
HAL Id: hal-01302308
https://hal.science/hal-01302308

Submitted on 14 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

A three-layer model for buckling of a human aortic
segment under specific flow-pressure conditions

Marco Amabili, Kostas Karazis, Rosaire Mongrain, Michael Païdoussis,
Raymond Cartier

To cite this version:
Marco Amabili, Kostas Karazis, Rosaire Mongrain, Michael Païdoussis, Raymond Cartier. A three-
layer model for buckling of a human aortic segment under specific flow-pressure conditions. Inter-
national Journal for Numerical Methods in Biomedical Engineering, 2012, �10.1002/cnm.1484�. �hal-
01302308�

https://hal.science/hal-01302308
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


A three-layer model for buckling of a human aortic segment under
specific flow-pressure conditions

M. Amabili, K. Karazis, R. Mongrain, M. Païdoussis

Department of Mechanical Engineering, McGill University, Canada

Human aortas are subjected to large mechanical stresses because of blood flow pressurization and through 
contact with the surrounding tissue. It is essential that the aorta does not lose stability by buckling with 
deformation of the cross-section (shell-like buckling) (i) for its proper functioning to ensure blood flow and 
(ii) to avoid high stresses in the aortic wall. A numerical bifurcation analysis employs a refined reduced-
order model to investigate the stability of a straight aorta segment conveying blood flow. The structural 
model assumes a nonlinear cylindrical orthotropic laminated composite shell composed of three layers rep-
resenting the tunica intima, media and adventitia. Residual stresses because of pressurization are evaluated 
and included in the model. The fluid is formulated using a hybrid model that contains the unsteady effects 
obtained from linear potential flow theory and the steady viscous effects obtained from the time-averaged 
Navier–Stokes equations. The aortic segment loses stability by divergence with deformation of the cross-
section at a critical flow velocity for a given static pressure, exhibiting a strong subcritical behaviour with 
partial or total collapse of the inner wall. Preliminary results suggest directions for further study in relation 
to the appearance and growth of dissection in the aorta.

1. INTRODUCTION

A great deal of work has been accomplished on the collapse and flutter of collapsible tubes mod-
elling blood flow in veins, pulmonary passages and the urethra; refer to the reviews by [1–3], and
papers by [4–7] for instance. At this point, the mechanisms leading to static collapse and flutter of
such systems may be said to be well understood, though the means of prediction are not yet fully
satisfactorily explained, mainly because of the large deformations involved.

In this respect, arterial dynamics should, in principle, be easier to handle. However, conven-
tionally, arteries have been considered capable of withstanding large deformations without adverse
effects. One of the most catastrophic cardiovascular diseases is associated with the dissection of the
aorta by a sudden rupture of the internal layer, tunica intima, of the aortic wall [8–10]. It is assumed
that, if the mechanical stresses applied to the aorta wall exceed some critical value combined with
certain medical conditions, rupture occurs, propagating in the axial direction following a spiroidal
path and splitting the inner two-thirds and outer one-third of the media layer apart [11,12]. Accord-
ing to recent studies, aortic wall dissection occurs for 2.6–3.5 per 100,000 person-years, with a
mortality increase of up to 2% per hour after symptoms have been detected [13, 14]. Even though
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the general assumption is that high mechanical stresses causing inner tissue rupture in the aorta are
a significant factor, the underlying mechanism of aorta dissection is poorly understood. The main
reason for that is that direct measurements of the risk factors in vivo are not feasible [15, 16]. In
addition, simulation of the aorta, which is a complex part of the circulatory system that changes
dramatically in shape and size according to the systolic and diastolic pressure field, and in material
properties because of mechanical stresses and age, is extremely difficult to perform [17].

The arterial wall consists of four major components: muscles, elastin, collagen and fibroblasts.
Muscles are an active component of the aortic wall affecting also the geometry and elastic properties
of the aorta. Elastin is a rubber-like material made from a protein in a polymerized form, which is
elastic and can sustain large stresses and strains. Collagen fibers provide the required arterial wall
strength and they are responsible for the nonlinear elastic behaviour of the wall for higher strain
values. For lower strains, the fibers are folded and do not contribute significantly to the elastic prop-
erties of the aorta. Fibroblasts have an inherent gel-like viscous behaviour and their contribution
to wall elasticity is usually neglected [18]. The histological analysis of the aortic segment provides
three distinct layers called tunicae: tunica intima, tunica media and tunica adventitia, shown in
Figure 1. It has been recorded that the stiffness of the intima is much larger than that of the media
and adventitia [15]. Thus, the inner part of the aorta is stiffer than the outer layer and deforms much
less during the systolic–diastolic cycle [19]. If a vascular disease is present, such as atherosclerosis,
the mechanical properties of the affected layers of the aortic wall change significantly from those
of the healthy aorta. In our analysis, the elastic properties of the aortic wall for each tunica layer
in the circumferential and axial directions are derived by making use of the experiments in [20]. In

(a) (b)

(c)

Figure 1. Aorta segment configuration. (a) A circular cylindrical shell segment used in the simulation;
(b) the three layers used in the modeling of the aorta; (c) dissection of the aortic wall (courtesy of

Ms. Olga German).
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literature, there are also averaged values for the stiffness of the aortic wall, or for each layer treated
as an isotropic material, obtained from experiments, indicating the effect of disease on the stiffness
of the aorta [16, 21, 22, 24–29, 32]. The difference in the values for Young’s modulus of the aorta
found in the literature is explained by investigating the methodology used in these studies to obtain
the data, age of the individual, location and pathology of the individual specimen.

