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Abstract

We study the optimal control of general stochastic McKean-Vlasov equation. Such
problem is motivated originally from the asymptotic formulation of cooperative equi-
librium for a large population of particles (players) in mean-field interaction under
common noise. Our first main result is to state a dynamic programming principle for
the value function in the Wasserstein space of probability measures, which is proved
from a flow property of the conditional law of the controlled state process. Next,
by relying on the notion of differentiability with respect to probability measures due
to P.L. Lions [32], and It&’s formula along a flow of conditional measures, we derive
the dynamic programming Hamilton-Jacobi-Bellman equation, and prove the viscosity
property together with a uniqueness result for the value function. Finally, we solve
explicitly the linear-quadratic stochastic McKean-Vlasov control problem and give an
application to an interbank systemic risk model with common noise.
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1 Introduction

Let us consider the controlled McKean-Vlasov dynamics in R? given by
dX; = b(Xi,PY a)dt + (X, P an)dBy + oo(Xe, P ar)dW?,  (1.1)

where B, W0 are two independent Brownian motions on some probability space (2, F,P),
P)Vgt‘) denotes the conditional distribution of X; given W? (or equivalently given F; where F°
= (F?)i>0 is the natural filtration generated by W?), valued in P(R?) the set of probability
measures on R%, and the control « is an FO-progressive process valued in some Polish space
A. When there is no control, the dynamics ([I]) is sometimes called stochastic McKean-
Vlasov equation (see [19]), where the term “stochastic” refers to the presence of the random
noise caused by the Brownian motion W9 w.r.t. a McKean-Vlasov equation when o¢ = 0,
and for which coefficients depend on the (deterministic) marginal distribution Py,. One
also uses the terminology conditional mean-field stochastic differential equation (CMFSDE)
to emphasize the dependence of the coefficients on the conditional law with respect to the
random noise, and such CMFSDE was studied in [16], and more generally in [8]. In this
context, the control problem is to minimize over « a cost functional of the form:

T 0 0
J(a) = E[/O FXPY° ag)dt + g(Xr, PY)]. (1.2)

The motivation and applications for the study of such stochastic control problem, refe-
reed alternatively to as control of stochastic McKean-Vlasov dynamics, or stochastic control
of conditional McKean-Vlasov equation, comes mainly from the McKean-Viasov control
problem with common mnoise, that we briefly describe now: we consider a system of con-
trolled individuals (referred also to as particles or players) in mutual interaction, where the
dynamics of the state process X* of player i € {1,..., N} is governed by

dX; = b(X},pY,ab)dt +6(X,pY,al)dBi 4 60(X;, pr , ab)dwy.

Here, the Wiener process W9 accounts for the common random environment in which all

the individuals evolve, called common noise, and B!,..., BN

are independent Brownian
motions, independent of W0, called idiosyncratic noises. The particles are in interaction
of mean-field type in the sense that any any time ¢, the coefficients b, &, ¢¢ of their state

process depend on the empirical distribution of all individual states

1 Y

N _ _

Pt = NE 5)(;-
i=1

The processes (&i)i>0, i = 1,..., N, are in general progressively measurable w.r.t. the
filtration generated by B!, ..., BY W09, valued in some subset A of a Euclidian space, and
represent the control processes of the players with cost functionals:

T~ . . .
Falan) = B[RO e+ o).

For this N-player stochastic differential game, one looks for equilibriums, and different
notions may be considered. Classically, the search for a consensus among the players leads



to the concept of Nash equilibrium where each player minimizes its own cost functional,
and the goal is to find a N-tuple control strategy for which there is no interest for any
player to leave from this consensus state. The asymptotic formulation of this Nash equili-
brium when the number of players N goes to infinity leads to the (now well-known) theory
of mean-field games (MFG) pioneered in the works by Lasry and Lions [28], and Huang,
Malhamé and Caines [25]. In this framework, the analysis is reduced to the problem of
a single representative player in interaction with the theoretical distribution of the whole
population by the propagation of chaos phenomenon, who first solves a control problem by
freezing a probability law in the coefficients of her/his state process and cost function, and
then has to find a fixed point probability measure that matches the distribution of her/his
optimal state process. The case of MFG with common noise has been recently studied in
[1] and [14]. Alternatively, one may take the point of view of a center of decision (or social
planner), which decides of the strategies for all players, with the goal of minimizing the
global cost to the collectivity. This leads to the concept of Pareto or cooperative equilibrium
whose asymptotic formulation is reduced to the optimal control of McKean-Vlasov dynamics
for a representative player. More precisely, given the symmetry of the set-up, when the
social planner chooses the same control policy for all the players in feedback form: &
= d(t,Xti,ﬁ{V), 1 =1,...,N, for some deterministic function & depending upon time,
private state of player, and the empirical distribution of all players, then the theory of pro-
pagation of chaos implies that, in the limit N — oo, the particles X? become asymptotically
independent conditionally on the random environment W9, and the empirical measure ﬁiv
converge to the distribution IP’%O of X; given WY and X is governed by the (stochastic)
McKean-Vlasov equation:

