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Fuzzy measures and integrals: recent developments

This paper surveys the basic notions and most important results around fuzzy measures and integrals, as proposed independently by Choquet and Sugeno, as well as recent developments. The latter includes bases and transforms on set functions, fuzzy measures on set systems, the notion of horizontal additivity, basic Choquet calculus on the nonnegative real line introduced by Sugeno, the extension of the Choquet integral for nonmeasurable functions, and the notion of universal integral.

Introduction

This paper gives a survey of the research done on fuzzy measures and integrals since Sugeno proposed in 1974 the concept of fuzzy measure, with an emphasis on recent results. This field of research lies at the intersection of several independent domains, which makes it very active and attractive, namely, measure theory, theory of aggregation functions, cooperative game theory, combinatorial optimization, pseudo-Boolean functions and more generally theoretical computer sciences. As an illustration of this fact, the word "fuzzy measure" which was coined by Sugeno, has many different names according to the field where it is used: nonadditive measure, capacity, monotone game, pseudo-Boolean function, rank function of a polymatroid, etc. Evidently, this short paper cannot make a complete account of all the research undertaken in this area, a whole book will hardly suffices. Indeed, the author is preparing a monograph on this topic, with the title: "Set functions, games and capacities in decision making", to be published by Springer around the end of 2015. This paper gives a kind of quick and necessarily simplified summary of selected topics. We recommend the interested reader to consult the main (available) monographs dealing with fuzzy measures and integrals: Pap [START_REF] Pap | Null-Additive Set Functions[END_REF], Denneberg [START_REF] Denneberg | Non-Additive Measure and Integral[END_REF], Wang and Klir [START_REF] Wang | Generalized measure theory[END_REF], the Handbook of measure theory edited by Pap [START_REF] Pap | Handbook of measure theory[END_REF], as well as the edited book [START_REF] Grabisch | Fuzzy Measures and Integrals[END_REF], and the survey paper [START_REF] Grabisch | A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid[END_REF]. The latter focusses on application in multicriteria decision making, an aspect which is not covered by this paper, restricting to theory.

To avoid intricacies, in the whole paper the universal set X is finite, with |X| = n. We often use ∨, ∧, which collapse to maximum and minimum on finite sets.

Fuzzy measures

Fuzzy measures introduced by Sugeno [START_REF] Sugeno | Theory of fuzzy integrals and its applications[END_REF] are generalization of classical measures, i.e., additive and nonnegative set functions, whose domain is an algebra F on X. As we will see in Section 2.4, the structure of algebra is not needed here, and various structures can be thought of. For simplicity, we assume F = 2 X in the first subsections, the general case will be addressed in the last one.

Definition, main families and properties

A fuzzy measure on X is a set function µ : 2 X → R such that µ(∅) = 0 and µ obeys monotonicity: A ⊆ B ⊆ X implies µ(A) µ(B). Fuzzy measures are also called capacities (after Choquet [START_REF] Choquet | Theory of capacities[END_REF]), nonadditive measures (Denneberg [START_REF] Denneberg | Non-Additive Measure and Integral[END_REF]), monotone measures (Wang and Klir [START_REF] Wang | Generalized measure theory[END_REF]), etc. If in addition µ(X) = 1, then the fuzzy measure is said to be normalized.

If monotonicity is dropped from the definition, we obtain nonmonotonic fuzzy measures, more commonly called games, denoted usually by v.

One of the most important property of fuzzy measures (or games as well) is convexity, a.k.a. supermodularity. A fuzzy measure µ is convex if for all A, B ∈ 2 X , µ(A∪B) + µ(A∩ B) µ(A) + µ(B). If the reverse inequality holds, µ is said to be concave or submodular. Convexity is generalized by the so-called k-monotonicity property: µ is k-monotone for some fixed 2 k n if for any family of k sets A 1 , . . . , A k ∈ 2 X ,

µ k i=1 A i I⊆{1,...,k} I =∅ (-1) |I|+1 µ i∈I A i . (1) 
Moreover, µ is totally monotone if it is k-monotone for every k 2 (in fact, 2 k 2 n -2 suffices). The k-alternating property is defined similarly, interchanging and and reversing inequality. Lastly, µ is said to be maxitive if µ(A ∪ B) = µ(A) ∨ µ(B), and minitive if µ(A ∩ B) = µ(A) ∧ µ(B).

The simplest fuzzy measures which can be thought of are 0-1-fuzzy measures: their range is simply {0, 1}. In game theory, they are called simple games and are useful in voting theory. Among them, particularly useful are unanimity games (a.k.a. simple support functions): for any ∅ = A ⊆ X, the unanimity game u A is defined by

u A (B) = 1, if B ⊇ A 0, otherwise.
The next remarkable families are possibility and necessity measures: a possibility (resp., necessity) measure is a normalized maxitive (resp., minitive) fuzzy measure (Zadeh,[START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF], Dubois and Prade [START_REF] Dubois | Possibility Theory[END_REF]). Necessity measures are particular cases of belief functions, as proposed by Shafer [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] (similarly, plausibility functions generalize possibility measures). Mathematically speaking, a belief (resp., plausibility) function is a normalized totally monotone (resp., alternating) fuzzy measure.

Transforms and bases

The set of games, as well as the set of set functions, form a vector space of dimension 2 n -1 (resp., 2 n ). This is not the case for the set of fuzzy measures, which is only a cone, while the set of normalized capacities is a polytope, whose vertices are the 0-1 fuzzy measures (Stanley [12], Radojevic [START_REF] Radojevic | The logical representation of the discrete Choquet integral[END_REF]). In the rest if this section, we deal with the vector space of set functions (the results can be however easily adapted to the set of games).

A transform is a mapping Ψ : R (2 N ) → R (2 N ) , assigning to any set function ξ the set function Ψ ξ . If the transform is linear and invertible, then it induces a basis of the vector space of set functions (and similarly for games). Conversely, any basis induces a linear invertible transformation. This is explicited in the next lemma. Lemma 1. (Faigle and Grabisch [START_REF] Faigle | Linear transforms, values and least square approximation for cooperation systems[END_REF]) For every basis {b S } S∈2 X of R 2 X , there exists a unique linear invertible transform Ψ such that for any

ξ ∈ R 2 X , ξ = S∈2 X Ψ ξ (S)b S , (2) 
whose inverse

Ψ -1 is given by ξ → (Ψ -1 ) ξ = T ∈2 X ξ(T )b T .
Conversely, to any transform Ψ corresponds a unique basis {b S } S∈2 X such that (2) holds, given by b S = (Ψ -1 ) δ S , where δ S is a 0-1-valued set function defined by δ S (T ) = 1 if and only T = S.

