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BIFURCATION OF INFLATED CIRCULAR CYLINDERS OF ELASTIC MATERIAL UNDER AXIAL LOADING-II. EXACT THEORY FOR THICK-WALLED TUBES

, (Part I of this series), for membrane cylinders. The relative importance of prismatic, axisymmetric and asymmetric bifurcations for axial tension and compression combined with internal or external pressure is discussed. In particular, the dependence on wall-thickness, ratio of length to radius, and magnitude of the axial stretch is detailed. Some analytical results are presented for a general form of incompressible isotropic elastic strain-energy function. For the most part, however, it is necessary to solve the equations numerically. This is done for specific forms of the strain-energy function.

INTRODUCTION

IN [START_REF] Chadwick | t Designated (I) in the text. 1972 1977 1972[END_REF], (Part I of this series, henceforth referred to as (I)), detailed results were given relating to the bifurcation from a circular cylindrical configuration of an elastic membrane tube subjected to combined axial loading and internal pressure. In the present paper, Part II of this series, an investigation of the corresponding problems for tubes of finite wall thickness is carried out. The results in (I) serve as a guide through the more difficult analysis required for the nonhomogeneous deformations arising in thick-walled tubes.

As in (I), prismatic, axisymmetric and asymmetric modes of bifurcation are examined. A limited number of analytical results are found for an arbitrary form of incompressible,. isotropic elastic strain-energy function, and specific details then discussed for a particular class of strain-energy functions. Analytical results are not obtainable for most bifurcations even for very simple forms of strain-energy function so the governing differential equations are solved numerically. The numerical results are illustrated for four specific forms of strain-energy function.

For thick-walled circular cylindrical tubes the prismatic type of bifurcation has been examined by several authors. In particular, HILL (1976) has obtained analytical results for the "n = 1" bifurcation mode using a method different from that described here. WANG and ERTEPINAR (1972) consider a thick-walled tube subjected to an external pressure and no axial force. They give specific results for the neo-Hookean form of strain-energy function, as also do NowiNSKI and SHAHINPOOR (1969) who confine attention to infinitely-long tubes. However, for externally-pressurized tubes, bifurcation occurs at "small" strains and the results obtained are essentially independent of the precise form of the strain-energy function. We have confirmed this by calculations carried out for several different forms of strain-energy function. Under external pressure it is found, moreover, that a prismatic mode occurs before any possible axisymmetric mode.

The internally pressurized thick-walled tube, which appears not to have been studied previously, provides a contrast to the above results. When the tube is subjected to an internal pressure combined with axial tension the axisymmetric type of bifurcation is found to dominate and the behaviour exhibited is similar in character to that found in (I) for a membrane.

For a tube subjected to internal pressure and axial compression, results are given which, in the limit of zero pressure, coincide with those obtained by WILKES (1955 ), who examined the stability of a thick tube subjected to an end-thrust and gave specific results for the neo-Hookean form of strain-energy function. For the same problem, with attention restricted to the neo-Hookean form of strain-energy function from the outset, SIERAKOWSKI, SuN and EBCIOGLU (1975) have similarly investigated axisymmetric modes of deformation. PATTERSON (1976), also for the neo-Hookean form of strain-energy function, obtains numerical results for asymmetric deformation modes when axial compression is combined with external pressure.

Results are given here for the combination of internal pressure and axial loading (tensile and compressive). The relative importance of the prismatic, axisymmetric and asymmetric bifurcations is discussed in relation to (i) the thickness of the cylinder wall, (ii) the ratio of the length to radius of the cylinder, and (iii) the magnitude of the axial stretch.

THE FINITELY-DEFORMED CIRCULAR CYLINDRICAL CoNFIGURATION

We suppose that the thick-walled cylindrical shell is defined by

A~ R ~ B, 0 ~ e ~ 2n, O~Z~L (1) 
in its undeformed configuration, where R, 0, Z are cylindrical polar coordinates.

The cylinder is subjected to an axial loading and an internal pressure so that the circular cylindrical shape is maintained, and the shell defined by

a~ r ~ b, 0 ~ e ~ 2n, 0~ z ~ /,
(2) where r, e, z are cylindrical polar coordinates in the current (deformed) configuration.