Different numerical models have been used to simulate healthy aortic walls or aortas under patho-
logical conditions [30]. In recent models, material anisotropy, hyperelasticity of the aorta wall and
residual stresses are treated in the analysis [23,31,33,34]. It has been observed that residual stresses
present in the uncut configuration of the aorta play a significant role on the stability of the aortic
wall. If the arterial wall is cut transversely to the axial direction, during an experimental analysis,
the wall shrinks in the axial direction, while it springs open if it is cut in the radial direction [19].
The effect of different opening angles, because of the presence of residual stresses of each arterial
layer, was further investigated in [35], where beam-like buckling of arteries was also investigated.
Furthermore, it has been shown that axial residual stresses in an artery reduce the critical internal
pressure for buckling of the aorta, which may lead to arterial tortuosity [36].

With respect to the interaction of the aorta wall with blood flow, there has been recent progress in
the development of fluid–solid and fluid–structure interaction models to simulate the aorta under dif-
ferent loading conditions. Usually, the ALE approach has been employed resulting in a large number
of DOF numerical models. Recent mathematical models use arterial growth and remodelling tech-
niques to capture the wall stresses accurately. It is widely accepted that new aorta-wall models must
be developed to account, among other physiological parameters, also for the effect of dynamic col-
lagen production for the development of the strong collagen fiber found in the arterial walls [37]. In
addition, pulsatile flow models along with newly developed experimental methods have been used
to investigate the location of maximum stress in the systolic–diastolic cycle [38, 39]. Interesting
reviews on the mechanical models used for the arterial wall displacement are given in [18, 37].

The present paper proposes to study the possibility of buckling with cross-section deformation
(i.e. shell-like buckling, different from beam-type buckling) of a straight thoracic aortic segment for
specific pressure and flow conditions by means of a geometrically nonlinear model, thus following
in the path of the studies of [4, 40] for collapsible tubes. This study relates the nonlinear buckling
of the aorta and the consequent appearance of high stress regions at the inner layer of the aorta
wall that may be responsible for the initiation of dissection. The aortic segment is modelled as a
three-layered orthotropic laminate composite shell by means of Sanders–Koiter nonlinear shell the-
ory, while the fluid is modelled by a Newtonian inviscid flow theory but taking into account steady
viscous stresses via the time-averaged Navier–Stokes equations. A linear analysis is performed first
to obtain the most appropriate generalized coordinates to be used in the nonlinear reduced-order
model. These generalized coordinates are used in the expansion of the aorta wall displacement in
the nonlinear analysis. The nonlinear analysis is performed in two phases: (i) initially a radial pres-
surization is progressively applied to obtain the nonlinear deformation and the initial stresses in the
aortic wall; (ii) once the desired pressure is reached, the blood flow velocity is increased and used
as bifurcation parameter to study the buckling and post-buckling of the aorta. In this second phase,
the material properties of the three layers stretched in the circumferential direction are used. In fact,
as shown in Appendix B, the stress–strain experimental curves for the human aorta can be fitted by
two lines, representing an initial stiffness and an increased stiffness for greatly stretched wall.

As a first attempt to describe the nonlinear behaviour of the aortic segment, a quasi-steady
approach is taken, in which the flow is not pulsatile but steady. Specifically, the most critical com-
binations of pressure and flow during a heart beating period are considered for possible triggering
of buckling. Shell-like buckling occurs for a short period of time; it is almost an instantaneous phe-
nomenon because (i) the pressure build-up upstream forces the wall of the aorta to open back to its
original shape, and (ii) the pressure and flow conditions change with time.

2. SHELL AND FLUID–STRUCTURE INTERACTION MODELS

The introduction of bifurcation theory in the nonlinear analysis of shells conveying fluid has pro-
duced new theoretical findings in the recent past. In particular, [41] showed for the first time that
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such systems lose stability by divergence, exhibiting a strongly subcritical nonlinear behaviour
(i.e. buckling is obtained for smaller flow velocity than the bifurcation point). This was confirmed
experimentally [42] and studied further in [43]. Here, the word ‘bifurcation’ signals the qualitative
change of a mathematical solution and the generation of new solution branches that describe the
new behaviour of the system. The point of occurrence of this qualitative change is called bifurcation
point. A significant advantage of using bifurcation theory compared with other numerical techniques
for fluid–structure interaction is that bifurcation analysis identifies all possible stable and unstable
branches of the solutions for a range of the critical parameter employed (i.e. the flow velocity or
the transmural pressure in the present analysis) vis-à-vis results obtained from finite element (FEA)
models, which tend to produce results for a specific values of the critical parameters. Evidently,
bifurcation analysis can be efficiently performed only by using reduced-order models (i.e. with a
relatively small number of DOFs), which also produce accurate results considerably faster than
finite element models.

The model of the aortic segment consists of a circular cylindrical shell of length L, mean inter-
nal radius R, and thicknesses hi, hm, and ha of each one of the three tunica layers, as shown in
Figure 1(b). The origin of the cylindrical coordinate system,.OI x, � , r/, is positioned at the cen-
tre of one end of the shell, as shown in Figure 1(a). The shell is assumed to be made of anisotropic
elastic material composed of three layers stacked together at various orientations according to exper-
imental observations [20]. The displacements of the shell middle surface are denoted by u, v and
w, in the axial, circumferential and radial directions, respectively; w is taken positive outward.
The actual geometry of an aorta displays deviations from an ideal circular cylindrical shell. Even
though this effect is not investigated in the present study, geometric imperfections can nevertheless
be investigated by using the approach introduced by some of the present authors [43], which has the
advantage of avoiding further complication of the present model.