It is well known that the set of unanimity games forms a basis of the set of games. Adding the 0-1-valued set function u ∅ defined by u ∅ (S) = 1 if and only if S = ∅, we get a basis for the vector space of set functions. By Lemma 1, the corresponding transform, denoted by m, satisfies

ξ(A) = B⊆A m ξ (B) (A ∈ 2 X ), which yields m ξ (A) = B⊆A (-1) |A\B| (A ∈ 2 X ).
This transform is known as the Möbius transform, famous in combinatorics. Among the many existing transforms, at least two of them have a special interest. The interaction transform [START_REF] Grabisch | k-order additive discrete fuzzy measures and their representation[END_REF], generalizing the Shapley value [START_REF] Shapley | A value for n-person games[END_REF] and the interaction index of Murofushi and Soneda [START_REF] Murofushi | Techniques for reading fuzzy measures (III): interaction index[END_REF], has the following expression:

I ξ (A) := B⊆X\A (n -b -a)!b! (n -a + 1)! ∆ A ξ(B) = K⊆X |X \ (A ∪ K)|!|K \ A|! (n -a + 1)! (-1) |A\K| ξ(K)
for all A ⊆ X, where a, b, k are cardinalities of subsets A, B, K, respectively, and

∆ A ξ(B) = K⊆A (-1) |A\K| ξ(B ∪ K).
This transform enables the interpretation of fuzzy measures in a multicriteria decision making context [START_REF] Grabisch | The application of fuzzy integrals in multicriteria decision making[END_REF][START_REF] Grabisch | A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid[END_REF]. The inverse transform is given by

(I -1 ) ξ (S) = K⊆X β |K| |S∩K| ξ(K),
with coefficients β l k given by

β l k = k j=0 k j B l-j (k l),
where the B j 's are the Bernoulli numbers. It follows from Lemma 1 that the corresponding basis is b

I T (S) = β |T | |T ∩S| (S, T ∈ 2 X ).
The interaction transform of ξ can be expressed in a simple way through its Möbius transform:

I ξ (A) = B⊇A 1 b -a + 1 m ξ (B). (3) 
The second transform of interest is the so-called Fourier transform, well known in computer sciences (see, e.g., de Wolf [START_REF] Wolf | A brief introduction to Fourier analysis on the Boolean cube[END_REF] and O'Donnell [START_REF] Donnell | Analysis of Boolean functions[END_REF]). The Fourier transform of a set function ξ is defined by

F ξ (S) = 1 2 n K⊆X (-1) |S∩K| ξ(K).
Interestingly enough, it is auto-inverse up to the factor 1/2 n :

(F -1 ) ξ (S) = K⊆X (-1) |S∩K| ξ(K).
The corresponding basis is therefore

b F T (S) = K⊆X (-1) |S∩K| δ T (K) = (-1) |S∩T | (S, T ∈ 2 X ).
The vectors of this basis (not that these are not games) are called parity functions in the literature of computer sciences. They are up to a recoding equal to the Walsh functions

w S (T ) = (-1) |S\T | (indeed, b F T (S) = w S (X \ T ))
. These are a finite version of the original functions proposed by Walsh (see Hurst et al. [START_REF] Hurst | Spectral techniques in digital logic[END_REF]), who form a orhonormal basis of the set of square integrable functions on [0, 1]. The major advantage of the Fourier (or Walsh) basis is that it is orthonormal, in the sense that b F T , b F S = 1 if S = T , and 0 otherwise, where the inner product is defined by

ξ, ξ ′ = 1 2 n S∈2 X ξ(S)ξ ′ (S).
Another remarkable property is that the Fourier transform turns the convolution product into an ordinary product (like with the original definition of the Fourier transform):

F ξ * ξ ′ = F ξ F ξ ′
where the convolution product of two set functions is defined by

(ξ * ξ ′ )(S) = 1 2 n T ∈2 X ξ(S∆T )ξ ′ (T )
(S∆T is the symmetric difference, i.e., (S ∪ T ) \ (S ∩ T )). We finish this section by giving the bounds of the Möbius transform for a normalized fuzzy measure. Surprisingly, the interval in which the Möbius transform of a normalized fuzzy measure can vary is not [-1, 1], but its bounds grow rapidly with n, approximately in , as shown in [START_REF] Grabisch | Exact bounds of the Möbius inverse of monotone set functions[END_REF] (corrected version of an earlier publication [START_REF] Miranda | Optimization issues for fuzzy measures[END_REF]). The precise result is as follows.

Theorem 1. For any normalized fuzzy measure µ, its Möbius transform satisfies for any A ⊆ N, |A| > 1:

- |A| -1 l ′ |A| m µ (A) |A| -1 l |A| , with l |A| = 2 |A| 4 , l ′ |A| = 2 |A| -1 4 + 1 (4) 
and for |A| = 1 < n:

0 m µ (A) 1,
and m µ (A) = 1 if |A| = n = 1. These upper and lower bounds are attained by the normalized fuzzy measures µ * A , µ A * , respectively:

µ * A (B) = 1, if |A| -l |A| |B ∩ A| |A| 0, otherwise , µ A * (B) = 1, if |A| -l ′ |A| |B ∩ A| |A| 0, otherwise for any B ⊆ N.
We give in Table 1 the first values of the bounds. 

k-additive and p-symmetric fuzzy measures

A fuzzy measure µ is additive if µ(A ∪ B) = µ(A) + µ(B) for every disjoint A, B ∈ 2 X . Normalized additive fuzzy measures therefore coincide with probability measures. Observing that the Möbius transform of an additive fuzzy measure µ satisfies m µ (A) = 0 for all A ∈ 2 X such that |A| > 1, a natural generalization of additivity is k-additivity: a fuzzy measure µ is k-additive