Under the assumption that the material is incompressible, the deformation is described by the equations

(3)
where Az is the axial extension ratio.

Let e 1 , e 2 , e 3 denote the unit basis vectors corresponding to the coordinates e, z, r respectively and let A. 1 , A. 2 , A. 3 be the corresponding principal stretches.

From the incompressibility constraint we have 212223 = 1, while from (3 ), where we have used (4) and introduced the azimuthal stretch 2.

We regard Az as a given constant and 2 as a function of r (orR) from (3).

(4)

(5)

For an incompressible isotropic elastic solid the strain-energy function 

W = W(2~>
(i = 1' 2, 3 ), (6) 
where aw CT; =A; a;: (i= 1,2,3), ( 7)

'
and p is the arbitrary hydrostatic pressure arising from the incompressibility constraint.

Use of ( 5)-( 7) leads to

and W;_, J.li denote aw;a;., oWfi72z.

Equati~ns (8) are similar in form to those given in (I) for a membrane except that a 33 # 0 here and there is now dependence on the radius r.

For the symmetric configuration considered here, the only equilibrium equation not satisfied trivially is (10) it being assumed that there are no body forces.

If a 33 is -P on r =a and zero on r = b, where P denotes the internal pressure, integration of (10) leads to

_ ~ -dr _ ~• W;. d2 P-J 2W;.-= J 2 . a r Ab (2 Az-1) ( 11)
In deriving (11) use has been made of (8 1 ) and we have adopted the notation

2 0 = ajA, 2b = bjB, which, from (3d, gives 2 R 2 2 2 2a2z-1 = A2 (2 Az-1) = t~(2b2z-1), (12) 
where (13) t The subscript i is not summed here or in the sequel.

Note that equality in (13) corresponds to the membrane limit discussed in (I), while from (12) it follows that (14) with equality holding if and only if P = 0. (In this connection we recall from (I) that W;_ ~ 0 according as A 2 Az ~ I.)

The change of independent variable from r to ;, in ( 11 ) is achieved by means of ( 3 1 ) and the definition (5 2 ).

In view of ( 12) we regard P as a function of ),z and Aa• Differentiation of ( 11) with respect to A 0 then gives

ap A A Jc; 1 (A; Az-1) :;-= W;_(Au, Azl/1-a-W;_(A.h, i,z)j),b. UAa (15)
This is a straightforward generalization of a formula given by OGDEN ( 1978, equation (36)) for Az = 1.

Equation ( 15) should be compared with the corresponding equation for a membrane given in (I, equation ( 36)) to which it reduces for "small" (B-A)/A.

Clearly, a necessary condition for pressure turning-points to exist at fixed Az is that ( 16) (17) As shown in (1), the equation ( 17) characterizes the pressure turning-points in the case of a membrane. Analogous considerations in respect of a spherical shell have been discussed by [START_REF] Chadwick | t Designated (I) in the text. 1972 1977 1972[END_REF]. Experimental data indicating the occurrence of a pressure maximum for thick-walled tubes have been obtained by SKALA (1970) and[START_REF] Chadwick | t Designated (I) in the text. 1972 1977 1972[END_REF]LI (1977).

.A.-1 WA is not monotonic in A,
The resultant axial loading N on the ends of the cylinder is given by Use of ( 8) and ( 10) enables this to be expressed as ( 18)

The corresponding expression for a membrane is 2e~ where e = HjR, H being the thickness of the membrane and R its radius in the undeformed configuration. In (I) it was shown to be reasonable for the inequalities ~ A > 0, ~ic > 0 to hold, where A is the azimuthal stretch in the membrane. It is also ;e~sonable 'for these inequalities to hold for the thick-walled specimen, but in general it cannot be expected that the analogous global inequalities oNjo.A.z > 0, DNjaA.. > 0 are valid in view of the complicated form of N.

