n λ i λ k + |λ i,k | 2 + λ i,k,i,k λ i -λ k +o( 1 T ) (4) 
Cov( λ i , λ j ) = 1 T λ 2 i δ i,j + |λ i,j | 2 + λ i,i,j,j + o( 1 T ) (5) 
E( v i ) =   1 - 1 2T 1≤k =i≤n λ i λ k + |λ i,k | 2 + λ i,k,i,k (λ i -λ k ) 2   v i + 1 T 1≤k =i≤n - λ i,k λ * i,i + λ i,i,k,i (λ i -λ k ) 2 + 1≤l =i≤n λ k,l λ * i,l + λ l,k,l,i (λ i -λ k )(λ i -λ l )   v k + o( 1 T ) Cov( v i , v j ) = δ i,j T 1≤k =i≤n λ i λ k (λ i -λ k ) 2 v k v H k + 1 T 1≤k =i≤n 1≤l =j≤n λ j,k λ * i,l + λ i,k,j,kl (λ i -λ k )(λ j -λ l ) v k v H l + o( 1 T ) Cov( v i , v * j ) = - (1 -δ i,j ) T λ i λ j (λ i -λ j ) 2 v j v T i + 1 T 1≤k =i≤n 1≤l =j≤n λ k,l λ * i,j + λ i,k,l,j (λ i -λ k )(λ j -λ l ) v k v T l + o( 1 T ) Cov( λ i , v j ) = 1 T 1≤k =j≤n λ i,k λ * i,j + λ i,i,k,j λ j -λ k v k +o( 1 T ),
for i, j = 1, ...r and where δ i,j is the Kronecker delta, λ i,j

def = v H i R v * j and λ i,j,k,l def = (v T i ⊗ v H j )Q(v * k ⊗ v l ).
1 For example, the MATLAB's svd function produces a set of singular vectors (which can be used in lieu of eigenvectors for the Hermitian covariance matrix R) that are orthonormal and have a real first entry.

Remark 1: Naturally all the expressions of this result reduce to the first and second-order statistics given in [4, Th.9.2.4] (where the determination of v i is not specified) and in [START_REF] Kaveh | The statistical performance of the MU-SIC and the Minimum-Norm algorithms in resolving plane waves in noise[END_REF] (where determination (3) is used) for the circular Gaussian distribution of x t for which λ i,j = 0 and λ i,j,k,l = 0.

APPLICATION TO THE DETECTION OF NONCIRCULAR AND/OR NONGAUSSIAN COMPONENTS

The MDL criterion is one of the most successful information theoretic criteria for estimating the number r of components of

x t = As t + n t ( 6 
)
where s t = (s t,1 , ..., s t,r ), E(s t s H t ) is not singular, A is an n × r full column rank matrix with r < n and s t and n t are uncorrelated with E(n t n H t ) = σ 2 I n . Under the assumption that x t are independent identically zero-mean complex circular Gaussian distributed RVs, and if no prior information about A is used, the MDL estimator is based 2 on the eigenvalues of R and is given by the following minimizer [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF].

r = Arg {min k Λ k } with Λ k = T (n -k) ln a k g k + 1 2 k(2n -k) ln T, (7) 
with

a k def = 1 n-k n i=k+1 λ i and g k def = n i=k+1 λ 1/(n-k) i
. The events r < r and r > r are called underestimation (or misdetection) and overestimation (or false alarm), respectively. Since (Λ k ) k=0,..,n-1 are functions of the eigenvalues ( λ i ) i=1,..,n of R, the derivation of the probabilities P ( r > r) and P ( r < r) needs the joint exact or asymptotic distribution of (λ i ) i=1,..,n . Unfortunately, these two distributions are only available for circular complex Gaussian distribution [START_REF] Anderson | Asymptotic theory for principal component analysis[END_REF], and are furthermore too complicated to be useful for the statistical analysis of the estimator r. Therefore, for simplifying the derivation of these probabilities, it has been argued [START_REF] Wang | On the performance of signal subspace processing -Part I: narrow-band systems[END_REF], [START_REF] Haddadi | Statistical performance analysis of MDL source enumeration in array proessing[END_REF] and [START_REF] Xu | Analysis of the performance and sensitivity of eigendecomposition-based detectors[END_REF] by extended Monte Carlo experiments that P ( r > r) ≈ P ( r = r + 1) ≈ P (Λ r+1 < Λ r ) and P ( r < r) ≈ P ( r = r -1) ≈ P (Λ r-1 < Λ r ). As the probability of overestimation is concerned, exact and approximate asymptotic upper bound of this probability has been derived in [START_REF] Xu | Analysis of the performance and sensitivity of eigendecomposition-based detectors[END_REF] showing that generally P ( r > r)

1. Therefore, we concentrate on the probability of underestimation for which [START_REF] Wang | On the performance of signal subspace processing -Part I: narrow-band systems[END_REF] gives straightforwardly (see [START_REF] Haddadi | Statistical performance analysis of MDL source enumeration in array proessing[END_REF] for r = 1 and 2)

P (Λ r-1 < Λ r ) = P H r λ r a r < T r ( 8 
)
where H r (x)

def = ln 1 x 1 + x-1 n-r+1 n-r+1
and T r def = 1 2T (2n -2r + 1) ln T . Because H r (x) is an increasing function for x > 1 with H r (1) = 0 and T r > 0, (8) is given by

P (Λ r-1 < Λ r ) = P λ r a r < T r , (9) 
where T r = H -1 r (T r ) is the unique solution of the equation H r (x) = T r for x > 1.