(1 ≤ k ≤ n) if m µ (A) = 0 for all A ∈ 2 X such that |A| > k,
and there exists at least one A ∈ 2 X such that m µ (A) = 0 (Grabisch [START_REF] Grabisch | k-order additive discrete fuzzy measures and their representation[END_REF]). It follows that a k-additive fuzzy measure needs only

n 1 + n 2 + • • • + n k coefficients to be defined, instead of 2 n -1.
Due to (3), an equivalent definition is: µ is k-additive if its interaction transform I µ vanishes for subsets of more than k elements, and there exists a subset A of k elements such that I µ (A) = 0. Since the interaction transform has a clear interpretation in the context of multicriteria decision making, k-additive fuzzy measures are of particular interest. Especially, 2-additive fuzzy measure have the advantage of being the simplest fuzzy measures (in terms of number of free coefficients) able to represent interaction between two elements. k-additive fuzzy measures are families of fuzzy measures which are of polynomial complexity instead of the exponential complexity of general fuzzy measures. Another set of such families is provided by the concept of p-symmetric fuzzy measure (Miranda and Grabisch [START_REF] Miranda | p-symmetric fuzzy measures[END_REF][START_REF] Miranda | p-symmetric bi-capacities[END_REF]). A fuzzy measure µ is symmetric if µ(A) = µ(B) whenever |A| = |B|. Furthermore, two distinct elements i, j ∈ X are symmetric w.r.t. a fuzzy measure µ (denoted by i ∼ µ j) if µ(A ∪ i) = µ(A ∪ j) for every A ⊆ X \ {i, j}. Note that ∼ µ is an equivalence relation, and let us consider its equivalence classes, which forms a partition of X. Clearly, a symmetric fuzzy measure has only one such equivalence class, which is X. A natural generalization is: a fuzzy measure is p-symmetric if ∼ µ has p equivalence classes. It follows that any fuzzy measure is p-symmetric for some 1 ≤ p ≤ n (by the way, also k-additive for some 1 ≤ k ≤ n).

Consider a p-symmetric fuzzy measure µ, with set of equivalence classes {A 1 , . . . , A p }, and a subset B ⊆ X. Clearly, the value µ(B) depends uniquely on the numbers b 1 , . . . , b p , with b

i := |A i ∩ B|. Since 0 b i |A i |, it follows that µ needs p i=1 (|A i | + 1
) coefficients to be defined.

Fuzzy measures on set systems

A set system F on X is a subcollection of 2 X containing ∅ and covering X, that is, A∈F A = X. We consider in this section fuzzy measures whose domain is a set system. We begin by introducing the main families of set systems of interest. The most classical example borrowed from measure theory is algebra. An algebra is a set system closed under finite union and complementation. Although complementation is fundamental in classical measure theory, this is no more the case for fuzzy measures and games, so that other algebraic structures arise:

(i) Set systems closed under union and intersection: (Faigle and Kern [START_REF] Faigle | The Shapley value for cooperative games under precedence constraints[END_REF]) It follows that such set systems contain X and are distributive lattices. Under the additional condition that there is no macro-element (i.e., a subset M ⊂ X with |M| > 1 such that for any A ∈ F , either M ⊆ A or A∩M = ∅), from Birkhoff's representation theorem, the set of all such set systems is in bijection with the set of partial orders on X. In other words, any such F is generated by a partial order on X, which can be interpreted as a kind of hierarchy of the elements in X. This is particularly meaningful when X is a set of players, agents, etc., or criteria. (ii) Weakly union-closed set systems: (Algaba [START_REF] Algaba | The position value for union stable systems[END_REF], Faigle and Grabisch [START_REF] Faigle | A discrete Choquet integral for ordered systems[END_REF][START_REF] Faigle | Monge extensions of cooperation and communication structures[END_REF])

F is weakly union-closed if A, B ∈ F , A ∩ B = ∅ imply A ∪ B ∈ F
. This larger family is motivated by communication graphs. Suppose that a graph (X, E) is defined on X, with X being the set of nodes, and E being the set of edges, i.e., pairs {i, j} with i, j ∈ X and i = j. Say that a subset A ⊆ X is connected if for any distinct i, j ∈ A, there exists a sequence i = i 1 , i 2 , . . . , i q = j of elements of X such that {i k , i k+1 } ∈ E for k = 1, . . . , q -1. Defining F as the set of connected subsets of X, it follows that F is weakly union-closed (this is however not a characterizing property). (iii) Regular set systems: [START_REF] Honda | An axiomatization of entropy of capacities on set systems[END_REF][START_REF] Lange | Values on regular games under Kirchhoff's laws[END_REF] a set system F is regular if it contains X and any maximal chain1 from ∅ to X has length n. Every distributive lattice is a regular set system. The motivation for such sets systems is more mathematical: it happens that many concepts around games and fuzzy measures are based on maximal chains of length n (Shapley value, marginal vectors, Choquet integrals, etc.).

If F is a lattice (in particular, if F is closed under union and intersection), the definition of k-monotonicity is easily adapted by substituting ∪, ∩ in (1) by ∨, ∧ of the lattice. It is well-known that when F = 2 X , there is an equivalence between total monotonicity and the nonnegativity of the Möbius transform. It has been for a long time an unsolved issue whether this equivalence still holds if F is a lattice, only recently solved: Theorem 2. Let µ be fuzzy measure on a lattice F . Then µ is totally monotone if and only if it has a nonnegative Möbius transform.

The "only if" part was shown by Barthélemy [START_REF] Barthélemy | Monotone functions on finite lattices: an ordinal approach to capacities, belief and necessity functions[END_REF], and the "if part" recently by Zhou [START_REF] Zhou | Belief functions on distributive lattices[END_REF].

The Choquet and Sugeno integrals

The term "fuzzy integral" has been introduced by Sugeno [START_REF] Sugeno | Theory of fuzzy integrals and its applications[END_REF] in 1974, and is now most commonly called the Sugeno integral. However, Choquet already in 1954 proposed a functional w.r.t. a fuzzy measure (or capacity), referred now as the Choquet integral. As we will see in Section 3.8, other integrals w.r.t. fuzzy measures have been proposed. We study in detail the Choquet and Sugeno integrals, which can be considered as the most representative (and still very different) fuzzy integrals. Except for Section 3.7, we assume that fuzzy measures are defined on F = 2 X .