The strain vector ©x � rof the aortic segment, modelled as a circular cylindrical shell, in the global
shell coordinates is given by

©x � r D N .u, v,w/ , (1)

where N is a nonlinear vector differential function of the shell displacements u, v, w of the middle
surface of the shell, obtained by using the Sanders–Koiter nonlinear shell theory [44]. The strain–
displacement relationships and changes in the curvature and torsion for an arbitrary point associated
with the middle surface of each layer of the cylindrical shell for the Sanders–Koiter nonlinear shell
theory are given in Appendix A.

The stress–strain relations for the k-th orthotropic layer of the shell, in the material principal
coordinates .OI 1, 2, r/ under the hypothesis that �r D 0, are given by [44–46]

¢
.k/

1 2 r D C.k/©12 r , (2)

where ¢.k/1 2 r is the stress vector in the k-th layer and ©12 r is the strain vector, both in the mate-
rial principal coordinates, and C.k/is the matrix containing the material properties of the k-th
transversely isotropic layer. In particular, the elements of the C.k/ matrix are

c11 D
E1

1� �12�21
, c12 D c21 D

E2�12

1� �12�21
,

c22 D
E2

1� �12�21
, c33 DG12, c13 D c23 D c31 D c32 D 0,

(3)

whereE is Young’s modulus, � is the Poisson’s ratio andG12 is the shear modulus in 1–2 directions;
in Equation (3) the superscript (k/ has been dropped for simplicity, but all the material properties
must be referred to the k-th layer. Equation (2) can be transformed to global shell coordinates
.OI x, � , r/ by the following vectorial equation:

¢
.k/

x � r
D ŒQ�.k/ ©x � r , (4)

4



where ¢.k/
x � r

and ©x � r are now expressed in the global shell coordinates and ŒQ�.k/ is the matrix of
the material properties of the k�th layer. The stresses and strains in the material coordinate system
are related to the corresponding components in the global shell coordinate system by [45]

¢12r D T1¢x � r , ©12r D T2©x � r . (5a,b)

The coordinate transformation matrices T1 and T2 contain trigonometric functions of the angle
� .k/ between the global shell axis x and the material principal coordinate 1 [45] . It can be
shown that �

T�11
�T
D T2. (6)

Therefore, the matrix ŒQ�.k/ in Equation (4) can be given by

ŒQ�.k/ D
�
T�T2 C T2

�.k/
. (7)

A variational approach is employed to obtain the equations of motion for the aortic segment.
Therefore, expressions for the potential and kinetic energies of the shell for each lamina and the fluid
(blood) are coupled in the Lagrange equation. Specifically, the expression for the kinetic energy is
given by

TS D
1

2

KX
kD1

�
.k/
S

LZ
0

2�Z
0

h.k/Z
h.k�1/

˚
Pu2C Pv2C Pw2

�
.1C ´=R/dx R d� d´, (8)

where K D 3 is the total number of layers in the laminated aortic wall, (h.k�1/, h.k// are the ´
coordinates of the k-th layer, �.k/S is the mass density of the k-th layer of the shell, and the overdot
denotes a time derivative. The potential energy of the aortic wall US is made up of two contribu-
tions: the elastic strain energy Ushell of the aortic segment and the potential energy Uspring stored by
the axial and rotational distributed springs at the aorta ends that represent the boundary conditions
of the aortic segment; therefore,

US D UshellCUspring. (9)

The elastic strain energy Ushell of a laminated circular cylindrical shell is given in [44]

Ushell D
1

2

KX
kD1

�
.k/
S

LZ
0

2�Z
0

h.k/Z
h.k�1/

�
� .k/x "x C �

.k/

�
"� C �

.k/

x�
�x�

�
.1C ´=R/ dx R d� d´, (10)

where �x , �y and �xy are the stresses related to the strains "x , "y and �xy [44].
The potential energy stored by the axial and rotational springs at the shell ends is given by

Uspring D
1

2

2�Z
0

(
ka Œ.u/xD0�

2C ka Œ.u/xDL�
2C kr

	

@w

@ x

�
xD0

�2
C kr

	

@w

@ x

�
xDL

�2)
d � .

(11)
The following boundary conditions, with flexible constraints to simulate connection with the

remaining tissue, are imposed at the shell ends:

v D w D w0 D 0, Nx D�ka u, Mx D�kr .@w=@x/ at x D 0,L, (12a-e)

whereNx is the axial stress resultant per unit length,Mx the bending moment per unit length, ka and
kr are the stiffnesses per unit length of the axial and rotational constraints, respectively. The shell
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displacements are discretized by using trigonometric expansions that identically satisfy the geomet-
ric boundary conditions; these trigonometric functions are the eigenmodes of the linear problem in
case of simply supported boundary conditions. In particular,

u.x, � , t /D
8X

mD1

Œum,n,c.t/ cos .n�/C um,n,s.t/ sin .n�/� cos.	m x/

C

3X
mD1

um,2n,c.t/ cos .2n�/ cos.	m x/C
11X
mD1

um,0.t/ cos.	m x/,

(13a)

