
HAL Id: hal-01302337
https://hal.science/hal-01302337v1

Submitted on 14 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OntoCompo: An Ontology-based Interactive System to
Compose Applications

Christian Brel, Anne-Marie Déry-Pinna, Catherine Faron Zucker, Philippe
Renevier-Gonin, Michel Riveill

To cite this version:
Christian Brel, Anne-Marie Déry-Pinna, Catherine Faron Zucker, Philippe Renevier-Gonin, Michel
Riveill. OntoCompo: An Ontology-based Interactive System to Compose Applications. WEBIST
2011, the 7th International Conference on Web Information Systems and Technologies, May 2011,
Noordwijkerhout, Netherlands. pp. 322-327. �hal-01302337�

https://hal.science/hal-01302337v1
https://hal.archives-ouvertes.fr


ONTOCOMPO: AN ONTOLOGY-BASED INTERACTIVE 

SYSTEM TO COMPOSE APPLICATIONS 
 

Christian Brel, Anne-Marie Dery-Pinna, Catherine Faron-Zucker, Philippe Renevier-Gonin, Michel 

Riveill 
I3S Lab, Université Nice-Sophia Antipolis / CNRS, 930 route des Colles, BP 145, 06903 Sophia Antipolis Cedex, FRANCE 

{brel,pinna,faron,renevier,riveill}@polyecth.unice.fr 

Keywords: UI Composition, Application Composition, UI Semantic Description 

Abstract: In this paper, we present an ontology-based approach and a semantic web system to compose applications 

while preserving their ergonomic properties. Our composition process relies on the manipulation of User 

Interfaces (UI) and is intended to assist by a knowledge based system which exploits semantic annotations 

of applications on their users' aims, UIs and functionalities through semantic queries and inference rules. 

1 INTRODUCTION 

User-Centred Software Engineering aims at 

producing useful and usable applications. To catch 

users' needs and to integrate them inside the 

software development, there are different steps to 

follow: analyzing requirements, designing User 

Interfaces (UI), specifying software architecture, 

performing software tests, testing with final users, 

etc. This is a long and costly process.  

At the same time, there are more and more 

specialized applications, such as web services or 

Smartphone applications. Sometimes, users swap 

from one application to another. In such cases, they 

memorize and type again data or use copy-past in 

order to exchange information between applications. 

To avoid mistakes during "application swapping", 

composing applications seems to be a solution.  

What is at stake here is to compose existing UI and 

functionalities by preserving results of user-centred 

methodologies. Composing functionalities is quite a 

well-known process, but composing at the same time 

the UI is still an on-going work. 

We propose a composition process based on the 

selection, extraction and positioning of existing 

application's UI as elementary composition actions 

to impact underlying users' aims and links to the 

functionalities (business part). The choice of UI as 

primary artefacts manipulated by the composition 

process is justified by the fact that UI are the visual 

part of an application. They can be directly 

manipulated with an immediate visual feedback. We 

aim at enabling the developers to reuse existing UI 

for creating new applications while preserving final 

user requirements.  

We propose a composition process driven by the 

developer that enables to avoid redundancies by 

selecting preferred UI parts, to preserve the initial 

layouts of these UI parts and to associate them with 

some new layout knowledge to constraint their 

composition. The process is based on two iterative 

steps: the selection of UI parts and the organization 

of their layouts.  

In this paper we focus on the management of 

selection of the different parts of UI from existing 

applications and on the management of the layouts 

chosen by the developer. Our solution relies on 

ontologies we built to provide a usable description 

of an application, i.e. the abstraction of usual layouts 

used in programming languages graphical libraries, 

the description of tasks being able to perform by 

users and the description of the different links 

between UI, functionalities and tasks. We use these 

ontologies, inference rules and constraints in our UI 

composition process to assist the developer. 

The paper is structured into 5 sections. In section 2, 

we summarize related works. In section 3, we 



 

describe our three ontologies and links between 

them. Before the conclusion, in section 4, we present 

how we use these ontologies to represent the 

interests of three ontologies, to define inference 

rules to converge to a pivot representation of relative 

layouts, and finally to define constraints to control 

positioning chosen by the developer.  

