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ABSTRACT

It is well known that beamforming and Capon spectral or di-

rection estimators are biased and inefficient with respect to the

Cramer-Rao bound (CRB). On the other hand, the MUSIC al-

gorithm is known to be asymptotically unbiased and efficient,

in the single zero-mean circular Gaussian source case only.

In this latter case, we prove in this paper that for constant

steering vector modulus, the beamforming and Capon spec-

tral or direction estimators of possible several parameters per

source are asymptotically (with respect to the number of snap-

shots) unbiased and efficient as well, a property previously

overlooked. Finally, the theoretical numerical and empirical

values of the mean square errors (MSE) of the spectral MU-

SIC, beamforming and Capon estimators of the direction of

arrival (DOA) for a single source impinging on a planar array

are compared.

Index Terms— Direction of arrival estimation, source lo-

calization, performance analysis.

1. INTRODUCTION

Originally developed for frequency-wavenumber spectrum

analysis, the conventional and Capon beamforming [1] es-

timators have been applied later to the DOA estimation of

narrow-band sources (see e.g., [2]). Adapted to situations

where no knowledge is available about the covariance struc-

ture of the data, these nonparametric methods are often qual-

ified as low-resolution techniques, because their accuracy

is limited by the number of available sensors. In contrast,

parametric methods, based on subspace techniques (e.g.,

MUSIC [3]), are designed as high-resolution techniques be-

cause their accuracy is essentially limited only by the number

of snapshots and SNR. They generally exhibit better resolu-

tion properties than the conventional and Capon beamforming

estimators.

In the single source case, the MUSIC algorithm has been

proved to be asymptotically unbiased and efficient [4]. With

this background, one may be tempted to think that the low-

resolution beamforming-based DOA estimation techniques

cannot be efficient. In this paper, we prove that, in fact, they

do if the norm of the steering vector does not depend on

the parameters of the source. We specifically prove that the

two main beamforming-based DOA estimation techniques

(conventional and Capon beamforming) are asymptotically

unbiased and efficient with respect to the CRB as the number

of snapshots converges to infinity for possible several param-

eters per source. This result seems to have been overlooked

in all the papers dedicated to performance analysis of conven-

tional and Capon beamforming (see e.g., [5, 6, 7]), whereas

it it well known that the maximizer of the periodogram for

the estimation of the temporal frequency of a single tone is

unbiased and efficient [8]. Also surprising, is the fact that the

MSE of the conventional beamforming estimate converges

to the CRB more quickly than the Capon beamforming. Fi-

nally, the theoretical numerical and empirical values of the

MSE of the spectral MUSIC, beamforming and Capon DOA

estimators for a single source impinging on a planar array are

compared.

The paper is organized as follows. The data model and

previous results are recalled in Sec. 2. The asymptotic effi-

ciency of the conventional and Capon beamforming estima-

tors are proved in Sec. 3. Experimental validation of the ana-

lytical results is conducted in Sec. 4.

2. DATA MODEL AND PREVIOUS RESULTS

Consider a single narrow-band source s(t) that impinges on

an arbitrary calibrated array of M sensors, whose steering

vector a(θ) is parameterized by θ = (θ1, ..., θK), for exam-

ple by the azimuth, elevation and range of the source. The

associated snapshot x(t), whose components are the complex

envelopes of the signals at the output of the sensors is given

by

x(t) = a(θ)s(t) + n(t), (1)

where s(t) and n(t) are uncorrelated zero-mean circular

Gaussian distributed with E
(
|s(t)|2

)
= σ2

s and where n(t)

is supposed spatially uniformly white, i.e., E
(
n(t)nH(t)

)
=

σ2
nI. This gives

R =̂ E
(
x(t)xH (t)

)
= σ2

sa(θ)aH(θ) + σ2
nI.



To avoid any ambiguity in (1), the known functional form of

a(θ) must satisfy a normalization constraint (for example, a

unit specific component for a particular θ).

The objective of the estimation algorithm is to infer

about these parameters based on a set of N observations

x(t1), · · · ,x(tN ). collected at time indexes t1, · · · , tN , re-

spectively. A variety of techniques are useful for this purpose.