v.x, � , t /D
8X

mD1

�
vm,n,c.t/ sin .n�/C vm,j ,s.t/ cos .n�/

�
sin.	m x/

C

6X
mD1

vm,2n,c.t/ sin .2n�/ sin.	m x/,

(13b)

w.x, � , t /D
8X

mD1

Œwm,n,c.t/ cos .n�/Cwm,n,s.t/ sin .n�/� sin.	m x/

C

11X
mD1

wm,0.t/ sin.	m x/,

(13c)

where n is the number of circumferential waves, m is the number of longitudinal half-waves,
	m D m
=L, and t is the time; um,j .t/ , vm,j .t/ and wm,j .t/ are the generalized coordinates [44].
A nonlinear term Ou.t/is added to the expansion of u, Equation (13a), to satisfy exactly the boundary
condition (12d); this term is obtained as a function of the generalized coordinates [43]. The advan-
tage of the global discretization with the generalized coordinates used in Equations (13a)–(13c) is
that a relatively small number of DOFs, in this case 89 that can be reduced to 55 by selecting terms
with last subscript c because of symmetry considerations, is used to build a reduced-order model.

2.1. Fluid–structure interaction and solution method

Under normal conditions the flow in the aorta is neither laminar nor fully turbulent. In vivo results
indicate that the flow is either smooth laminar or irregular that eventually becomes turbulent [47].
Numerous studies have assumed a transition turbulent or fully turbulent flow profile to investigate
aortic dissection, aortic aneurysms and other arterial configurations and diseases [11, 48–54].

In this analysis, the flow conditions are assumed to be associated with physiological conditions
or pathological diseases (e.g. aortic stenosis, hypertension or atherosclerosis) upstream that induce
a turbulent flow in the aortic segment. The fluid–structure interaction model obtains the unsteady
fluid motion by potential flow theory and the steady viscous effects for turbulent flow by the time-
average Navier–Stokes equations. The unsteady viscous effects have been found to give a very small
contribution to the stability of shells conveying a fully developed turbulent flow [3].

An unsteady perturbation potential ˚ is introduced that satisfies the Laplace equation [43,55,56]

r2˚ D
@2˚

@x2
C
@2˚

@r2
C
1

r

@˚

@r
C
1

r2
@2˚

@�2
D 0. (14)

If no cavitation occurs at the blood–aorta interface, the boundary condition expressing the contact
between the shell wall and the flow is given by


@˚

@r

�
rDR

D



@w

@ t
CU

@w

@x

�
, (15)

where U is the mean blood flow velocity.
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Equation (14) and the Laplace equation are satisfied if the solution for the velocity potential is
given by

˚ D

MX
mD1

NX
nD0

L

m


In.m
 r=L/

I0n.m
 R=L/



@wm,n

@ t
CU

@wm,n

@ x

�
, (16)

where In is the modified Bessel function of the first kind of order n, and I 0n is the derivative of In
with respect to its argument. Therefore, the perturbation pressure at the aorta wall interface is found
to be given by

p D��F

MX
mD1

NX
nD0

L

m


In.m
 R=L/

I0n.m
 R=L/



@

@ t
CU

@

@ x

�2
wm,n, (17)

where �F is the fluid density.
Green’s theorem is used to obtain the total energy associated with the flow, which can be

divided into three terms: kinetic energy, potential energy and gyroscopic energy, as given in the
expression below

EF D TFCEG � VFI (18)

the first and second of the three terms on the right-hand side can be identified as the kinetic and
gyroscopic energy, respectively; an opposite sign is introduced for the potential energy VF, for
convenience. The kinetic energy TF of the fluid is given by

TF D
1

2
�F

MX
mD1

NX
nD0

2�Z
0

LZ
0

L

m


In.m
 R=L/

I0n.m
 R=L/
Pw2m,ndxRd� . (19)

It is interesting to observe that TF does not depend on the mean flow velocity U . The potential
energy VF is given by

VF D�
1

2
�F

MX
mD1

NX
nD0

2�Z
0

LZ
0

L

m


In.m
 R=L/

I0n.m
 R=L/
U 2



@wm,n

@x

�
dxRd� . (20)

Equation (20) shows that VF is negative, that is, the stiffness of the system is a decreasing function
of U . This explains the shell instability at sufficiently high values of U .

The gyroscopic energy EG associated with the perturbation potential is

EG D
1

2
�F

MX
mD1

MX
lD1

NX
nD0

NX
kD0

2�Z
0

LZ
0

U L

m


In.m
 R=L/

I0n.m
 R=L/



Pwm,n

@wl ,k

@x
C Pwl ,k

@wm,n

@x

�
dxRd� (21)

The time-averaged Navier–Stokes equations are employed to calculate the steady viscous effects
assuming that the flow is turbulent. The result is a variable mean transmural pressure �Ptm along
the shell because of the pressure drop and a frictional traction on the internal wall in the axial direc-
tion. A detailed description of the solution for the time-averaged Navier–Stokes equations used here
is given in [43, 57]. This type of hybrid model is particularly efficient from the computational point
of view. In particular, the pressure drop in the aortic segment is given by

PxD0 �PxDL D f
�F

4R
LU 2. (22)
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The friction factor f in Equation (22) can be calculated by using the experimental Colebrook
equation. The constant axial friction traction force per unit area is

�x D f�FU
2=8. (23)