2 RELATED WORK 

As we aim at composing applications by 

manipulating their UI, we have to decompose UI, 

i.e. describe UI in order to deal with sub-parts of 

former UI. The description of an UI both involves  

(1) the description of its structure, i.e. the 

listing of the different components used in 

the interface and the inclusion relationship, 

like UIML (Abrams, 1999), ALIAS 

(Occello, 2010), UsiXML (Limbourg, 

2004) or MARIA (Paternò, 2009) 

(2) the spatial positioning of these components. 

By analysing the different layouts used in 

the UI toolkits, we identified three ways to 

position the components in an interface: the 

AbsoluteLayout with X and Y coordinates, 

the TableLayout to place a component in a 

grid and the RelativeLayout to express the 

positioning of two UI components 

relatively to each other. 
There are currently three main approaches to 

application composition depending on the 

composition entry point: (i) the functional (i.e. 

business) part, (ii) the users' goals (i.e. tasks to be 

performed by users) and (iii) the UI. Each entry 

point addresses a specific problem of composition: 

presentation and layout considerations at the UI 

level, behavior of the application at the functional 

level (F in Table 1), user needs at the task level (T in 

Table 1). We group and classify the works related to 

UI composition in Table 1. We notice a lack in 

underlying composition processes. Either the 

original design of application UI with man-crafted 

properties such as ergonomic or usability is lost, or 

both functional and UI parts are no longer connected 

together in the resulting application, or there is no 

UI reuse. In the context of fast development 

processes, reusing UI without keeping ergonomic 

and usability criteria is useless. Loosing links 

between the UI and the functional parts engenders 

human interventions to connect the two parts which 

is error prone and fastidious for large applications. 

So in order to obtain a functional application at the 

end of the composition, we need to keep links 

between the different levels to guide the developer 

during the selection and positioning steps. 

In next sections, we introduce how we represent an 

application and how we use this representation to 

help the developer in her selection of UI pieces and 

to help in their positioning in the new UI. 

 
Table 1. Classification of composition approaches. 

Category  F  UI T 

only considering 

UI composition 

Developing adaptable 

user interfaces 

(Grundy, 2002) 
 X  

Amusing (Pinna-Déry, 

2003),  

ComposiXML 

(Lepreux, 2007) 

 X  

C3W (Fujima, 2004)  X  

only considering 

tasks composition 

Task Models Merging 

(Lewandowski, 2007) 
  X 

deriving Tasks in 

functional 

composition and 

later in UI 

composition 

Servface (Paternò, 

2009) 
X  X 

Compose (Gabillon, 

2008)  
X  X 

Scenarios (Elkoutbi, 

1999) 
 X X 

both 

functionalities and 

UI composition 

SOAUI (Tsai, 2008), 

ALIAS (Occello,2010), 

Transparent Interface 

(Ginzburg, 2007) 

X X  

3 APPLICATION 

REPRESENTATION 

To represent an application, we propose a model 

relying on three ontologies: UIOnto, LayOnto and 

TaskOnto. UIOnto gathers the concepts necessary to 

represent knowledge about UI structures, i.e. their 

components and hierarchical organization. LayOnto 

gathers those necessary to represent knowledge 

about the layout of UI components. The third 

ontology TaskOnto gathers the concepts necessary 

to represent the task tree describing the available 

actions in the application and the unfolding between 

the different tasks. 

 

3.1 UI Representation 

Our modeling of UIOnto relies upon the MARIA 

model. UIOnto is represented in the OWL Lite 

standard (W3C Working Group, 2004) and 

comprises 26 classes and 4 properties. Figure 1 



 

presents its main classes and properties. Under 

OnlyOutput, there are classes like Text, List, Link, 

etc. Under Interaction, there are classes like Edit 

(and then TextEdit, NumericalEdit, etc.), Selection, 

etc.  

Figure 1. UIOnto 

 

Our aim is to help designers building their new 

applications keeping constraints of existing 

applications. What is interesting in layout is the 

meaning of spatial proximity: two close UI elements 

may be perceived and analysed together as explained 

in the ICS model (Barnard, 1991). So keeping such 

proximity may preserve ergonomics. We let the 

developer decide whether to keep such proximity. 