Since o-33 # 0, in general, for a thick-walled cylinder, the local form of the axial stress obtained from (8 2 ) yields

F(Aa, ~•z): ~,(~•a' Az)-A; 1 P,} F(Ab, Az)-W;,(Ab, ).:),
where F(J., Az) = ;.z-1 o-22 is the axial stress per unit undeformed area of cross-section (nominal stress). Even for these local forms it cannot in general be deduced that oF().a, Az)/oJ.z > 0 or oF(J.a, J.z)/o).a > 0. Moreover, oF().b, Az)foJ.z > 0 at fixed Aa is not a consequence of~'-> 0 since ).b depends on Az through (12).

Since N may be t'r~ated as a function of Aa and Az, one consequence of the above discussion is that inflation is not necessarily accompanied by axial shortening of the tube at fixed N. That is,

lf}~ =_oN ~~N d),a - o)
.a oJc= may be positive for certain values of ).a and A=, in contrast to the situation for a membrane (see ( 1)). Indeed, CHADWICK and HADDON (1972) have provided an example to illustrate that a tube can extend during inflation in the absence of axial loading.

If o-~2 denotes the deviatoric part of the axial stress o-22 and N' its resultant, then it is easily shown, directly from (8), that

The significance of this expression lies in the fact that for a tube with closed ends (so there is a contribution Pna 2 to the axial stress) ( 18) is replaced by N = 3N'/2. We shall return to this point later in relation to the discussion of numerical results (Section 4 ).

THE INCREMENTAL EQUATIONS

Full details of the notation and equations used here are given in [START_REF] Chadwick | t Designated (I) in the text. 1972 1977 1972[END_REF]. Here we summarize briefly the relevant information.

The incremental equilibrium equations (in the absence of body forces) can be written div s 0 = 0, (20) where s 0 is the increment in nominal stress referred to the current configuration (indicated by the subscript zero).

The incremental boundary conditions in respect of a hydrostatic pressure loading are (21) evaluated on the appropriate boundary, where superscript T denotes the transpose, n is the unit normal in the current configuration and l1 = ci 0 , ci being the increment in the deformation gradient tx.

The incremental constitutive law is written So = .::1Bl] + pt]-pfJ, (22) where .'d) is the fourth-order tensor of instantaneous moduli associated with the conjugate variables (s, tx) and fJ denotes the identity tensor. The components of ;::18 on the principal axes of the underlying deformation are given by HAUGHTON and OGDEN (1978, equations ( 84)-( 86)) and therefore not repeated here.

With the basis vectors defined in Section 2 and the choice 8, z, r of coordinates, where the non-zero values of ei. ei.k are precisely those given for ai. ai. k in (I, equation ( 23)). In the present situation, however, r varies through the thickness of the shell.

We write the increment x in the position vector x of a point in the current configuration as (24) Then, the components of '1 on the basis e 1 , e 2 , e 3 are displayed as

[ (u + Vo)/r V= Wo/r \\'= (u0 -v)/r Uz (25)
where the subscripts e, z, r denote partial derivatives.

Since the material is incompressible, we have tr('l) = u.+(u+v0 )/r+w= = 0.

(26)

BIFURCATION ANALYSIS

Prismatic bifurcations

Firstly, we assume that u, v, ware independent of z. Then (22)-( 26) together with the expressions for the components :$ ijkt from HAUGHTON and OGDEN (1978) give .:!&1212woo/r+.:i8~232rw.+.:i83232(rw

•• +w.) = 0, ( 29 
)
where the prime denotes djdr.

Equation ( 29) can be solved quite generally for w at any stage of the deformation and, in particular, in the undeformed configuration. The solution has no effect on the shape of the cylinder cross-section and deserves no further consideration in the present context. We therefore set w = 0, as in the membrane case treated in (1).

The boundary conditions (21) on the lateral surfaces of the tube become

u 0 -v+rv,=0 onr=a,b (30) and (31) 
In the derivation of ( 30) it has been assumed that ~3131 # 0. In fact, the inequality . .11 3131 > 0, a consequence of the Baker-Ericksen inequalities, is adopted here.