To proceed, we must resort to the approximation, used by all authors that have tackled this point, that the standard deviation of a r can be considered as negligible with respect to E( a r ). Consequently a r ≈ E( a r ), where [START_REF] Haddadi | Statistical performance analysis of MDL source enumeration in array proessing[END_REF] has refined the approximation E( a r ) ≈ σ 2 used in [START_REF] Wang | On the performance of signal subspace processing -Part I: narrow-band systems[END_REF] by taking into account the bias of the estimates

( λ i ) i=1,..,r . Using E( a r ) = σ 2 + 1 n-r r i=1 λ i -E( λ i ) and (4), we have a r ≈ m r with m r def = σ 2 - 1 T (n -r) r i=1 1≤j =i≤n λ i λ j +|λ i,j | 2 +λ i,j,i,j λ i -λ j . ( 10 
)
Consequently λ r / a r is approximately asymptotically Gaussian distributed with mean µ r = E( λ r )/m r and variance σ 2 r = Var( λ r )/m 2 r where from ( 4) and ( 5)

µ r = 1 m r   λ r + 1 T 1≤j =r≤n λ r λ j + |λ r,j | 2 + λ r,j,r,j λ r -λ j   (11) 
σ 2 r = 1 m 2 r T λ 2 r + |λ r,r | 2 + λ r,r,r,r (12) 
and the probability of underestimation is approximately asymptotically given by

P ( r < r) ≈ 1 -Q T r -µ r σ r , ( 13 
) with Q(x) def = +∞ x 1 √ 2π e -t 2 2 dt.

DOA ILLUSTRATIONS

To illustrate these general results, the detection of the number r = 1 or r = 2 of noncircular or/and nonGaussian sources impinging on an array of n sensors is now considered. The common model for the received signal x t is given by

x t = A(Θ)s t + n t
where A(Θ) = (a 1 , ..., a r ) with a k denotes the steering vector of the k-th source of DOA θ k . n t is assumed circular complex Gaussian distributed, but (s t,k ) k=1,...,r that have finite 4-th-order moments, are not necessarily circular complex Gaussian distributed.

E|s 2 t,k | = σ 2 s k , E(s 2 t,k ) = σ 2 s k ρ s k e 2iφ s k and Cum(s t,k , s * t,k , s t,k , s * t,k ) = σ 4 s k κ s k where ρ s k ∈ [0, 1], φ s k ∈ [0, π) and κ s k ∈ [-2, +∞
) denote the noncircularity rate and phase, and the kurtosis of s t,k , respectively. In all the numerical illustrations and Monte Carlo experiments, a uniform linear array of omni-directional n = 5 sensors, and half-wavelength spacing is used. Its centroid at the origin of the phase is used 3 . For each point on the figures, T = 200 snapshots (except in Fig. 1) are taken and 10000 Monte Carlo runs are carried out to estimate the probabilities of underestimating.

We first consider the robustness of the MDL criterion to the distribution of the sources. For a single source, it has been derived in [START_REF] Delmas | On the second-order statistics of the EVD of sample covariance matrices -Application to the detection of noncircular or/and nonGaussian components[END_REF] that [START_REF] Kaveh | The statistical performance of the MU-SIC and the Minimum-Norm algorithms in resolving plane waves in noise[END_REF], [START_REF] Xu | Analysis of the performance and sensitivity of eigendecomposition-based detectors[END_REF] and [START_REF] Fishler | Detection of signals by information theoretic criteria: general asymptotic performance analysis[END_REF] give