As a result, we chose to express the meaning of UI 

elements spatial proximity by RelativeLayout, a 

universal way to express all traditional layouts by 

highlighting their proximity properties.  

 

3.1.1 An Abstract Layout Description for 

Composition 
This is what has guided our modelling of LayOnto. 

LayOnto is represented in the OWL Lite standard 

and comprises 2 classes and 42 properties. Figure 2 

presents its main classes and properties. The main 

property of LayOnto is isPositionnedRelativelyTo 

that represents a relation between two Interactors 

and describes the position of one of them relatively 

to the other. Its three subproperties of correspond to 

the three layouts discussed above:  

 isGridPositionnedIn corresponds to 

TableLayout, specialized into subproperties 

representing the different possible 

positioning (and combinaison) by 

considering a 3x3 grid inside the first 

interactor,  

 isAbsolutePositionnedIn corresponds to 

AbsoluteLayout with a Point Properties 

with X and Y Values,  

 isGridPositionnedRelativelyTo corresponds 

to RelativeLayout, specialized into 

subproperties representing the different 

possible relative positioning (and 

combinaison) by considering a 3x3 grid 

centered around the first interactor.  

Figure 2. LayOnto 

3.1.2 From final UI to Semantic 

Representation of UI 
UIOnto and LayOnto enable to represent the layout 

of interfaces at an abstract level shared by all the 

usual layouts in graphical libraries. For instance, all 

the layout managers described in the Java API (Sun, 

2008) can be represented. Let us consider a part of 

an UI. Its simplified Java code is as follows: 
 
1. JPanel insurSearch = new JPanel(); 
2. insurSearch.setLayout(new 
BoxLayout(insurSearch, BoxLayout.X_AXIS)); 
3. insurSearch.add(new JLabel("Insurance Card 
Id:")); 
4. JTextField insurSearchInput =  
 new JTextField("123456", 20); 
5. insuraSearchInput.setMaximumSize( 
      insurSearchInput.getPreferredSize()); 
6. insurSearch.add(insurSearchInput); 
7. JButton insurSearchSubmitButton =new 
JButton("show insurance information"); 
8. insurSearch.add( insurSearchSubmitButton ); 
9. insurSearch.add( Box.createHorizontalGlue() );  

 

Figure 3. Java code of a form 

In this Java code, variable insurSearch represents 

the container of the whole form. A BoxLayout is set 

to this container. With this layout, elements are put 

in a row (line 2). Components added in the container 

(lines 3-6-8-9) are then aligned in the form. From 

this Java code, a semantic annotation of the UI can 

be constructed with UIOnto in RDF model (W3C 

Working Group, 2004) as follows: 
 
<#insurSearch> a :Container. 
<#insurSearchLabel> a :Text. 
<#insurSearchInput> a :TextEdit. 
<#insurSearchSubmitButton> a :Activator. 
<#insurSearchGlue> a :Glue. 



 

<#insurSearch> <#containsInteractor> 
<#insurSearchLabel>, <#insurSearchInput>, 
<#insurSearchSubmitButton>, <#insurSearchGlue>. 
 

It expresses that Container insurSearch contains four 

interactors: a Text corresponding to the JLabel in the 

Java code, a TextEdit corresponding to the 

JTextField, an Activator corresponding to the 

JButton and a Glue corresponding to the 

createHorizontalGlue in the Java code. This RDF 

description can be further enriched with knowledge 

about layouts with LayOnto concepts: 
 
<#insurSearchInput> <#isOnTheRightOf> 
<#insurSearchLabel>. 
 
<#insurSearchSubmitButton> <#isOnTheRightOf> 
<#insurSearchInput>. 
 
<#insurSearchGlue> <#isOnTheRightOf> 
<#insurSearchSubmitButton>. 