To solve equations (27) and (28) with the incompressibility condition (26) we set (

) (38) 37 
Equations equivalent to (34), ( 35) and (36) were given by WANG and ERTEPINAR (1972), amongst others, for the special case of a neo-Hookean solid, and by HILL ( 1976) for a general form of strain-energy function.

For 11 = 0, the circular symmetry is maintained and the analysis is equivalent to that described in Section 2. No further discussion of this is necessary.

For n = 1, equation ( 34) is integrated to give The constant of integration has been set equal to zero to ensure that the boundary conditions ( 35) and ( 36) are compatible. Use of ( 40) in ( 36) for n = 1 shows that each of .( 35) and ( 36) reduces to rf{' + f{ = 0 on r =a, h.

{40)

Use of the formula rX = },(1-}. 2 Az) enables two further integrations to be carried out. These, consecutively, give

and ( 42)

where c 1 and c 2 are constants.

Since the differential equations and boundary conditions are homogeneous, f 1 = const. is a solution. Thus, for prismatic bifurcations to occur, a non-zero f{ is required. Substitution of ( 42) into (40) leads to the hifurcatiol1 criterion

ic - f " WvAdA . _ O -(; 2 A -1 )( W ) 2 -' icb • z A (43)
use having been made of the connection

.J& 3131 = XW;j(A 4 A;-1).

In view of (12), equation ( 43) determines the bifurcation points Aa (dependent on ;.zl. It is applicable equally to internally or externally pressurized cylinders at fixed axial extension.

The special case P = 0 corresponds to A 2 Az = 1, that is WA = 0. Separate analysis of this case directly from the differential equations and boundary conditions (noting that the underlying deformation is now homogeneous) shows that prismatic bifurcation is not possible for any mode number n except in the limit h--+ a.

From (43) a necessary condition for 11 = 1 mode prismatic bifurcation to occur is WH = 0 for some A in ().b, l.a). In the membrane limit, equation ( 43) reduces to a necessary and sufficient condition, namely Wu = 0 for some ). (as shown directly in (I)).

However, arguments presented in (I) suggest that the inequality Wv > 0 (44) holds for all A and ).=, ensuring that prismatic bifurcations are not possible for a membrane. For a thick-walled cylinder, the inequality (44) excludes n = 1 mode prismatic bifurcation but higher-order modes remain possible. We remark that although (44) is physically reasonable for a membrane it could possibly be violated within the bulk of a thick material specimen. Nevertheless, we adopt (44) here.

For mode numbers n ~ 2, WANG and ERTEPINAR (1972) have considered the problem of an externally pressurized thick-walled tube in respect of the neo-Hookean form of strain-energy function, restricting attention to il.z = 1. Under external pressure, the strains at bifurcation are "small" and the results obtainable essentially independent of the precise form of strain-energy function. We have confirmed this by calculations for a number of different strain-energy functions.

We use the class of strain-energy functions described fully in (1). This is such that (45)

In particular, in Table 1, we show our calculations in respect of the three-term form of ( 45) with material constants given by

(1(1 = 1•3, (1(2 = 5•0, (1(3 = -2•0, } (46) llf = 1•491, J.l! = 0•003, 11! = -0•023,
where 11: = J.i,/J.i and J.l is the ground-state shear modulus (see (I)).

In Table 1, values of il.b at bifurcation are given for il.z = 1, 2, 3, 4, 5 and 0•5 for a number of different values of the thickness ratio A/Bin respect of ( 45) with ( 46). For comparison we reproduce the results of ERTEPINAR (1972) for il.z = 1 and the neo-Hookean form of strain-energy function. In all cases it is found to be the n = 2 mode which occurs first. We remark that for A/B = 0•95 the critical values of il.b for il.z ~ 1 correspond to P = 0 to within an accuracy of three decimal places, this being consistent with the situation in the membrane limit.

Under internal pressure our calculations reveal that no prismatic mode of bifurcation is possible for the strain-energy functions considered.