Definitions and basic properties

We begin by introducing the general definition, which is valid for arbitrary spaces. For this, we need decumulative distribution functions. Let µ be a fuzzy measure and f :

X → R. The decumulative distribution of f w.r.t. µ is G µ,f (t) = µ({x ∈ X | f (x) t} (t ∈ R).
We consider first nonnegative functions. Let f : X → R + and µ be a fuzzy measure. The Choquet integral of f w.r.t. µ is defined by

f dµ = ∞ 0 G µ,f (t) dt, (5) 
where the right hand-side integral is the Riemann integral. The Sugeno integral of f w.r.t. µ is defined by

-f dµ = t 0 (G µ,f (t) ∧ t) = t 0 (G µ,f (t) ∨ t).
In words, the Sugeno integral is the abscissa of the intersection point between the diagonal and the decumulative function, while the Choquet integral is the area below the decumulative function. It can be proven that it is equivalent to consider a strict inequality in the definition of G µ,f . Another equivalent formula for the Sugeno integral is

-f dµ = A∈F x∈A f (x) ∧ µ(A) .
Note that the Choquet integral can be defined w.r.t. games as well. However, since the decumulative function is no more monotone with games, the definition of the Sugeno integral is restricted to fuzzy measures. An elementary property is that for every A ⊆ X,

1 A dµ = µ(A)
, where 1 A is the characteristic function of A. The latter property holds also for the Sugeno integral, provided µ is normalized. In view of this property, the Choquet and Sugeno integrals can be considered as extensions of fuzzy measures.

When X = {x 1 , . . . , x n }, the formulas can be made more explicit. For a function f : X → R + , let f i denotes f (x i ) for simplicity, and take a permutation σ on {1, . . . , n}

such that f σ(1) • • • f σ(n) . Define A ↑ σ (i) = {x σ(i) , x σ(i+1) , . . . , x σ(n) }, i = 1, . . . , n. The Choquet integral is given by f dµ = n i=1 (f σ(i) -f σ(i-1) )µ(A ↑ σ (i)) (6) = n i=1 f σ(i) µ(A ↑ σ (i)) -µ(A ↑ σ (i + 1)) , (7) 
with the conventions f σ(0) = 0 and A ↑ σ (n + 1) = ∅. For the Sugeno integral, we obtain:

-f dµ = n i=1 f σ(i) ∧ µ(A ↑ σ (i)) (8) = n i=0 f σ(i) ∨ µ(A ↑ σ (i + 1)) (9) 
with the same conventions.

We consider now the case of real-valued integrands. For any f : X → R, we write

f = f + -f -, with f + = 0 ∨ f, f -= (-f ) + .
Then the symmetric Choquet integral (a.k.a. Šipoš integral [START_REF] Šipoš | Integral with respect to a pre-measure[END_REF] ) is defined by

ˇ f dµ = f + dµ -f -dµ. ( 10 
)
The asymmetric Choquet integral, which is the usual definition, is defined by

f dµ = f + dµ -f -dµ, ( 11 
)
where µ is the conjugate fuzzy measure, defined by µ(A) = µ(X) -µ(X \ A) for any A ∈ 2 X . The asymmetric Choquet integral is translation invariant (it is the only extension having this property), while the symmetric integral satisfies

ˇ (-f ) dµ = - ˇ f dµ.
The case of the Sugeno integral is more cumbersome, essentially due to the following problem. The Sugeno integral is defined through the ∨, ∧ operators, playing the rôle of addition and product respectively (compare ( 6) with ( 8)). Remembering that on the ring of real numbers, a -b is shorthand for a + (-b), a transposition of formula [START_REF] Dubois | Possibility Theory[END_REF] for the Sugeno integral would read

- f dµ = -f + dµ --f -dµ (12)
where is an extension of ∨ for real numbers (i.e., a b = a ∨ b whenever a, b 0) such that a (-a) = 0. Surprisingly, such an operator would be necessarily nonassociative. Indeed,

((-3) 3) 2) = 0 2 = 0 ∨ 2 = 2 (-3) (3 2) = (-3) (3 ∨ 2) = (-3) 3 = 0.
The lack of associativity forbids to infer the so-called rule of sign, i.e., (-a) (-b) = -(a b), which is necessary for the symmetry of the integral:

- (-f ) dµ = -f -dµ --f + dµ = - --f -dµ -f + dµ = - - f dµ. ( 13 
)
It can be shown [START_REF] Grabisch | The Möbius function on symmetric ordered structures and its application to capacities on finite sets[END_REF] that the best operator (in the sense that it is associative on the largest domain) satisfying the above requirements (including the rule of sign) is the symmetric maximum, defined by

a b =      -(|a| ∨ |b|), if b = -a and either |a| ∨ |b| = -a or = -b 0, if b = -a |a| ∨ |b|, otherwise. (14) 
The symmetric Sugeno integral [START_REF] Grabisch | The symmetric Sugeno integral[END_REF] is therefore defined by [START_REF] Stanley | Two poset polytopes[END_REF] and . Up to now, there is no adequate definition of an asymmetric Sugeno integral.

The Choquet integral as a linear interpolator

Consider the following problem: a function I : [0, 1] n → [0, 1] is known only on the vertices of the hypercube [0, 1] n (in particular I(0) = 0, where 0 is the 0 vector), and has to be determined everywhere in the hypercube. This is an interpolation problem, and there exists many ways to make the interpolation. Noting that the vertices of the hypercube correspond bijectively to the subsets of X (with |X| = n), it follows that I is necessarily an extension of a game v: I(1 A ) = v(A) for every A ∈ 2 X . Hence the Choquet and Sugeno integrals could be candidate.

Even if we restrict to a linear interpolation, there are still many ways of doing the interpolation, depending on which vertices are chosen, but there exist two extreme ways. If all vertices are used for each point f ∈ [0, 1] n , we get the multilinear model (owen, citeowe88), given by:

I(f ) = A⊆X,A =varnothing m v (A) i∈A f i
where m v is the Möbius transform of v, defined by v(A) = I(1 A ) for every A ∈ 2 X . The other extreme case would be to take the minimum number of vertices so that the considered vector x is contained in the convex hull of the selected vertices (parsimonious interpolation). Then this number is n + 1, the number of vertices of a n-dimensional simplex, and the problem of choosing the right simplices for each f amounts to the triangulation problem of the hypercube. There is one triangulation of particular interest since it leads to an interpolation where all constant terms are 0, the triangulation in the n! canonical simplices, where each simplex is induced by a permutation σ on {1, . . . , n}:

S σ = {f ∈ [0, 1] n | f σ(1) f σ(2) • • • f σ(n) }.
Then it can be shown that the parsimonious linear interpolation based on the canonical simplices is the Choquet integral. This fact was remarked by Singer [START_REF] Singer | Extensions of functions of 0-1 variables and applications to combinatorial optimization[END_REF], and also Marichal [START_REF] Marichal | An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria[END_REF].