m 1 = σ 2 1 - 1 T 1 + σ 2 a 1 2 σ 2 s1 (14) µ 1 = σ 2 s1 m 1 a 1 2 + σ 2 σ 2 s 1 1 + n-1 T σ 2 a 1 2 σ 2 s 1 (15) σ 2 1 = a 1 4 σ 4 s 1 T m 2 1 1 + σ 2 a 1 2 σ 2 s1 2 + ρ 2 s 1 + κ s1 , (16) 
that specify the probability of underestimation [START_REF] Abeida | MUSIC-like estimation of direction of arrival for non-circular sources[END_REF]. Consequently this probability of underestimation has the following behavior: P ( r = 0/r = 1) = 1/2 for the value SNR 1/2 of the signal-to-noise-ratio σ 2 s1 /σ 2 solution of T 1 = µ 1 that does not depend on the distribution of the source. With respect to the circular Gaussian distribution, the probability of underestimation is larger ([resp. smaller]) for SNR > SNR 1/2 ([resp. for SNR < SNR 1/2 ]) for noncircular or/and nonGaussian distributions such that ρ 2 s1 + κ s1 > 0. The opposite behavior happens for distributions such that ρ 2 s1 + κ s 1 < 0. This behavior is illustrated in Fig. 1 for the following three distributions: circular Gaussian, BPSK and impulsive that takes the values {-1, 0, +1} with respective probabilities 1/2p, 1 -1/p and 1/2p for which ρ s1 = 1 and κ s1 = p -3. We see from this figure that the probability of underestimation is sensitive to the distribution of the source, particu-larly for sources of large kurtosis κ s 1 and for weak values of the number T of snapshots as it explained by (16).

For possibly noncircular signals x t , it is well known that the DOA estimation may be improved in terms of accuracy [START_REF] Abeida | MUSIC-like estimation of direction of arrival for non-circular sources[END_REF] and resolving power [START_REF] Abeida | Statistical performance of MUSIC-like algorithms in resolving noncircular sources[END_REF] if the standard covariance matrix R x = E(x t x H t ) is replaced by the augmented covariance matrix

R x = E(x t xH t ) with xt def = (x T t , x H t ) T .
More precisely, it is proved in [START_REF] Abeida | MUSIC-like estimation of direction of arrival for non-circular sources[END_REF], [START_REF] Abeida | Statistical performance of MUSIC-like algorithms in resolving noncircular sources[END_REF] that these performance are drastically improved only for rectilinear uncorrelated sources for which 4 

R x = r k=1 σ 2 s k a k a H k + σ 2 I n and R x = r k=1 σ 2 s k ãk ãH k + σ 2 I 2n with ãk def = (a T k , e -2iφ k a H k ) T .
Consequently, it is interesting to compare the probability of underestimation given by the MDL criterion associated with R x and R x whose eigenvalues are denoted ( λi ) i=1,...,2n . For a single rectilinear source the gap between λ1 and σ 2 increases because now λ1 = 2 a 1 2 σ 2 s 1 + σ 2 against to λ 1 = a 1 2 σ 2 s1 + σ 2 and thus the detection performance ought to improve. This is proved by the comparison of the new expressions of m 1 , µ 1 and σ 2 1 deduced from

R x def = E(x t xT t ) and Q x where (Q x) i+(j-1)2n,l+(k-1)2n def = Cum((x t ) i , (x t ) * j , (x t ) k , (x t ) * l )
, that are given by ( 14), ( 15) and ( 16) where a 1 2 is replaced by 2 a 1 2 . We obtain similar behaviors of the probability of underestimation that for the MDL criterion associated with R x , but the performance is improved as it is shown in Fig. 2 for which the MDL criterion associated with R x outperforms this criterion associated with R x by about 1.5dB. For two sources, the rank of R x -σ 2 I 2n of xt is r = 4 except for singularity cases. In particular for uncorrelated rectilinear sources this rank is 2. Fig. 3 shows the probability of underestimation given by the MDL criterion for two equipowered BPSK uncorrelated rectilinear sources where the SNR is defined by the ratio σ 2 s1 /σ 2 . The probabilities of underesti-mation given by the MDL criterion associated with R x and R x are compared as a function of the SNR for two DOA separations. We see that the MDL criterion associated with R x largely outperforms those based on R x by about 1.5dB. 
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 1 Fig.1 P ( r = 0/r = 1) for four distributions.
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 2 Fig.2 P ( r = 0/r = 1) given by the MDL criterion associated with Rx and R x for BPSK and impulsive (p = 20) distributions of the source.
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 3 ( r < 2/r = 2) given by the MDL criterion associated with R x and R x for two DOA separations ∆θ for two uncorrelated BPSK sources.

Note that if A is parameterized by some parameters Θ or if xt is not zero-mean complex circular Gaussian distributed, the MDL criterion is no longer based on the eigenvalues of R[START_REF] Fishler | Detection of signals by information theoretic criteria: general asymptotic performance analysis[END_REF], but nevertheless criterion (7) is often used for its simplicity.

For rectilinear sources, the DOA θ k and phase φ k of noncircularity parameters are coupled[START_REF] Abeida | Statistical performance of MUSIC-like algorithms in resolving noncircular sources[END_REF] and as the performance depends on ∆φ = φ 2 -φ 1 , the centroid of the array must be specified for fixing the performance.

We note that if the sources are nonrectilinear or/and correlated, the number of components (i.e., the rank of R x -σ 2 I 2n ) of xt is generally 2r.