dX; = b(X;,PY, a(t, X, PY,))dt + 5(X,, PY, , a(t, Xy, PY, ))dB,
. 0 _ 0
+ O'O(Xta]P)M(/t 704(t=Xt7]P>)Vgt ))th07

for some Brownian motion B independent of W9. The objective of the representative player
for the Pareto equilibrium becomes the minimization of the functional

T~
J@) = E[/O FOGL P Gt X, PE))dt + g(Xr, YY)

over the class of feedback controls &. We refer to [13] for a detailed discussion of the
differences between the nature and solutions to the MFG and optimal control of McKean-
Vlasov dynamics related respectively to the notions of Nash and Pareto equilibrium. Notice
that in this McKean-Vlasov control formulation, the control & is of feedback (also called
closed-loop) form both w.r.t. the state process X;, and its conditional law process IP’%O,
which is F0-adapted. More generally, we can consider semi-feedback control «f(t,z,w®),
in the sense that it is of closed-loop form w.r.t. the state process X;, but of open-loop
form w.r.t. the common noise W9. In other words, one can consider random field control
FO-progressive control process a = {ay(z),z € }Rd}, which may be viewed equivalently as
processes valued in some functional space A on R¢, typically a closed subset of the Polish
space C(R?, A), of continuous functions from R? into some Euclidian space A. In this case,
we are in the framework (ILI)-(T2) with b(x, i1, a) = b(x, u, a(x)), o(x, u, a) = &(z, 1, a(x)),
Jo(ZE,/L,a) = 50(35’:[‘7&(33))7 f(':UHu”a) = f(:Enu’a(:E))v for (x,,u,a) € R%x P(Rd) X A.



We also mention that partial observation control problem arises as a particular case of
our stochastic control framework ([I)-(L2]): Indeed, let us consider a controlled process
with dynamics

dXt = B(Xt, Oét)dt + 6'(Xt, Oét)dBt + 6’0(Xt, at)dB?,

where B, B are two independent Brownian motions on some physical probability space
(92, F,Q), and the signal control process can only be observed through W given by

dw? = h(X;)dt + dBY.

The control process « is progressively measurable w.r.t. the observation filtration FO gene-
rated by WO, valued typically in some Euclidian space A, and the cost functional to mini-
mize over « is

J(a) = EQ{/OT f(Xy, c)dt + g(XT)].

By considering the process Z via
t _ 1 t _
z7b = exp(—/ h(X,)dBY — 5/ |h(X)|?ds), 0 <t <T,
0 0

the process Z~! is (under suitable integrability conditions on h) a martingale under Q, and
by Girsanov’s theorem, this defines a probability measure P(dw) = Z;'(w)Q(dw), called
reference probability measure, under which the pair (B, W?°) is a Brownian motion. We
then see that the partial observation control problem can be recast into the framework
(CI)-(C2) of a particular stochastic McKean-Vlasov control problem with X = (X, Z)
governed by

dXt = (T)(Xt, Oét) — 5'0(Xt, Oét)h(Xt))dt + 5'(Xt, Oét)dBt + 5'0(Xt, Oét)thO,
dZy = ZW(Xy)dw),

and a cost functional rewritten under the reference probability measure from Bayes formula
as

T N —
J(@) = E[/O Z,F(Xy, )t + Zrg( X)) .

The optimal control of McKean-Vlasov dynamics is a rather new problem with an in-
creasing interest in the field of stochastic control problem. It has been studied by maximum
principle methods in [3], [7], [11] for state dynamics depending upon marginal distribution,
and in [16], [§] for conditional McKean-Vlasov dynamics. This leads to a characterization
of the solution in terms of an adjoint backward stochastic differential equation (BSDE)
coupled with a forward SDE, and we refer to [I7] for a theory of BSDE of McKean-Vlasov
type. Alternatively, dynamic programming approach for the control of McKean-Vlasov dy-
namics has been considered in [5], [6], [29] for specific McKean-Vlasov dynamics and under
a density assumption on the probability law of the state process, and then analyzed in a



general framework in [33] (without noise W), where the problem is reformulated into a
deterministic control problem involving the marginal distribution process.