Expression w.r.t transforms

The Choquet integral being linear w.r.t. the game, it is easy to get its expression when the game is expressed by some linear invertible transform (equivalently, in some other basis). Let Ψ be a linear invertible transform, and {b Ψ A } A∈2 X the corresponding basis of set functions given by Lemma 1. Since these set functions are not necessarily games, and the Choquet integral needs games to be well defined, we build a basis of games {b ′Ψ A } A∈2 X \{∅} as follows:

b ′ S (T ) = b S (T ), if T = ∅ 0, otherwise (S ∈ 2 X \ {∅}). (15) 
Then for every f ∈ R X and every game v,

f dv = f d ∅ =A⊆X Ψ v (A)b ′Ψ A = ∅ =A⊆X Ψ v (A) f db ′Ψ A . (16) 
It is therefore sufficient to compute f db ′Ψ A for every A ⊆ X, A = ∅. Applying this to the Möbius transform immedaitely yields the following well-known formula:

f dv = A⊆X m v (A) i∈A f i . (17) 
The same methodology is not applicable to the Sugeno integral since it is not linear w.r.t. the fuzzy measure. It is possible however to obtain a formula similar to [START_REF] Murofushi | Techniques for reading fuzzy measures (III): interaction index[END_REF] 

m * (A) = µ(A), if µ(A) > µ(A \ i), ∀i ∈ A 0, otherwise (A ⊆ X). (18) 
The above formula has been first proposed in [START_REF] Marichal | Mesures floues définies sur une échelle ordinale[END_REF] [40], then developed in [START_REF] Grabisch | The Möbius function on symmetric ordered structures and its application to capacities on finite sets[END_REF]. Then, it can be proved that the Sugeno integral takes the form:

-f dµ = A⊆X i∈A f i ∧ m(A) (19) 
where m is any function in [m * , m * ].

Properties

The next propositions summarize the main elementary properties of Choquet and Sugeno integrals. In the whole section, X is supposed to be finite, and F = 2 X .

Theorem 3. Let f : X → R be a function and a game v. The following properties hold for the Choquet integral.

(i) Positive homogeneity:

αf dv = α f dv (α 0)
(ii) Homogeneity of the symmetric Choquet integral:

ˇ αf dv = α ˇ f dv (α ∈ R)
(iii) Translation invariance:

(f + α1 X ) dv = f dv + αv(X) (α ∈ R)
(iv) Asymmetry:

(-f ) dv = -f dv
where v is the conjugate game; (v) Scale inversion:

(α1 X -f ) dv = αv(X) -f dv (α ∈ R)
(vi) Monotonicity w.r.t. the integrand: for any fuzzy measure µ,

f f ′ ⇒ f dµ f ′ dµ
(vii) Monotonicity w.r.t. the game for nonnegative integrands: if f 0,

v v ′ ⇒ f dv ≤ f dv ′
(viii) Linearity w.r.t. the game:

f d(v + αv ′ ) = f dv + α f dv ′ , (α ∈ R)
(ix) Boundaries: inf f and sup f are attained:

inf f = f dµ min , sup f = f dµ max ,
with µ min (A) = 0 for all A ⊂ X, and µ max (A) = 1 for all nonempty A ⊆ X;

(x) Continuity.

Theorem 4. Let f : X → R + , and µ a fuzzy measure on X. The following properties hold for the Sugeno integral.

(i) Positive ∧-homogeneity:

-(α1 X ∧ f ) dµ = α ∧ -f dµ (α 0) (ii) Positive ∨-homogeneity if sup f µ(X): -(α1 X ∨ f ) dµ = α ∨ -f dµ (α ∈ [0, sup f ]).
(iii) Hat function: for every α 0 and for every A ∈ F ,

-α1 A dµ = α ∧ µ(A) (iv) Scale inversion: if sup f µ(X), -(µ(X)1 X -f ) dµ = µ(X) --f dµ,
where µ is the conjugate fuzzy measure; (v) Scale translation:

-(f + α1 X ) dµ -f dµ + -α dµ = -f dµ + α ∧ µ(X) (α 0)
(vi) Monotonicity w.r.t. the integrand:

f f ′ ⇒ -f dµ -f ′ dµ (f, f ′ ∈ B + (F ))
(vii) Monotonicity w.r.t. the fuzzy measure:

µ µ ′ ⇒ -f dµ ≤ -f dµ ′
(viii) Max-min linearity w.r.t. the fuzzy measure:

-f d(µ ∨ (α ∧ µ ′ )) = -f dµ ∨ α ∧ f dµ ′ (α 0)
(ix) Boundaries: inf f and sup f are attained:

inf f = -f dµ min , sup f = -f dµ max ,
with µ min , µ max defined as in Theorem 3;

(x) Lipschitz continuity:

-f dµ --g dµ µ(X) ∧ f -g (f, g ∈ B + (F ))
with f = sup x∈X |f (x)| (Chebyshev norm). Hence, if µ is normalized and f, g are valued on [0, 1], we obtain that the Sugeno integral is 1-Lipschitzian for the Chebyshev norm.

A fundamental feature of both Choquet and Sugeno integrals is their relation with comonotonic functions. Two functions f, g : X → R are comonotonic if there is no x, x ′ ∈ X such that f (x) < f (x ′ ) and g(x) > g(x ′ ) (equivalently, in the case of a finite universe, if there exists a permutation σ on X such that f σ(1)

• • • f σ(n) and g σ(1) • • • g σ(n) ).
Theorem 5. Let f, g be comonotonic functions on X (finite). Then for any game v, the Choquet integral is comonotonically additive, and the Sugeno integral is comonotonically maxitive and minitive for any fuzzy measure µ:

(f + g) dv = f dv + g dv -(f ∨ g) dµ = -f dµ ∨ -g dµ -(f ∧ g) dµ = -f dµ ∧ -g dµ.
A more recently introduced type of additivity is called horizontal additivity (see Šipoš [START_REF] Šipoš | Integral with respect to a pre-measure[END_REF], and Benvenuti et al. [START_REF] Benvenuti | Monotone set functions-based integrals[END_REF]). Given a function f : X → R and a constant c ∈ R, the horizontal min-additive decomposition of f is:

f = (f ∧ c1 X ) + (f -(f ∧ c1 X )).
This amounts to "cut" horizontally the function at level c. Similarly, the horizontal maxadditive decomposition of f is:

f = (f ∨ c1 X ) + (f -(f ∨ c1 X )).
A functional I : R X → R is horizontally min-additive if for every f : X → R and c ∈ R,