Among the very first ones are the so called beamforming-

based techniques, also referred to as low-resolution because

more sensors are needed to increase the estimation accuracy.

Conventional beamforming and Capon beamforming [1] are

the most referenced representatives of this family. On the

other hand, subspace techniques reach arbitrarily high accu-

racy if snapshots are available in an arbitrarily large number

with an arbitrarily high SNR, so that they are often termed as

high-resolution techniques. In particular, the MUSIC algo-

rithm [3] asymptotically reaches the lowest MSE achievable

by an unbiased estimator, the so-called CRB [4].

The beamforming and Capon direction estimators θ̂ are

given by the maximizer and minimizer in α of the respective

following functions

a
H(α)R̂a(α) and a

H(α)R̂−1a(α) (2)

where R̂ and R̂−1 are, respectively, estimates of R and R
−1

from N independent snapshots (x(tn))n=1,..,N . Generally, R̂

is the unbiased estimate (1/N)
∑N

n=1 x(tn)xH(tn) and R̂−1

is either1 the biased estimate (R̂)−1 or the unbiased estimate

[(N − M)/N ](R̂)−1.

The CRB associated with N observations parameterized

by (θ, σ2
s , σ2

n) has been concentrated to θ by many authors

(see e.g., [9, Appendix D]) for the single source case with sev-

eral parameters per source for which CRB(θ) = F
−1 where

the Fisher Information Matrix (FIM) F is given by

F =
2Nσ4

s

σ2
n(σ2

n + ||a(θ)||2σ2
s)

×ℜ
[
||a(θ)||2D(θ)H

D(θ)−D(θ)H
a(θ)aH(θ)D(θ)

]
, (3)

where D(θ) =̂ [∂a(θ)/∂θ1, · · · , ∂a(θ)/∂θK ]. Note that for

a constant steering vector modulus, (3) can be simplified by

withdrawing the real operator [4, (39)].

Concerning the asymptotic variance of the estimate θ̂

given by the beamforming and Capon estimators, several ex-

pressions have been given for an arbitrary number of sources

with a single or several parameters per source. For instance,

we find in [5] and [6] an approximation of this variance as-

sociated with the Capon estimator and a single parameter

(K = 1). Then, the following common approximation of

E
(
∆θ̂∆θ̂

T
)

with ∆θ̂ =̂ θ̂ − θ̄ where θ̄ is the minimizer

or maximizer of a
H(α)Ra(α) or a

H(α)R−1
a(α), respec-

tively for the beamforming and Capon estimators with several

1Note that these two estimates give the same estimator θ̂.

parameters per source has been given [7, (24)]

E
(
∆θ̂∆θ̂

T
)
≃ ηE(θ̄)−1

G(θ̄)E(θ̄)−T , (4)

where the constant η is equal to 1/(2N) for conventional

beamforming, and to N2/{2(N − M)[(N − M)2 − 1]} for

Capon beamforming; and

E(θ̄) = ℜ
(
D

H(θ̄)Rǫ
D(θ̄)

)
+ ℜ

(
H(θ̄)

)
(5)

G(θ̄) = a
H(θ̄)Rǫ

a(θ̄)ℜ
(
D(θ̄)H

R
ǫ
D(θ̄)

)

− ℜ
(
D

H(θ̄)Rǫ
a(θ̄)aH(θ̄)Rǫ

D(θ̄)
)
, (6)

H(θ̄) is an K×K matrix, whose i-th row j-th column entry is

a
H(θ̄)Rǫ

a
′′
ij(θ̄) where a

′′
ij(θ̄) =̂ ∂2

a(θ)/∂θi∂θj |θ=θ̄
. In all

these expressions ǫ = +1 (resp., ǫ = −1) for the conventional

(resp., Capon) beamforming.