The association of a BoxLayout with X_AXIS 

(respectively Y_AXIS) attribute to container 

insurSearch is represented by instances of a 

subproperty of GridPositionnedRelativelyTo 

corresponding to BoxLayout in the Java code - 

isOnTheRightOf (respectively isBelowOf)  - with 

insurSearch as their subject and interactors 

contained in it as their values. In a similar vein, we 

can associate each position of the Java BorderLayout 

with a position of our TableLayout: "West" with 

isInLeft, "North" with isInAllTop, "East" with 

isInRight, "South" with isInAllBottom and "Center" 

with isInCentre. With the high degree of abstraction 

of UIOnto and LayOnto, similar translations hold for 

almost all Java Layout Managers but also for layouts 

of other interface description languages like XAML. 

 

3.2 Linking UI, Tasks and 

Functionalities 
Our modelling of TaskOnto relies on the 

ConcurTaskTree (CTT) (Mori, 2002) model. 

TaskOnto is represented in the OWL Lite standard 

and comprises 5 classes and 3 properties. In a 

nutshell, the main class of TaskOnto is Task that 

represents an action possible to perform in the 

application. There are 4 types of Task, appearing as 

4 subclasses of class Task.  

 InteractionTask describing an action 

performed through the UI, 

 SystemTask representing an action 

performed by the functional part, 

 UserTask representing an action performed 

by the final user (without inputs for the 

application) and  

 AbstractTask that represents a task 

composed of subtasks (of all type – 

InteractionTask, SystemTask or UserTask).  

The properties hasSubtask and hasParentTask 

enable to describe the tree by dividing the different 

tasks into an unfolding of tasks. To construct this 

tree, property hasTemporalOperator applies to a 

task and enable to describe how a subtask is 

executed, sequentially or competitively, etc… 
To obtain a functional application resulting of an 

application composition, we relate UIOnto and 

LayOnto to TaskOnto by associating to any task: (i) 

the functionalities used to perform the corresponding 

system actions and (ii) the UI parts used to interact 

with the application during the task. 

We define two RDF properties linkedWithUIEntity 

and linkedWithFunctionality which apply to a task 

and relate it to a UI entity in UIOnto and to 

functionality.   By relating the three ontologies 

UIOnto, LayOnto and TaskOnto, we can entirely 

describe any application. In next section, we explain 

how we use all annotations to build the application’s 

UI resulting of the composition. 

4 INTERESTS OF UIONTO, 

LAYONTO, TASKONTO FOR UI 

COMPOSITION 

Once the RDF representations of applications are 

extracted by analysing selected parts of existing UI, 

these representations need to be unified for their 

manipulation by our algorithm for computer-

supported composition. 

 

4.1 Deduction of relative layouts 
To complete our models UIOnto and LayOnto we 

have built a base of 14 inference rules enabling to 

deduce relative layout of UI components from any 

layout description. 4 rules state that from two 

positions in the RelativeLayout, we may obtain a 

third one, e.g. if an interactor S1 is above a S2 and 

S1 is on the left of S2, then we can deduce that S1 is 

above left of S2. We formalize it in the SPARQL 

(W3C Working Group, 2008) language: 
 
CONSTRUCT { ?s isAboveLeftOf ?s2 } 
WHERE { 
   ?s1 isCenteredAboveOf ?s2. 
   ?s1 isOnTheLeftOf ?s2 
} 
 

In a similar vein, 4 rules enable to deduce relative 

positions from absolute positions and 6 rules enable 

to deduce relative positions from grid positions. 

With these rules we can deduce relative positions of 

any component in the new composed UI. These 

results are necessary because we use the 



 

RelativeLayout to represent the constraints of the 

developer expressed during the composition process 

(positioning of selected parts of former UI).  

The developer is helped by these rules in 

maintaining the consistency of the new UI. For 

example, it will enable the developer to extend her 

selection of UI parts to fix the position of a larger 

and more appropriate or coherent group of already-

placed UI parts. It will also enable the developer to 

perform specific selections like "all interactors in the 

left of…". Rules are useful for the detection of 

conflicts, like when the developer positions two 

different UI parts at the same place, as two 

Activators sequentially placed on the left of the 

same Interactor. Where must be placed the second 

Activator? On the left of the first one? Between the 

first Activator and the Interactor? etc.  