I(f ) = I(f ∧ c1 X ) + I(f -(f ∧ c1 X )).
Horizontal max-additivity is defined similarly. It turns out that these notions are equivalent to comonotonic additivity, as shown by Couceiro and Marichal [START_REF] Couceiro | Axiomatizations of Lovász extensions of pseudo-boolean functions[END_REF]. A related notion is horizontal median-additivity, introduced by Couceiro and Marichal [START_REF] Couceiro | Axiomatizations of Lovász extensions of pseudo-boolean functions[END_REF]. Lastly, we introduce comonotonic modularity. A functional I : R X → R is modular if for every f, g : X → R,

I(f ∨ g) + I(f ∧ g) = I(f ) + I(g).
It can be easily shown that the Choquet integral is comonotonically modular, i.e., for any comonotonic functions f, g it holds

(f ∨ g) dv + (f ∧ g) dv = f dv + g dv.
This also holds for the Sugeno integral. The next theorem clarifies the important case of supermodular fuzzy measures for the Choquet integral. Theorem 6. For any game v, the following conditions are equivalent:

(i) v is supermodular; (ii) The Choquet integral is superadditive, that is, (f + g) dv f dv + g dv for all f, g : X → R (iii) The Choquet integral is supermodular, that is, (f ∨ g) dv + (f ∧ g) dv f dv + g dv for all f, g : X → R; (iv) The Choquet integral is concave, that is, (λf + (1 -λ)g) dv λf dv + (1 -λ) g dv for all λ ∈ [0, 1], f, g : X → R. (v)
The Choquet integral yields the lower expected value onthe core of v:

f dv = min φ∈core(v) f dφ, (20) 
where core(v) is the set of additive games φ on X such that φ(X) = v(X) and φ(S) v(S) for all S ∈ 2 X .

Lastly, we give the properties of the Sugeno integral concerning maxitivity and minitivity.

Theorem 7. The following holds:

(i) -(f ∨ g) dµ = -f dµ ∨ -g dµ for all f, g ∈ B + (F ) if and only if µ is maxitive; (ii) -(f ∧ g) dµ = -f dµ ∧ -g dµ for all f, g ∈ B + (F ) if and only if µ is minitive.

Characterizations

The most famous characterization of the Choquet integral is due to Schmeider [START_REF] Schmeidler | Integral representation without additivity[END_REF], whose adaptation to the finite case (|X| = n) and F = 2 X is as follows.

Theorem 8. Let I : R X → R be a functional. Define the set function v(A) = I(1 A ) on 2 X . The following propositions are equivalent:

(i) I is monotone and comonotonically additive; (ii) v is a fuzzy measure, and for all f ∈ R N , I(f ) = f dv.

The discrete version (with a redundant axiom) was shown by de Campos and Bolaños [START_REF] De Campos | Characterization and comparison of Sugeno and Choquet integrals[END_REF]. A similar characterization for the Choquet integral w.r.t. games was obtained by Murofushi et al. [START_REF] Murofushi | Non-monotonic fuzzy measures and the Choquet integral[END_REF].

In the discrete case, a characterization using comonotonic modularity was obtained by Couceiro and Marichal [START_REF] Couceiro | Axiomatizations of quasi-Lovász extensions of pseudo-boolean functions[END_REF][START_REF] Couceiro | Discrete integrals based on comonotonic modularity[END_REF]. Theorem 9. Let |X| = n and F = 2 X , and let I : R X → R be a functional. Define the set function v(A) = I(1 A ), A ⊆ X. The following propositions are equivalent:

(i) I is comonotonically modular and satisfies I(α1 S ) = |α|I(sign (α)1 S ) for all α ∈ R and S ⊆ X, and

I(1 X\S ) = I(1 X ) + I(-1 S ); (ii) v is a game and I(f ) = f dv.
The Sugeno integral was characterized in the discrete case by de Campos and Bolaños [START_REF] De Campos | Characterization and comparison of Sugeno and Choquet integrals[END_REF]. Here follows a simplified and more general version.

Theorem 10. Let |X| = n, F = 2 X , and let I : (R + ) X → R + be a functional. Define the set function µ(A) = I(1 A ), A ⊆ X. The following propositions are equivalent:

(i) I is comonotonically maxitive, satisfies I(α1 A ) = α ∧ I(1 A ) for every α 0 and A ⊆ X, and I(1 X ) = 1; (ii) µ is a normalized fuzzy measure on X and

I(f ) = -f dµ.
The next characterization is due to Marichal [START_REF] Marichal | On Sugeno integral as an aggregation function[END_REF]. Still others can be found in this reference.

Theorem 11. Let |X| = n, F = 2 X , and let I : [0, 1] X → [0, 1] be a functional. Define the set function µ(A) = I(1 A ), A ⊆ X. The following propositions are equivalent:

(i) I is nondecreasing, ∨-homogeneous and ∧-homogeneous; (ii) µ is a normalized fuzzy measure on X and I(f ) = -f dµ.

The Choquet integral on the nonnegative real line

As remarked by Sugeno in two recent papers [START_REF] Sugeno | A note on derivatives of functions with respect to fuzzy measures[END_REF][START_REF] Sugeno | A way to choquet calculus[END_REF], so far there is no "Choquet integral calculus", similar to classical integral calculus, even if one restricts to functions and measures on the real line. By means of the Laplace transform, Sugeno established in these two papers the basis of Choquet integral calculus. For this, the Choquet integral on a restricted domain is used:

A f dµ = ∞ 0 µ({x t} ∩ A) dt
for some A ⊆ X. We give now the fundamental theorem.