In Fig. 1 the pressure P, as given by ( 11), is plotted as a function of il.a in respect of ( 45) with ( 46) for a number of values of il.z and for A/B = 0•85. Because the value of P increases rapidly with B/A we do not includ~ corresponding curves for smaller values of A/B. Instead, in Fig. 2, the value of A.. at the pressure turning-points is plotted against AjB. For sufficiently large wall thicknesses, pressure turning-points do not occur for all values of Az, but this is not shown in Fig. 2. So far no mention has been made of the boundary conditions on the ends of the cylinder. These can be chosen either to exclude prismatic bifurcations or to be compatible with them. They are more important in the discussion of axisymmetric and asymmetric bifurcations, which we consider next. is then substituted in the differential equation ( 53) in order to obtain fa(r) subject to (54) and ( 55) for different choices of the dimensionless geometric parameters L/B and A/B, recalling (1).

A/B 2 3 4 5 0•5 0•95 0•999 0•999 0•707 0•577 0•500 0•447 1•413 0•9 0•997 0•997 0•705 0•576 0•499 0•446 1•410 0•85 0•994 0•994 0•703 0•574 0•497 0•445 1•406 0•8 0•989 0•990 0•700 0•571 0•495 0•443 1•400 0•7 0•979 0•979 0•693 0•566 0•490 0•438 1•385 0•6 0•965 0•968 0•685 0•559 0•485 0•434 1•369 . Cl.
Results calculated on the basis of (61) show how the length of the cylinder affects the onset of axisymmetric bifurcation into then = 1 mode. Equally, and equivalently, if L is fixed and n varied then results show how a cylinder of fixed length responds to axisymmetric bifurcations in different mode numbers. This dual interpretation has been exploited in (I) and we continue it here. The spectrum of values of a from 0 to oo embraces cylinders of arbitrary length for any mode number.

The differential equation ( 53) cannot in general be solved analytically, even for very simple forms of strain-energy function, except in the case a = 0 when a simple explicit form for f 0 (r) can be written down. For finite L, a """ 0 corresponds to maintenance of the circular cylindrical shape and the solution is u = A/r and w = 0, where A is a constant. In the limit L---> oo, when ex---> 0, the solution (59) reduces to u = (A/r) sin az, w = 0, with a/ remaining finite, and these expressions replace ( 56) and ( 57) for this case.

The solution of ( 53) with a= n/A.zL, together with the boundary conditions ( 54) and ( 55), leads to a bifurcation criterion which is a relation between A.z and )"a (or A.b in view of ( 12)). Numerical calculations have been carried out for a number of values of Az and the ratio L/B. The numerical method is described in Section 4.3.

In Fig. 3(a,b,c) for L/B = 20, 10, 5 respectively, the bifurcation curves corresponding to A/B = 0•85 are shown in the (A.z, A 0 )-plane. Results for the neo-Hookean, Mooney-Rivlin and Varga forms of strain-energy function are compared with those for the three-term strain-energy function (46). Corresponding results are given in Fig. 4(a,b,c) for A/B = 0•5.

In each case, the curve of P = 0 is also shown and attention is restricted to P ~ 0.

Regions of both (axial) tension and compression are included. The curves of pressure turning-points (independent of LjB), calculated by setting oP/i3Aa = 0 in (15), are plotted in Figs 3 and 4 in respect of the three-term strain-energy function ( 46). These show that, dependent on A.., A/Band L/B, bifurcation may occur before or after the pressure maximum during inflation, just as for a membrane (see (I)).

For reasons discussed by [START_REF] Chadwick | t Designated (I) in the text. 1972 1977 1972[END_REF][START_REF] Chadwick | t Designated (I) in the text. 1972 1977 1972[END_REF] the neo-Hookean, Mooney-Rivlin and Varga forms of strain-energy function exclude certain bifurcation features. The remainder of our calculations is therefore based on the three-term strain-energy function (46). We note from Figs 3 and4, however, that there is little difference between predictions of the several strain-energy functions in the region of axial compression {Az < 1 ).