3. ASYMPTOTIC EFFICIENCY

Thanks to the common expression of R and R
−1

R
ǫ = ǫσ2

s [σ2
n(σ2

n + ||a(θ)||2σ2
s)](ǫ−1)/2

a(θ)aH(θ) + σ2ǫ
n I,

(7)

one can write,

a
H(α)Rǫ

a(α) = ǫσ2
s

[
σ2

n(σ2
n + ||a(θ)||2σ2

s)
](ǫ−1)/2

×|aH(α)a(θ)|2 + σ2ǫ
n ||aH(α)||2,

which is maximized/minimized by θ̄ = θ, only for constant

steering vector modulus2. As θ̂ converges almost surely to θ̄

when N tends to +∞, the estimate θ̂ is asymptotically un-

biased for constant steering vector modulus. Note that for

not constant steering vector modulus, the estimate θ̂ given by

the MUSIC algorithm is no longer efficient3, despite it is still

asymptotically unbiased. From now, we consider throughout

this paper that ||a(θ)||2 = M .

In order to establish the asymptotic efficiency of beamfor-

ming-based DOA estimation, it is possible in the single source

case to connect matrices E(θ̄) = E(θ) and G(θ̄) = G(θ)
(denoted now by E and G), in respectively (5) and (6), to the

FIM in (3). In fact, we prove in Sec. 6 that

G =

[
σ2

n

(
σ2

n + Mσ2
s

)]1+ǫ

2Nσ4
s

F (8)

and

E = −ǫ

[
σ2

n

(
σ2

n + Mσ2
s

)](1+ǫ)/2

2Nσ2
s

F

+
(
σ2

n + Mσ2
s

)ǫ
ℜ

(
D

H
D + H

′
)
. (9)

2The condition ||a(θ)||2 = M , that includes the case where the sensors

are omnidirectional is usual in the signal processing literature. But this con-

dition is unrealistic. In fact, in practice, the sensors do not all have the same

radiating pattern (see e.g., [10] for electromagnetic field, where furthermore,

sensors may not all have the same polarization pattern) and consequently the

modulus of each component of a(θ) depends on θ.
3The proof of efficiency given in [4] is based on a CRB expression that is

derived under the assumption of constant steering vector modulus.



We investigate the i, j element of D
H
D + H

′, equal to

a
′
i
H

(θ)a′
j(θ)+a

′′
ji

H
(θ)a(θ) where a

′
k(θ) denotes ∂a(θ)/∂θk.

This is nothing but ∂[a′
i
H(θ)a(θ)]/∂θj and its real part is

obviously zero if ‖a(θ)‖ does not depend on θ. Under this

condition, matrix E is also a scaled version of the FIM, just

like G:

E = −ǫ

[
σ2

n

(
σ2

n + Mσ2
s

)](1+ǫ)/2

2Nσ2
s

F,

so that, finally, we obtain

E
−1

GE
−T = 2NF

−1.

With this regard, the MSE relationship in (4), can now be

advantageously expressed as

E

((
θ̂ − θ

) (
θ̂ − θ

)T
)

≃ µF
−1, (10)

where the constant µ is equal to 1 for conventional beamform-

ing, and to N3/{(N − M)[(N − M)2 − 1]} > 1 for Capon

beamforming. We can see from the above that the MSE of

the conventional beamforming converges faster to the CRB,

compared to the Capon beamforming, as we promptly verify

by simulations.

4. SIMULATION

In order to validate the result proved analytically in Sec. 3, we

consider the probably most important application of spectral

parameter estimation, that of estimating the DOA of a far-

field source. We assume a planar antenna array for which the

CRB has been proved to have a very simple form that can be

easily computed [11]. The m-th sensor placed in the (x, y)
plane is characterized by its distance ρm from the origin and

the angle φm from [0, x). The associated observation model

fits (1) with a steering vector of the form

a(θ) =




exp [2jπρ1 sin(Θ) cos (Φ − φ1)]
...

exp [2jπρM sin(Θ) cos (Φ − φM )]




where parameter vector θ = [Φ, Θ]
T

is made of the azimuth

and elevation angles, Φ and Θ, respectively. We tested the

MUSIC algorithm and both conventional and Capon beam-

forming algorithms using the well-referenced L-shaped array

[12] with 21 sensors at cartesian coordinates (normalized by

half the wavelength) (0, 10), · · · , (0, 1), (0, 0),
(1, 0), · · · , (10, 0).

The variance of the randomly generated source symbols is

set to σ2
s = 1 and that of the noise snapshots is set to σ2

n = 20.