2.2. Lagrange equations of motion

The final Lagrange equations of motion are written as follows:

d

dt

	
@ .TSC TF/

@ Pqj

�
� 2

@EG

@ qj
C
@ .USC VF/

@ qj
DQj , j D 1, : : : ,NT, (24)

where TS and TF are the kinetic energy of the shell and the fluid, respectively, US and VF are the
potential energy of the shell and the fluid, respectively, EG is the gyroscopic energy associated with
the flow, andQj are the generalized external forces, including the transmural pressure�Ptm, which
is affected by the pressure drop, the axial friction forces and damping:

Qj D�
@F

@ Pqj
C
@W

@ qj
, (25)

where

W D

2�Z
0

LZ
0

.�Ptmw C �xu/dx R d� , F D
1

2
c

2�Z
0

LZ
0

�
Pu2C Pv2C Pw2

�
dx R d� , (26)

and c is the viscous damping coefficient, which does not play a role because the problem considered
has a static buckling solution. The number of DOFs is NT. The vector q of the generalized coordi-
nates um,n.t/, vm,n.t/, wm,n.t/ is introduced and the final equations of motion for the aortic wall
are given in matrix form in the following expression:

M RqCC PqC ŒKCN2 qCN3 .q, q/� qDQ, (27)

where M is the mass matrix (including the effect of the fluid), C the damping matrix, K the linear
stiffness matrix, N2 a matrix that gives the quadratic nonlinear terms related to the displacements,
N3 a matrix that involves the cubic nonlinear terms associated with the displacements, and Q the
vector of the external loads, which includes pressurization of the artery in the radial direction
and axial friction forces. The total number of DOFs used in the present model is NT D 55. The
present reduced-order model has been validated in the past for isotropic shells by comparing it to
experimental results [43] for aluminum and plastic shells conveying water.

3. NUMERICAL MODEL

The cylindrical straight thoracic aortic segment is modelled using the nonlinear shell theory pre-
sented in Section 2. The resulting 55 second-order nonlinear ordinary differential equations (27) are
divided by the modal mass and further recast into 110 first-order ordinary differential equations.
Once nondimensionalized, the resulting ordinary differential equations are studied via a contin-
uation method to perform a bifurcation analysis. Here, the nonlinear analysis of the aortic seg-
ment subjected to internal blood flow is divided into two steps. First, the pressure is increased
at zero flow velocity up to reach the desired value; this gives the wall deformation and ini-
tial stresses. In fact, residual stresses have a very significant influence on arterial mechanical
behaviour. In this analysis the elastic material properties of the unstretched layers have to be
used initially. In the second step, the flow velocity is used as bifurcation parameter to study
the buckling and post-buckling of the aorta, by using the material properties of the stretched, in
the circumferential direction, aorta layers. The software AUTO [58], utilizing pseudo-arclength
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continuation and collocation methods for continuation of the solution, bifurcation analysis and
branch switching, is used to solve numerically the nonlinear equations.

It must be pointed out that the total number of DOFs used in this study is much smaller com-
pared with the number of DOFs used in finite element analysis to resolve an aortic wall segment, in
some cases even compared with the number of DOFs needed for only one element used with finite
element analysis modelling.

Several models have assumed an isotropic aortic wall segment as a first approximation in their
analysis [11, 15, 59]. In our analysis, the aorta wall is simulated with three orthotropic layers repre-
senting the tunica intima, media and adventitia. It is well known that the measured total thickness of
the human aorta depends on the individual’s health, age, geographical location and the individual’s
pathological profile. In general, the average thickness of the aorta wall varies from h D 0.7 to 2.7
mm. In our analysis the thickness of each layer of the aortic wall was based on the results, given
in [20].

The human aorta stiffness is a complex function that depends at least on the individual, geo-
graphic location, age, overall health condition, mechanical stress, temperature and blood viscosity.
Regardless of the nonlinear behaviour of the whole tissue as shown in the in vivo results a num-
ber of previous studies assumed a linear elastic behaviour for the physiological range of arterial
wall deformation [11, 60]. However, there is a large difference in the modulus of elasticity between
the circumferential and axial directions for each layer, and among the three layers. In our anal-
ysis the values of Young’s modulus for each orthotropic layer of the aorta were calculated using
the results from uniaxial extension tests given in [20]. The experimental stress–strain curves pre-
sented in [20] for each one of the three layers in tension and compression for both axial and
circumferential directions, one of them being reproduced in Appendix B, indicated that there are
transition points at which the layers become much stiffer. Therefore, initially the stiffness of each
layer lies on the practically constant slope segment of the stress–strain curve. At a specific strain,
the slope suddenly increases and thereafter it remains quite constant. This type of behaviour has
been modelled by using initially the smallest of the two Young’s moduli for each layer and in
each direction at the beginning of the nonlinear analysis, when the shell is pressurized. When
the shell reaches the appropriate deformation, the value of Young’s modulus is updated to the
higher value. This happens only in the circumferential direction of the shell, which is stretched
by pressurization.