In respect of (46) the bifurcation curves corresponding to axial compression are shown on a larger scale in Fig. 5(a, b) for A/B = 0•85 and 0•5 respectively. In each case, the values LIB= 5, 10, 20 are chosen. The curve of zero resultant axial force (that is, N = 0, where N is given by ( 18)) is included in Fig. 5(a,b) to emphasize the boundary between the regimes of resultant axial tension and compression. We note that as the axial compression is increased in the absence of pressure (that is, along the curve;..;;..,= 1), the value of A.a at bifurcation increases with the value of L/B. At first sight this is at variance with one's intuition that long tubes buckle more ,. easily than shorter ones. However, it should be borne in mind that asymmetric (or bending) modes will have priority over axisymmetric modes for long tubes in compression (this is shown in Section 4.3).

For the neo-Hookean solid, WILKES (1955) considered a tube subject to end-thrust alone. In this special case, A. For each value of A.. shown, there is clearly a "cut-otr' value of the tube thickness beyond which axisymmetric bifurcations do not occur with increasing pressure. For long tubes, as illustrated in Fig. 6(b,c), the character of the results does not vary significantly with thickness except near the cut-off values. Indeed, for thicknesses up to, say, 60% of the critical value (for each A.. and L/B) the results are broadly similar to those found in (I) for a membrane and corresponding to the limit A/B = 1 here. It is an easy matter to find a value of a (if one exists in the range under consideration), and hence b from b 2 = ..t; 1 (B 2 -A 2 )+a 2 , to satisfy the bifurcation criterion as accurately as required. This numerical method has in essence been used by ERTEPINAR (1978) to investigate bifurcation of thick-walled tubes of neo-Hookean material subjected to finite twist combined with external pressure.

The above method was the basis for our calculations (corresponding to m = 0) described in Section 4.2.

Form= 1 and IX given by ( 61), bifurcation curves are plotted in the (A.z, ..1. 0 )-plane in Fig. 8(a,b) for A/B = 0•85, 0•5 respectively. The character of the results is essentially independent of A/Band, in particular, there is no "cut-off' as there is in the case of axisymmetric bifurcations. This, of course, is to be expected since solid cylinders (A/B = 0) are susceptible to bending in compression. Bending can only occur when the dilatational part of the axial loading is compressive, that is when N', given by ( 19), is non-positive. In the membrane case of (I) this reduces to the integrand in (19) being non-positive.

In the region where N' > 0, asymmetric modes do not compete with axisymmetric modes, but where N' ~ 0 whether an axisymmetric or asymmetric mode can occur first during inflation at fixed A.z depends on Az and L/B, just as for a membrane (see ( 1)), and also on the ratio A/B. This can be seen by comparing Fig. 8(a, b) with Fig. 5(a,b) respectively and also with the appropriate parts of Figs 3 and 4 respectively. Note, however, the differences in scale. We do not pursue a discussion of the comparison here since, for a membrane, this has been done in (I) and the details are broadly similar for thick-walled tubes provided A/B is not too small.

For m ~ 2, and IX again defined by (61 ), our calculations reveal no bifurcation curves in the region of the (A.., ..1. 0 )-plane considered in respect of the strain-energy function (46).

  and for (16) to hold it is necessary that .A.Wu-W;.=O for some A in the interval (.A.b, A 0 ).

  Pr = [r( :!&~ 33 3-::$'1133 + p') + :18 3 3 3 3 + .:1811 1 1 -2.!-d 1133]u./r + (.18 333 3-.18 11 3 3 )u •• +.181313(Uoo-Vo)/r 2 +.181331 v.o/r, (27) Po= [r( . .$'1331 +p')+.:16t313](uo-v)/r+(r:i8~131 +.183t3tlv. +.:183131 rv •• + (.:181331 +•:iltt33 -.!.d 1111 )u.o, (28)