 

4.2 Consistency of UI Composition 
During the composition process, when the developer 

places selected parts of existing UI, she is helped in 

these actions to guaranty the consistency of the new 

interface. This help is done thanks to 3 categories of 

semantic queries built upon our ontologies. These 

categories of queries are dedicated to complete the 

selection of the developer. 

 

4.2.1 Help from layout 
The first category of queries uses layout information 

to help the developer to complete her selection. For 

example, the query below retrieves all components 

in the container of the selected component. 
SELECT ?o WHERE {  
 ?container containsInteractor ?selectedComponent.  
 ?container containsInteractor ?o 
} 

With this first category, we are able to ask the 

developer if she wants to select the container and its 

components, only the selected component, selected 

component and some other components in the same 

container etc. With such interaction, we can help her 

to select difficult parts to point out (like a Container 

"hidden" by its contained Interactors). 

 

4.2.2 Help from tasks 
This second category of queries uses task 

information to help the developer to complete her 

selection. There are two steps of queries. The first 

retrieves the tasks attached to the selected 

component with the query below: 
 
SELECT ?t WHERE { ?t linkedToUIElement 
?selectedComponent } 
 

After getting the attached tasks, the second step 

retrieves the parent task of the retrieved tasks and 

from that parent task all the UI elements attached to 

its subtasks. Here, the idea of this help is to consider 

a semantic proximity of the UI elements when they 

perform a global common task. The query bellow 

retrieves all UI elements achieving a common task:  
 
SELECT ?uielement WHERE { 
  ?retrieveTask hasParentTask ?parentTask . 
  ?parentTask hasSubtask ?subtask . 
  ?subtask linkedToUIElement ?uielement 
} 
 

Initially, this query retrieves the parent task of the 

retrieved task (obtained by the first step). Then, it 

reaches the different subtasks of the parent task and 

finally UI element attached to these subtasks. All UI 

elements may be submitted to the developer for 

validation in order to be added to the selection. 

 

4.2.3 Help from functionalities 
This third category of queries uses functionalities 

information to help the developer to complete her 

selection. These queries retrieve pieces of UI 

manipulating the same functionalities. So, this 

enables to avoid forgetting some UI part potentially 

doing the same type of task or at least performing a 

task using the same functionality. We need to 

retrieve the tasks associated to a selected UI 

component, then to the parent task of these retrieved 

tasks. Among these subtasks, we can search a task 

linked with functionalities: 
 
SELECT ?funct WHERE { 
  ?retrievedtask linkedToUIElement 
?selectedComponent . 
  ?retrievedtask hasParentTask ?parentTask . 
  ?parentTask hasSubtask ?subtask . 
  ?subtask linkedToFunctionality ?funct 
} 
 

If such functionalities exist, then we can execute the 

second step of our help i.e. obtain the different tasks 

linked with the retrieved functionalities and reach 

the UI elements attached to their parent task: 
 
SELECT ?uielement WHERE { 
  ?retrievedtask linkedToFunctionality ?funct . 
  ?retrievedtask hasParentTask ?parentTask .  
  ?parentTask hasSubtask ?subtask . 
  ?subtask linkedToUIElement ?uielement 
} 
 

With these three categories of queries, we are able to 

help the developer during the selection of the 

different UI parts she wants to reuse in the new UI. 

5 CONCLUSION 

With the semantic representation of applications, we 

propose in this article to automate the composition 

of applications. The developer is the initiator of the 

composition of a new interface by selecting the 



 

components she wants to keep. The developer 

controls consistency of the composition along the 

selection (she is helped thanks to layout description, 

task description and functionalities description) but 

also after this selection, during the composition by 

expressing constraints about the layout of the new 

interface. In our approach, the composition is semi-

automatic because a feedback is done to the 

developer by requiring precisions about selections 

and about the constraints on the new interface. 

In this work, there is an enrichment of the semantic 

descriptions by associating knowledge about 

functional features to current knowledge about the 

layout of interface components. The functional 

descriptions allow us to do the fusion of some 

interactors. It allows providing feedback to the 

developer about how to lead the UI composition. 

ACKNOWLEDGEMENTS 

Our work is funded by the DGE M-Pub 08 2 93 702 

project. 