Theorem 12. Let f : R + → R + be nondecreasing and continuously differentiable, and let µ be a continuous fuzzy measure on R + , such that µ([τ, t]) is differentiable w.r.t. τ on [0, t] for every t > 0, and µ({t}) = 0 for every t 0. Then

[0,t] f dµ = - t 0 ∂µ ∂τ ([τ, t])f (τ ) dτ (t > 0),
where the righthand side integral is the Riemann integral. In particular, for a distorted Lebesgue measure µ h with h being continuously differentiable, we obtain

[0,t] f dµ h = t 0 ∂h ∂τ (t -τ )f (τ ) dτ. (21) 
Equation (21 can be computed very easily through the Laplace transform. Denoting by L -1 the inverse Laplace transform, and by H(s) and F (s) the Laplace transforms of h and f , we have:

[0,t]
f dµ h = L -1 (sH(s)F (s)).

The Choquet integral of nonmeasurable functions

So far we have considered that F = 2 X , so that every subset is measurable and consequently any function is measurable too (i.e., its level sets belong to F ). In the case where F ⊂ 2 X , what about the integral of a nonmeasurable function? The question may appear quite odd, but makes sense in practical situations, for example in multicriteria decision making. In this field, X is the set of criteria and µ(A) for some A ⊆ X is interpreted as the overall evaluation of an alternative being satisfactory on criteria in A, and unsatisfactory or neutral on the others. It may be the case that such an alternative is not conceivable, and so no value can be assigned to µ(A). However, when computing the overall score of an alternative, knowing the vector f of its scores on every criterion, the set A may be a level set of f (i.e., A = {x ∈ X | f (x) t} for some t), so that f is not measurable and its Choquet integral cannot be computed. In this section we indicate how to extend the Choquet integral to nonmeasurable functions. This work is based on [START_REF] Faigle | A discrete Choquet integral for ordered systems[END_REF].

Let F be a fixed set system. We decompose any game v on F as v = v + + v -, where v + , v -are two totally monotone fuzzy measures:

v + = A∈F |m v (A)>0 m v (A)u A , v -= A∈F |m v (A)<0 (-m v (A))u A . ( 22 
)
We first define the Choquet integral w.r.t. a totally monotone fuzzy measure b on F as follows (f is assumed to be nonnegative):

F f db = max A∈F α A b(A) | A∈F α A 1 A f, α A 0, ∀A ∈ F (23) 
= min

i∈X P i f i | i∈A P i b(A), ∀A ∈ F , P i 0, ∀i ∈ X . (24) 
It can be proved that this is the smallest functional I satisfying positive homogeneity, superadditivity and I(1 A ) b(A) for all A ∈ F . Now, the Choquet integral for any function f : X → R w.r.t. a game v is defined by

F f dv = F f dv + - F f dv -. (25) 
We summarize the main properties of this integral.

Theorem 13. Let f : X → R + be a function and v be a game on (X, F ), where F is any set system. The following properties hold.

(i) Positive homogeneity: From (iv) we see that this integral is essentially the Choquet integral w.r.t. a modified game v, and therefore inherits all of its properties. Moreover, v is an extension of v in the sense that it coincides with v on F . It turns out that this integral yields the Choquet integral for measurable functions, and is indeed an extension of the Choquet integral. Note however that if v is monotone, v is not necessarily so. More results can be obtained if F is closed under union. In this case, it can be shown that a fuzzy measure µ on F is supermodular if and only if μ is, where supermodularity for µ is defined as follows: for any S, T ∈ F , µ(S ∪ T ) + µ((S ∩ T ) ′ ) µ(S) + µ(T ), where (S ∩ T ) ′ is the largest subset of S ∩ T in F . Moreover, the following holds. Theorem 14. Let F be a set system closed under union, and µ be a fuzzy measure on (X, F ). The following are equivalent:

F αf dv = α F f dv (α 0) ( 
(i) For every function f : X → R + , F f dµ = max S∈F λ S µ(S) | S∈F λ S 1 S f, λ 0 = min i∈X P i f i | P (S) µ(S), ∀S ∈ F , P 0 ,
where 0 indicates the 0 vector. (ii) F • dµ is superadditive; (iii) µ is supermodular.

Other integrals

We describe briefly other kinds of integrals defined with respect to fuzzy measures.

Pseudo-additive integrals and fuzzy t-conorm integrals It is possible to define other integrals by simply replacing the operations used in the definitions of Choquet and Sugeno integrals (sum, product, max, min) by other ones, generally speaking, by pseudo-additions and pseudo-multiplications. There has been many studies in this direction, starting from Weber [START_REF] Weber | ⊥-decomposable measures and integrals for archimedean t-conorms ⊥[END_REF] and Kruse [START_REF] Kruse | Fuzzy integrals and conditional fuzzy measures[END_REF], then later Sugeno and Murofushi [START_REF] Sugeno | Pseudo-additive measures and integrals[END_REF], Murofushi and Sugeno (fuzzy t-conorm integral) [START_REF] Murofushi | Fuzzy t-conorm integrals with respect to fuzzy measures : generalization of Sugeno integral and Choquet integral[END_REF], Klement, Mesiar and Pap ((S,U)-integral) [START_REF] Klement | Triangular Norms[END_REF], Benvenuti et al. [START_REF] Benvenuti | Monotone set functions-based integrals[END_REF], and more recently the impressive study by Sander and Siedekum [START_REF] Sander | Multiplication, distributivity and fuzzy integral I[END_REF][START_REF] Sander | Multiplication, distributivity and fuzzy integral II[END_REF][START_REF] Sander | Multiplication, distributivity and fuzzy integral III[END_REF].

Basically, the (S, U)-integral uses as basis operators a continuous t-conorm S and a uninorm U which is distributive w.r.t. S in the following sense: U(x, S(y, z)) = S(U(x, y), U(x, z)) for all x, y, z ∈ [0, 1] such that S(y, z) < 1.

The fuzzy t-conorm integral proposed by Murofushi and Sugeno uses three continuous t-conorms S 1 , S 2 , S 3 which are either the maximum or Archimedean, plus a pseudomultiplication ⊙, being nondecreasing in each place, continuous on ]0, 1] 2 , and satisfying a ⊙ x = 0 implies either a = 0 or x = 0, and two distributivity properties:

(D1) S 1 (a, b) < 1 implies (S 1 (a, b)) ⊙ x = S 3 ((a ⊙ x), (b ⊙ x)) (D2) S 2 (x, y) < 1 implies a ⊙ (S 2 (x, y)) = S 3 ((a ⊙ x), (a ⊙ y)).
The definition of the fuzzy t-conorm integral is then:

(S 1 , S 2 , S 3 , ⊙) f dµ := n S 3 i=1 (f σ(i) S 1 -f σ(i-1) ) ⊙ µ(A σ(i) )
with same notation as above, and Universal integrals Universal integrals, proposed by Klement et al. [START_REF] Klement | A universal integral as common frame for choquet and sugeno integral[END_REF] (see also a more recent work [START_REF] Klement | Universal integrals based on copulas[END_REF]), try to answer the following question: What is an integral w.r.t. a fuzzy measure?. The answer given by Klement et al. is axiomatic: they propose a list of axioms a functional should satisfy to be considered as a integral. The name "universal" comes from the fact that the integral should be defined for any measurable space (X, A) where A is a σ-algebra.