v

  = g.(r) sin n8, (32) u = J.(r) cos n8,} p = h.(r) cos n8, for example. (In general, four independent functions of {) are associated with each function of ron the right side of (32).) Equation (26) gives rf~ +f.+ ng. = 0, n ~ 0. This is used to eliminate h. and g. from the other equations, leading to r{.:fl3131 r 3 f~" + (r::fl~ 131 + 3..113131 )r 2 f~' (33) + [r.JI~ 131-.fd 3131 + n 2 (2:?if 1331 + 2.16' 1133-.~ 1111-•~ 3333)]rj~}' +(n 2 -1)[r 2 .fl3 131 +r.~~131 +(n 2 -1).~3 131 +n 2 (a 1 -a 3 )]J. = 0 (34) for n ~ 1. Correspondingly, the boundary conditions (30) and (31) for n ~ 1 yield r 2 f~'+rf~ +(n 2 -1)f. = 0 on r =a, b (35) and, after some rearrangements, •~ 3131 r 3 f~" + (r.Jd~ 131 + 4.$3131 )r 2 f:' + + [r . .f.9~131-(n 2 -1 ).~ 3131 + 11 2 (2.:?if 1331 + 2~ 1133 -.~ 1111 -.~3333)]rJ;; +(n 2 -1)(r.~~131 +:14 3131 )f.=0 onr=a,b. (36) For n = 0, (31) gives (.143333-.~1133+a3)fo/r+ho = {~ where h 0 is obtained from on r =a,} on r = b, r 2 h~ = (r.Jd'1133-r.Jl~333rp' +.Jl3333 -:;J 1111 )fo, and (30) is satisfied identically.

  FIG.I. Plot of the pressure P* = P/J-l against ,t. for i.z = I, 2, 3, 4, 5 with A/B = 0•85.

4. 2

 2 Axisymmetric bifurcar;ons When equations (23) are independent of 0 the equation for v decouples from those for u and w. The solutions of this equation are of little interest in the present context and it is considered no further. The remaining equations become Pr = (r:J6'1133-.1H1111 )u/r 2 + (r.qa~333 + rp' + .16 3333)u,jr +.16 3333 u,, + .31 :nn u.z + (r-16'~233 + .::?6'nn-.Jl1122)wz/r + (:JiS' 22H + .16 3223)w"' (47)

  FIG. 3. Plot of the axisymmetric bifurcation curves in the (A=• A0 )-plane for P ~ 0 and AlB= 0•85 in respect of the Mooney-Rivlin (-• --), neo-Hookean (-•-•-•-),Varga(--) and three-term(---) strainenergy functions: (a) LIB= 20, (b) L/B = 10, (c) LIB= 5. The curve of pressure turning-points (calculated for fixed A=) is included in (a), (b) and (c) for the three-term strain--energy function.

  2 A.. = 1 so the underlying deformation is homogeneous and the equations can be solved in terms of modified Bessel functions. Wilkes (in different notation) plots A.. against et.b = mr:BfLA.; 12 and the resulting curve provides a critical value of A. •. Bifurcation into an axisymmetric mode in compression cannot occur for values of A.. greater than this critical value. Whether or not bifurcation occurs at the critical value depends on whether or not the value of nB/L determined by the corresponding critical value of et.b is an integral multiple of the ratio B/L of the considered tube. The points of the curve P = 0 in Fig.5(a, b) corresponding to bifurcation in essence show the behaviour of A.. as a function of nB/L.In Fig.6(a, b,c), for L/B = 5, 10, 20 respectively, the value of A.a at bifurcation is plotted against A/B for a number of values of A.. to illustrate the dependence of bifurcation on the tube thickness.

  FIG. 6. Plot of the value of Au at bifurcation against A/B fori.,= I, 2, 3, 4, 5 in respect of the three-term strain-energy function: (a) L/B = 5, (b) L/B = 10, (c) LIB= 20.

FIG. 8 .

 8 FIG. 8. Plot of the asymmetric bifurcation curves in the (Jc, A0 )-plane for P::;,. 0 and L/B = s. 10. 20. oo in respect of the three-term strain-energy function: (a) A/B = 0•85. (b) A/B = 0•5.

  .1& 3131 r 3 Jl" + (r.J&3131 + 31& 3131 )r 2 f{' + (rd&3131 -.;& 3131 + 21& 1331 + 2.1& 1133-.1& 1 11 1 -.J& 3333 )rf{ = 0. (39)

TABLE 1 .