In all numerical experiments the mass density of the aortic segment was assumed to be 1200
kg/m3 and the Poisson’s ratio � D 0.49 [29]. Buckling occurs in shell-like mode with circumfer-
ential wavenumber n D 2. The fluid in our analysis is considered to be Newtonian with a density
of 1050 kg/m3 and a kinematic viscosity of 4 � 10�6 m2/s (4 centi-stokes). A Newtonian approxi-
mation has been considered to be acceptable for calculations related to large arteries like the aorta
[16, 61] Johnston et al., 2006. In addition, the flow is considered to be fully-developed turbulent,
which is a valid assumption at sufficiently high flow velocities and for cases where arterial wall
disease is present [37, 51] (for these simulations, the range of interest of the Reynolds number is
from 4� 103 to 7� 103/. The roughness of the arterial wall used in the Colebrook equation (steady
viscous effects) was set equal to 2 �10�2 mm, which corresponds to the thickness of the endothelial
cells lining the wall [62, 63].

The flexible boundary conditions at the shell ends were assumed to simulate relatively stiff axial
constraints, enabling simulation of connective tissue stresses at the outer ends of the aorta, but allow-
ing rotations in the inner end of the aorta [37]. In most of the calculations, the spring constraints
were set to ka D 1� 103 N/m2 and kr D 102 N/rad.

The value of the transmural pressure �Ptm simulated different aortic pressure loadings ranging
from 3 kPa to 13 kPa. This range for the static differential pressure is in agreement with the mea-
sured pressure of the aorta observed in the literature [11,64]. In general, the total pressure measured
in the aorta varies between 9 to 14 kPa, with the dynamic pressure being proportional to the square
of the velocity. In the present model both the flow and the pressure are assumed to be constant,
although it is well known that they are both time-periodic functions with a phase delay between
them [64]. Here, it is assumed that the buckling instability, which is the target of this study, could be
triggered by an unfavourable combination of these two parameters, irrespective of pulsation, which
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is a reasonable assumption. This is a first attempt to characterize the nonlinear buckling of an aortic
segment for specific flow conditions, acknowledging the fact that a pulsatile flow model must be
used to accurately define these flow conditions for instability to occur.

4. NUMERICAL RESULTS

4.1. Nonlinear buckling of a straight anisotropic aortic segment conveying blood

The present model uses a mean aorta radius R of 15.75 mm, which is close to the experimental data
by [65]. The length of the simulated aorta segment is 126 mm [66]. Table I summarizes the geometry
and material properties used in this simulation. The flow velocity was increased gradually from 0 to
5 m/s (high flow velocities have been measured in sport medicine, e.g., see Ref. [67]) with a static
transmural pressure�Ptm D 5 kPa and associated residual stresses. Here it can be specified that the
transmural pressure (also called free-stream static pressure) is the pressure difference between the
inner and outer shell surface in presence of flow, while the total pressure is the stagnation pressure
that also takes into account the kinetic energy of the fluid converted into pressure. Figure 2 shows

Table I. Geometry and material properties of the aortic segment. E is Young’s mod-
ulus in the axial and circumferential directions associated with strains obtained in
the second phase of the analysis after pressurization. Material properties and thick-
ness of the three layers have been extracted by using the experimental data by [20],

as discussed in Appendix B.

Length L(m) Mean radius R (m) Density �s (kg/m3/

0.126 0.01575 1200
Tunica Intima
Thickness hi (m) Ei

Axial (kPa) Ei
Circumferential (kPa)

0.00033 360.5 7455.7
Tunica Media
Thickness hm (m) Em

Axial (kPa) Em
Circumferential (kPa)

0.00132 72.8 107.9
Tunica Adventitia
Thickness ha (m) Ea

Axial (kPa) Ea
Circumferential (kPa)

0.00096 26.7 25.6

BP

Critical region with 
multiple stable solutions 

Folding point

1 

2 

2

Folding point

Figure 2. Static solutions of the aortic segment versus blood velocity with static trasmural pressure of 5 kPa.
The vertical axis shows the radial displacement divided by the wall thickness. ———–, Stable solutions;

- - - - - -, unstable solutions; BP denotes the bifurcation point predicted by linear theory.
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the resulting bifurcation diagram as a plot of the maximum radial deformation of the shell divided
by the aorta thickness versus flow velocity for the main generalized coordinate w1,2. The shape of
the shell-like buckled aortic segment is shown in Figure 3 and displays deformation with circum-
ferential wavenumber n D 2. The generalized coordinate chosen to be plotted in Figure 2 is the
one with the largest contribution in the shell deformation. The deformation of the aortic segment
follows branch 1 of the solution with zero amplitude (meaning that the aortic segment maintains its
original circular shape along this solution branch). However, when the blood flow velocity reaches
4.78 m/s, the aortic segment loses stability by static divergence, that is, buckling (this is the point
of the linear onset of instability) generating the new solution branches 2. Divergence (buckling) in
this case means that a new static solution emerges, with a distinctive circumferential wavenumber
of n=2 (the aorta wall moves inwards creating two lobes, thus nD 2). Solution branch 2 is initially
unstable (dotted lines) with its locus moving to the left; this behaviour is defined as ‘subcritical’.
The solution becomes stable for a short range of flow velocities from 2.841 to 2.855 m/s as shown in
Figure 2. Then it turns unstable again and it follows the subcritical unstable solution until it reaches
the folding points at U D 2.73 m/s, whereupon branch 2 folds and becomes stable, losing again sta-
bility for a small range of blood flow velocity and restabilizing again while increasing in amplitude
with increasing flow velocity.