REFERENCES 

Abrams M., Phanouriou C., Batongbacal A., Williams S., 

Shuster J. 1999 UIML: An appliance-independent 

XML user interface language. In proceedings of the 8th 

World Wide Web Conference (WWW), pages 617-630, 

Elseiver,. 

Barnard P.J., 1991. Teasdale J.D. Interacting cognitive 

subsystems: A systemic approach to cognitive-

affective interaction and change. Cognition & Emotion, 

5, 1, 1-39 

Elkoutbi M., Khriss I., Keller R.K., 1999. Generating User 

Interface Prototypes from Scenarios, In RE'99, Fourth 

IEEE International Symposium on Requirements 

Engineering, pages 150-158, Limerick, Ireland. 

Fujima J., Lunzer A., Hornbæk K., Tanaka Y., 2004. Clip, 

Connect, Clone: Combining Application Elements to 

Build Custom Interfaces for Information Access, In 

Proceedings of UIST 2004, pages 175-184, Santa Fe, 

NM. 

Gabillon Y., Calvary G., Fiorino H., 2008. Composing 

interactive systems by planning. In UbiMob’08, pages 

37–40, Saint Malo, France. 

Ginzburg J., Rossi G., Urbieta M., Distante D., 2007. 

Transparent interface composition in Web 

Applications, In proceedings of  Web Engineering, 

Volume 4607, pages 152-166, Heidelberg,  LNCS , 

Springer. 

Grundy J.C., Hosking J.G., 2002. Developing Adaptable 

User Interfaces for Component-based Systems. In 

Interacting with Computers, Volume 14, 2, pages 175-

194., Elsevier Science Publishers. 

Lepreux S., Hariri A., Rouillard J., Tabary D., Tarby J.-C., 

and Kolski C., 2007. Towards multimodal user 

interfaces composition based on usixml and mbd 

principles. Lecture Notes in Computer Science, 

4552(134):134–143. 

Lewandowski A., Lepreux S., Bourguin G., 2007. Tasks 

models merging for high-level component 

composition. Human-Computer Interaction, Part I, 

HCII 2007, Lecture Notes in Computer Science 

(LNCS), 4550:1129–1138. 

Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., 

Florins M., and Trevisan D., 2004. Usixml: A user 

interface description language for context-sensitive 

user interfaces. AVI’2004 Workshop ”Developing User 

Interfaces with XML: Advances on User Interface 

Description Languages” UIXML’04, pages 55–62. 

Mori G., Paternò F., Santoro C., 2002. Ctte: Support for 

developing and analyzing task models for interactive 

system design. IEEE Transactions on Software 

Engineering, pages 797–813. 

Occello A., Joffroy C., Pinna-Déry A.-M., Renevier P. and 

Riveill M., 2010. Experiments in Model Driven 

Composition of User Interfaces. In 10th IFIP 

International Conference on Distributed Applications 

and Interoperable Systems (DAIS'10), volume LNCS 

6115, pages 98-111, Amsterdam, Netherlands. 

Springer-Verlag. 

Paternò F., Santoro C., and Spano L. D., 2009. Maria: A 

universal, declarative, multiple abstraction level 

language for service-oriented applications in 

ubiquitous environments. In Computer-Human 

Interaction (TOCHI), volume 16. 

Pinna-Déry A.-M., Fierstone J., 2003. Component model 

and programming: a first step to manage Human 

Computer Interaction Adaptation. In Mobile HCI’03, 

volume LNCS 2795, pages 456–460, Udine, Italy. L. 

Chittaro (Ed.), Springer Verlag. 

Tsai W.-T., Huang Q., Elston J., Chen Y., 2008. Service-

oriented user interface modeling and composition. In 

ICEBE ’08, pages 21–28, Washington, DC, USA, 

IEEE Computer Society. 

W3C Working Group. OWL Web Ontology Language 

http://www.w3.org/TR/owl-features/, 2004. 

W3C Working Group. Resource Description 

Framework(RDF). 

http://www.w3.org/RDF/, 2004. 

W3C Working Group. SPARQL Query Language for 

RDF. 

http://www.w3.org/TR/rdf-sparql-query/, 2008. 