 1 Values of il.b at bifurcation for various values of il.z and AjB in respect of(45) with(46) 

	Az neo-Hookean	
	(Ertepinar,	Three-term strain-energy function
	1972)	
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Pz = ;}l3232 W,, + (r:?~:3232 + .1/J 3232)w,/r+.J12222 Wzz + (:?12233 +.?13223)u,z + (r'~3223 + rp' + :?13223 + .?ltt22)uzlr, (48) and (26) reduces to u,+ u/r+ Wz = 0.

(49)

The boundary conditions (21) on the lateral surface yield (:~3333-.~2233+u3)u,+(.'?III33-.JiJ2233)u/r-p = 0 on r =a, b

and w,+uz=O onr=a,b.

(51)

The equations and boundary conditions have been made homogeneous by the omission of the incremental pressure P, this being associated with a circular cylindrical solution as discussed in Section 2. In order to solve the above system, we write

for example (~ i= 0).

Elimination of w and p between (47), ( 48) and (49) leads to r 4 (:.1l3232f"' + (r.Jl3232 + 2:Jl3232)f''/r+ (r. 

To fit the boundary conditions on the ends of the cylinder we write

where A and Bare constants. The corresponding form of w, obtained from (49) and consistent with (51), is

where C 0 (r) is a function of r related to f 0 (r), while p, if required, can be obtained from (

Note that the solution corresponding to ()( = 0 is ruled out by ( 58) and we can take ()( > 0 without loss of generality. The boundary conditions (58) correspond to zero shear stress and zero axial displacement pointwise on the ends of the tube. The values of()(/ given by ( 60) are also obtained if the end conditions (58) are replaced by ones in which the (nominal) stress is held fixed pointwise and is in the axial direction. If the resultant axial loading on the end faces is held fixed, on the other hand, values of()(/ depending on .A.z and .A.a may be obtained. Such dependence arises in the membrane case, treated in (1), in which integration with respect to r through the thickness of the material is implicit from the outset, and the solution analogous to (56 1 ) involves two (in general, distinct) values of()(. Note that (56) is not the most general solution for u since (53) is quadratic in ()( 2 . For a thick-walled tube the use of "average" end conditions involves lengthy algebra, and we therefore confine attention to pointwise end-conditions which, although yielding simple and explicit values of()(/, nevertheless allow the main features of the bifurcation phenomena to be revealed. By the same token it suffices to consider only (58) and (60).

Because the length of the cylinder is at our disposal, we can arbitrarily set n = 1 in For a number of values of).., the value of ).a at bifurcation is plotted against B/L in Fig. 7, the left-hand limit corresponding to an infinitely-long tube. The ratio A/B = 0•85 has been chosen here in view of the results in Fig. 6(a,b,c) which indicate that only for short tubes (that is, for B/L larger than about 0•15) is there a significant dependence on A/B. Typical results for short tubes can be read off from Fig. 6(a).

The duality between the mode number n and the ratio BjL shows that for fixed ).. (or B/L) there is a value of B/L (or )..) greater than which axisymmetric bifurcation cannot occur in any mode number.

Asymmetric bifurcations

When dependence on both () and z is retained, equations ( 23 The incompressibility condition ( 26) is also required. The equations are solved by setting u = f(r) cos me sin rxz,} v = g(r) sin me sin rxz, w = h(r) cos me cos rxz' p = k(r) cos me sin rxz, (65) the z-dependence selected, as in ( 59), in order to satisfy end-conditions which again lead to values of rx given by (60). In order that the solutions be single-valued we take m = 0, 1, 2, ....

The expressions (65) are substituted in ( 62)-( 64) and h(r) is eliminated by means of ( 26). The resulting coupled equations for f(r), g(r) and k(r) are then put in the form dyj .

where y = (f,f' ,J", g, g'' k),

suitably non-dimensionalized. The corresponding boundary conditions, after some algebra, can be put in the form rys-Y4-myl = 0, } r 2 YJ + rYl + (rx 2 r 2 + m 2 -1 )y1 = 0, (:?11133-.?!3'2233)(y 1 + my4) + (.c?!S'3333-.?!3'2233 +a 3)ry2-ry6 = 0, each for r = a, b. the vanishing of the resulting 6 x 6 determinant of coefficients of ck.