The MSE is evaluated using 1000 Monte Carlo runs. In Fig.1,

lines refer to the asymptotic theoretical MSE: solid for the

MUSIC estimator (which is equal to the CRB); dot-dash for

the conventional beamforming estimator [also equal to the

CRB, as illustrated by the RHS of (10) with µ = 1] and dotted

for the Capon beamforming estimator [i.e. the RHS of (10),

where µ is larger than one]. Dots refer to the experimental

MSE: ’x’, ’+’ and ’o’ dots for MUSIC, Capon and conven-

tional beamforming, respectively. Fig.1 shows that both con-

ventional and Capon beamforming asymptotically attain the

CRB (from N = 200). But we see that the conventional

beamforming outperforms the MUSIC algorithm which out-

performs the Capon beamforming for a weak number of snap-

shots (N < 200).
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Fig. 1. MSE on the estimate of the azimuth (a) and elevation (b)

angles for an increasing number of snapshots. The source is located

at azimuth Φ = 20 and elevation Θ = 20 [DEG].



5. CONCLUSION

We have proved that, despite being classified as low-resolution

techniques, (conventional and Capon) beamforming-based

DOA estimation is asymptotically efficient in the single

source case for constant steering vector modulus, a feature

usually attributed to the MUSIC algorithm only. An other

unexpected result is that conventional beamforming leads to

more accurate DOA estimates than Capon beamforming. A

comparative study of the theoretical and numerical asymp-

totic bias of the estimate given by the MUSIC, conventional

and Capon beamforming-based DOA estimation is underway.

6. APPENDIX

We can develop a unified proof for both conventional and

Capon beamforming thanks to the expression (7) of both R

and its inverse. To simplify notation, we drop argument θ

from a(θ) and a
′′(θ). After some manipulations where we

implement the easy-to-verify relationship

σ2ǫ
n =

(
σ2

n + Mσ2
s

)ǫ

−ǫMσ2
s

[
σ2

n

(
σ2

n + σ2
sM

)](ǫ−1)/2
, (11)

we can write R
ǫ
a =

(
σ2

n + Mσ2
s

)ǫ
a,

a
H
R

ǫ
a

H = M
(
σ2

n + Mσ2
s

)ǫ
and

R
ǫ
aa

H
R

ǫ =
(
σ2

n + Mσ2
s

)±2
aa

H . Hence, (6) leads to

1

(σ2
n + Mσ2

s)
ǫ G = Mℜ

(
D

H
R

ǫ
D

)

−
(
σ2

n + Mσ2
s

)ǫ
ℜ

(
D

H
aa

H
D

)
.

By applying (7) then (11) to the above, we prove that

1

σ±2
n (σ2

n + Mσ2
s)ǫ G = −ℜ

(
D

H
aa

H
D

)
+ Mℜ

(
D

H
D

)
.

(12)

Finally, (8) is obtained by comparing the above to the real-

valued FIM in (3).

In order to prove (9), notice that the i-th row j-th col-

umn element of H is
(
σ2

n + Mσ2
s

)ǫ
a

H
a
′′
ij so that H =(

σ2
n + Mσ2

s

)ǫ
H

′, where

H
′ =

[
[a′′

11, · · · ,a′′
1K ]

H
a, · · · , [a′′

K1, · · · ,a′′
KK ]

H
a

]
.

By proceeding similarly as for (12), we prove that

E = ±σ2
s

[
σ2

n

(
σ2

n + Mσ2
s

)](ǫ−1)/2
ℜ

(
D

H
aa

H
D

)

+σ±2
n ℜ

(
D

H
D

)
+

(
σ2

n + Mσ2
s

)ǫ
ℜ (H)′ .

Thanks to (11), the above can be rewritten as

E = ±σ2
s

[
σ2

n

(
σ2

n + Mσ2
s

)](ǫ−1)/2

×
[
ℜ

(
D

H
aa

H
D

)
− Mℜ

(
D

H
D

)]

+
(
σ2

n + Mσ2
s

)ǫ
ℜ

(
D

H
D + H

′
)
,

which straightforwardly leads to (9).
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