They first define a pseudo-multiplication as an operator ⊗ : [0, ∞] 2 → [0, ∞] satisfying the following properties: it is nondecreasing in each place, 0 is an annihilator of ⊗, i.e., a ⊗ 0 = 0 ⊗ a = 0, and ⊗ has a neutral element e = 0, i.e., a ⊗ e = e ⊗ a = a.

Let us denote by D the set of all Cartesian products M(X, A) × F (X, A) for every measurable space (X, A), where M(X, A) is the set of fuzzy measures on (X, A), and F (X, A) is the set of A-measurable functions. A functional I : D → [0, ∞] is called a universal integral of it satisfies the three following axioms:

(i) For any measurable space (X, A), its restriction to M(X, A)×F (X, A) is nondecreasing in each place (ii) There exists a pseudo-multiplication ⊗ such that for all (µ, c • 1 A ) ∈ D, I(µ, c

• 1 A ) = c ⊗ µ(A) (iii) I(µ, f ) = I(µ ′ , f ′ ) if G µ,f = G µ ′ ,f ′ .
Obviously, the Choquet integral and the Sugeno integrals are universal integrals. It is not difficult to see that a universal integral is a distortion of the decumulative function by a function J begin nondecreasing and satisfying J(d • 1 ]0,c] = c ⊗ d. The Sugeno and Shilkret integrals belong to the set of smallest universal integrals (in the sense of the usual partial order on functions), given by I ⊗ (µ, f ) = sup t∈]0,inf ty] (t ⊗ G µ,f (t)).

It can be shown that all integrals of the form (5), with product and addition being replaced by a pseudo-multiplication ⊗ and a pseudo-addition ⊕ being continuous, associative, nondecreasing, having 0 as neutral element and being left-distributive w.r.t. ⊗, are universal integrals.

The concave integral and decomposition integral Recenty, in a series of papers Lehrer presented the concave integral [START_REF] Azrieli | Extendable cooperative games[END_REF][START_REF] Lehrer | The concave integral over large spaces[END_REF][START_REF] Lehrer | A new integral for capacities[END_REF], and a more general concept called the decomposition integral [START_REF] Even | Decomposition-integral: Unifying choquet and the concave integrals[END_REF], encompassing both the concave integral and the Choquet integral, as well as the Shilkret integral.

We first introduce the concave integral. Let f : X → R + and µ be a fuzzy measure. The concave integral of f w.r.t. µ is given by: 

In words, the concave integral is the value achieved by the best decomposition of the integrand into hat functions. Note that for totally monotone fuzzy measures, the concave integral and the integral proposed by Faigle and Grabisch coincide (see Section 3.7). Its main properties are given below.

Theorem 15. The following properties hold for the concave integral:

(i) For every fuzzy measure µ, the concave integral cav • dµ is a concave and positively homogeneous functional, and satisfies cav 1 S dµ µ(S) for all S ∈ 2 X ;

(ii) For every f ∈ R X + and fuzzy measure µ, and equality holds for every f ∈ R X + if and only if µ is supermodular. Property (iv) clearly shows that unless the fuzzy measure is supermodular, the Choquet integral and the concave integral differ.

As for the decomposition integral, the idea is simply to fix a "vocabulary" for the decompositions. If only chains are allowed for the decomposition of a function, then the Choquet integral obtains as the best achievable value for such decompositions. If no restriction applies, then the concave integral is obtained. Also, the Shilkret integral can also be recovered. We refer the reader to [START_REF] Even | Decomposition-integral: Unifying choquet and the concave integrals[END_REF] for full details on this complex notion.
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  , by means of the ordinal Möbius transform. The ordinal Möbius transform of a fuzzy measure µ is the interval [m] := [m * , m * ], with m * = µ, and

F 1 S

 1 ii) For any S ∈ F , F f du S = min i∈S f i where u S is the unanimity game w.r.t. S; (iii) If F is weakly union-closed,F f dv = S∈F m v (S) min i∈S f i where m v is the Möbius transform of v; (iv) If F is weakly union-closed, F f dv = f dvwhere the right-hand side integral is the ordinary Choquet integral, and v is a game on (X, 2 X ) defined byv(S) = dv = F maximum in F (S) v(F ) (S ∈ 2 X ), with F (S) = {F ∈ F | F ⊆ S}. (v) If F is weakly union-closed, F • dv is superadditive ifand only if it is concave if and only if v is supermodular.

S 1 - 1 -

 11 is the residuated difference w.r.t. S 1 , defined by a S b := inf{c | S 1 (b, c) a} for any (a, b) in [0, 1] 2 . The Choquet integral is recovered with S 1 , S -2, S 3 being the Lukasiewicz t-conorm, and ⊙ the usual product. The Sugeno integral is recovered with S 1 = S 2 = S 3 = max and ⊙ = min, and the Shilkret [59] integral is obtained when ⊙ is the ordinary product. The integral proposed by Benvenuti et al. is similar.
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  dµ = sup S⊆X α S µ(S) | S⊆X α S 1 S = f, α S 0, ∀S ⊆ X .

cavf

  dµ = min I(f ) | I : R X + → R concave, positively homogeneous, and such that I(1 S ) µ(S), ∀S ⊆ X (iii) For every f ∈ R X + and fuzzy measure µ, cav f dµ = min P additive ,P µ f dP (iv) For every f ∈ R X + and fuzzy measure µ, f dµ cav f dµ,
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 1 Lower and upper bounds for the Möbius transform of a normalized fuzzy measure

A chain from ∅ to X is a sequence ∅ = A0, A1, . . . , Aq = X of sets in F such that A0 ⊂ A1 ⊂ • • • ⊂ Aq. Its length is q, and the chain is maximal if no other chain from ∅ to X contains it.