These results indicate, for the first time in the literature of biomechanical vascular systems, that
a straight aortic segment may lose stability by buckling because of blood flow and exhibit a highly
subcritical nonlinear behaviour, such that there is a large range of flow velocities in which multiple
stable configurations coexist for the specific flow and pressure conditions. This result means that,
in this flow range (2.73< U <4.78 m/s) — the subcritical range — the aortic segment may jump
from one stable configuration to another (and vice versa), if enough perturbation is given to the
system in the form of a flow spike, transmural pressure perturbation or external force (trauma case);
this clearly results in increased mechanical stresses on the aortic wall. This also means that a large
amplitude buckling may occur (i.e. the aorta wall may collapse with large enough deformation for
inner-wall contact and complete folding or kinking of the aorta). This in turn may cause significant
material damage (aorta wall dilation) in pathological situations, weakening transverse wall stiffness,
leading to the initiation of an aneurysm or dissection (delamination of the wall layers). Furthermore,
as the blood flow velocity increases or decreases in the diastolic–systolic cycle, it is evident that the
deformation of the aortic segment may follow any of the stable branches, increasing or decreasing
the mechanical stresses acting on the aortic wall, making it prone to failure because of microscopic
fatigue [73]. Moreover, the results shown in Figure 2 fall in the acceptable limits for blood flow
velocity and pressure values given in literature, with a maximum velocity peak around 2.5 m/s in
healthy conditions [67] and to more than 5 m/s in cases of aortic stenosis [69]. Furthermore, in this

Figure 3. Shape of the buckled aorta as a combination of a total blood pressure of 7 kPa and a critical blood
flow velocity of 2.276 m/s.
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Figure 4. The helicoidal path followed by the aorta after collapse (taken from [41]) coherent with the aortic
wall rupture path observed in dissections.

study the length of the aortic wall segment used is shorter than the full length found in humans. It has
been shown in [70] that shorter cylindrical vessels lose stability at higher flow velocities therefore,
it is expected that if a longer aortic wall is used in the simulations, a smaller critical flow velocity
could have been attained.

Figure 3 shows the shape of the buckled aortic segment for blood flow velocity U D 2.276 m/s
with a total pressure of 7 kPa. It is evident that, at the neighbourhood of maximum deflection, large
stresses are generated because of the high curvature. In many cases, buckling may induce contact of
the inner aortic wall.

The result shown in Figure 2 is a simplified two-dimensional representation of the actual aortic
segment behaviour. In fact, the buckling could occur in any direction because of the axial symmetry
of the system. Once buckling has been initiated at a specific angle � , it propagates (i.e. increases
in amplitude) as the flow velocity increases, following a spiroidal (helicoidal) path, as illustrated
in Figure 4. The solution branches shown in Figure 2 represent the generatrix of the axisymmetric
surface on which the helicoidal path in Figure 4 unfolds. Interestingly, these results are in qualitative
agreement with clinical observations regarding the propagation of dissection in human aortas [68].

4.2. Effect of different stiffnesses of an aortic segment

The effect of altering Young’s modulus in the longitudinal and/or circumferential direction (or both)
of the aortic wall on the overall stability of the aortic segment conveying blood is further investi-
gated in this section. The analysis of the aortic segment remains the same as in the previous section;
however, in the second step of the nonlinear analysis, the values of the Young’s moduli varied up to
˙40% from the values used in the previous simulations. It is a well-known fact that diseased arteries
exhibit different elastic properties than healthy ones especially at higher pressure loads [19]. There-
fore, the variation in the elasticity of the aortic segment, in any direction, is an attempt to capture
some of the mechanical property effects of an aorta on the nonlinear stability at nominal blood flow
velocity values.

Figure 5 shows the response of the aortic wall segment subjected to increasing blood flow velocity
for different stiffness variations. In all cases the aortic segment loses stability by buckling, experi-
encing a hysteretic response similar to the one described in the previous section. The results in
Figure 5(a), indicate that, when Young’s modulus is varied by ˙40% in all tunica layers and direc-
tions, the onset of instability along with the folding points is shifted, depending on the value of
Young’s modulus. For a reduced value by 40% in both axial and circumferential directions the
pitchfork bifurcation and folding points are shifted to the left of the original curve as shown in
Figure 5(a). Similarly, for a stiffer wall the stability is shifted to the right of the original curve.
In addition, a higher stiffness produces a slightly more complicated result with additional stable
solutions within the hysteretic region. In Figure 5(b) a comparison among the original model and
models with different Young’s modulus in the circumferential direction. In particular, the circumfer-
ential Young’s modulus of each layer was reduced twice; once by 40% and in the second simulation
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(a) (b)

Original elasticity model 
Increased stiffness by 40% 

Reduced stiffness by 40% 

Reduced circumferential  
stiffness by 40% 

Original elasticity model 

Reduced circumferential  
stiffness by 50% 

Figure 5. Nonlinear behaviour of the aortic segment for different Young’s moduli of the tunica layers for a
static transmural pressure of 5 kPa. (a) Results with ˙ 40% Young’s moduli in all layers and directions; (b)

results with different circumferential Young’s modulus in all layers.

ΔP

Figure 6. Static solutions of the aortic segment versus blood velocity for different static trasmural pressures
�Ptm D 0 kPa, 4 kPa, 5 kPa, and 9 kPa.

by 50% of their original values in Table I. Pressurization of the aortic segment was set to 4 kPa
in addition to the dynamic pressurization because of the blood flow. Results indicate that lower-
ing Young’s modulus in the circumferential direction drastically reduces the folding point of the
solution branch.

4.3. Nonlinear behaviour of an aortic segment for different �Ptm values

The effect of transmural pressure �Ptm on aortic wall deformation has been the topic of numer-
ous studies attempting to associate it with the appearance and growth of aneurysms and dissection
because of the increased mechanical stresses on the surface of the aorta [59,71,72]. In our analysis it
was decided to investigate the effect of different values of transmural pressure on the aortic segment
stability. Figure 6 shows the bifurcation diagram of the three-layered aortic segment subjected to
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different transmural pressures and increasing blood flow. The results indicate that the presence of
an increased transmural pressure delays the onset of instability predicted by linear theory. In addi-
tion, an increased transmural pressure makes the hysteretic behaviour and subcritical response of the
aorta more pronounced, producing larger aortic wall deformation amplitudes. If the blood flow rate
falls within this important subcritical range, there is a high probability that a simple perturbation
may cause the system to be attracted to the stable large-deformation solution, with potentially total
collapse of the aortic segment with full contact of the inner aortic wall; this in turn would constrict
the blood flow, until the cross-section opens up again and is thus susceptible to buckling once again.

5. CONCLUSIONS AND DISCUSSION

We have presented the theoretical framework to model nonlinear shell-like buckling of straight
human aortic segments because of blood flow. Large arteries like the aorta are continuously sub-
jected to significant mechanical loads from internal blood flow and surrounding tissue and muscle,
making them prone to small-scale oscillations and probable wall thinning which, in the presence
of a pathological disease, might lead to aorta dissection. The structural model was developed using
the Sanders–Koiter nonlinear shell theory for laminated composite materials representing the three
tunica layers present in the aorta wall.

The results show that flow-induced buckling (or even collapse) of the aortic segment is possible
under specific flow and pressure conditions. Furthermore, under these critical conditions a highly
subcritical nonlinear behaviour arises (i.e. buckling at much smaller flow than the classical linear
buckling limit), with multiple stable solutions (zero deformation shape, buckled aorta, or total col-
lapse) coexisting for a wide range of blood flow velocities. One could speculate that even a healthy
person performing routine exercises might be exposed to the right combination of blood flow and
pressure to trigger loss of stability by buckling [67]. Furthermore, the high curvature associated
with buckling induces high stress regions which, combined with the fatigue cycles of the heart
beats, could contribute in initiating rupture of the inner aortic layer, that is, the tunica intima, and
hence dissection. In fact, buckling introduces bending of the wall that generates much higher stress
in the intima layer as a consequence of the much larger stiffness. As shown in Figure 3, the path
of the bifurcated solution for the aortic segment model developed in this study follows a spiroidal
(helicoidal) route, similar to the spiroidal path observed when dissection occurs in human aortas.

A stiffer material delays the onset of instability, but exhibits a similarly strong subcritical response
and will have higher stresses because of the higher Young’s modulus. Increasing the transmu-
ral pressure renders the system more stable with respect to the onset of buckling. However, the
system exhibits a pronounced subcritical behaviour. It is here conjectured that the pressurization–
depressurization of the aorta because of the systolic–diastolic cycle, or a strenuous exercise regime,
which leads to a constant oscillation of the aorta, when coupled with cardiovascular disease or other
pathological problems, might induce material deterioration and thus the appearance and growth of
aneurysms or dissection.

Concerning the limitations of the present work, we should mention that the aortic segment consid-
ered in this study is assumed to be a circular cylindrical shell, with no account taken of geometrical
imperfections and curvature effects. Even though recent studies for shells with imperfections have
produced similar qualitative results as in the present study, a more sophisticated model that includes
these imperfections should be considered in due course. In addition, the effect of pressurization
could be studied more accurately when a pulsatile time-dependent blood flow model is used. A
more accurate model should include the viscoelastic and hyperelastic properties of human tissue
to describe the effect of hysteresis on the nonlinear behaviour of the aorta, and a non-Newtonian
fluid model.

Nevertheless, this study presents for the first time the possibility of subcritical buckling (collapse)
of aortic segments, which could be of crucial importance in human health. In addition, for the first
time, a global analysis tool, namely bifurcation analysis, has been used to obtain all stable and unsta-
ble solutions associated with aortas conveying blood flow, thus allowing for the full set of results for
a range of flow velocities to be investigated.
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APPENDIX A. SANDERS–KOITER NONLINEAR THEORY FOR SHELLS

The strain–displacement relationships and changes in the curvature and torsion for a generic point
of the shell at distance ´ from the middle surface are given by

"x D "x,0C ´�x , "� D "� ,0C ´�� , �x� D �x� ,0C ´�x� (A1)

The middle surface strain–displacement relationships, changes in curvature and torsion are
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The effect of radial geometrical imperfections, denoted by w0 in the strain–displacement
equations above, is included.

Figure B.1. Stress-strain curve for the Intima layer in the axial direction as discussed in [38]. Loading
configuration.
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APPENDIX B. STRESS–STRAIN CURVES FROM IN VIVO MEASUREMENT OF
THE AORTA

The stress–strain curves used in the present study were estimated using the results obtained by [20]
from a human female cadaver (80 years old) with a congestive cardiomyopathy disease. Figure B.1
presents the stress–strain curve for the intima layer in the axial direction in loading configuration as
discussed in [20]. The data are interpolated with two lines with different slopes: the first one fitting
the data for smaller strains and the other fitting data for higher strains. The deviation from the fitting
lines is modest. Similar curves from Ref. [20] have been fitted to obtain the elasticity parameters for
the three layers in both circumferential and axial directions.
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