The aim of this paper is to develop the dynamic programming method for stochastic
McKean-Vlasov equation in a general setting. For this purpose, a key step is to show the
flow property of the conditional distribution IP’%O of the controlled state process X; given
the noise W9. Then, by reformulating the original control problem into a stochastic control
problem where the conditional law ]P’)V}/tO is the sole controlled state variable driven by the
random noise W, and by showing the continuity of the value function in the Wasserstein
space of probability measures, we are able to prove a dynamic programming principle (DPP)
for our stochastic McKean-Vlasov control problem. Next, for exploiting the DPP, we use
a notion of differentiability with respect to probability measures introduced by P.L. Lions
in his lectures at the College de France [32], and detailed in the notes [I0]. This notion
of derivative is based on the lifting of functions defined on the Hilbert space of square
integrable random variables distributed according to the “lifted” probability measure. By
combining with a special [t0’s chain rule for flows of conditional distributions, we derive the
dynamic programming Bellman equation for stochastic McKean-Vlasov control problem,
which is a fully nonlinear second order partial differential equation (PDE) in the infinite
dimensional Wasserstein space of probability measures. By adapting standard arguments to
our context, we prove the viscosity property of the value function to the Bellman equation
from the dynamic programming principle. To complete our PDE characterization of the
value function with a uniqueness result, it is convenient to work in the lifted Hilbert space of
square integrable random variables instead of the Wasserstein metric space of probability
measures, in order to rely on the general results for viscosity solutions of second order
Hamilton-Jacobi-Bellman equations in separable Hilbert spaces, see [30], [31], [2I]. We
also state a verification theorem which is useful for getting an analytic feedback form of the
optimal control when there is a smooth solution to the Bellman equation. Finally, we apply
our results to the class of linear-quadratic (LQ) stochastic McKean-Vlasov control problem
for which one can obtain explicit solutions, and we illustrate with an example arising from
an interbank systemic risk model.

The outline of the paper is organized as follows. Section 2 formulates the stochastic
McKean-Vlasov control problem, and fix the standing assumptions. Section 3 is devoted
to the proof and statement of the dynamic programming principle. We prove in Section 4
the viscosity characterization of the value function to the Bellman equation, and the last
Section 5 presents the application to the LQ framework with explicit solutions.

2 Conditional McKean-Vlasov control problem

Let us fix some probability space (€2, F,P) assumed of the form (Q° x Q', 70 @ F1, P ®
PY), where (Q°, F0,P%) supports a m-dimensional Brownian motion W°, and (Q', 7', P!)
supports a n-dimensional Brownian motion B. So an element w € () is written as w =
(W wh) € Q% x Q! and we extend canonically W° and W on Q by setting W°(w® w!) :=
WO(wW?), W(w? w') := W(w'), and extend similarly on  any random variable on Q° or Q.
We assume that (Q!, 71, P1) is in the form Q! = AN xQ Fl=geF 1 P =P!eP!, where



Q! is a Polish space, G its Borel o-algebra, P! an atomless probability measure on (Ql, G),
while (Q, F'1,P'!) supports B. We denote by E° (resp. E! and E') the expectation under
PO (resp. P' and P'), by FO = (F?)i>¢ the natural filtration generated by W° (and w.l.o.g.
we assume that 70 = FO ), and by F = (F;)¢>0 the natural filtration generated by W9, B,
augmented with the independent o-algebra G. We denote by P, (RY) the set probability
measures £ on RY, which are square integrable, i.e. ||u|? := [pq|2|*1(dz) < co. For any

p € P,(RY), we denote by L2 (R7) the set of measurable functions ¢ : R? — RY, which

2
MO

R? x RY — R?, which are square integrable with respect to the product measure p ® p, and

are square integrable with respect to p, by L: ,(R?) the set of measurable functions 1 :

we set
u(e) = /Rdw(fc)u(dw% B () = Adedw(xyx')u(dx)u(dx')-

We also define Li°(R?) (resp. Lpg ,(R7)) as the subset of elements ¢ € Li(Rq) (resp.
LfL@H(Rq)) which are bounded p (resp. p® p) a.e., and ||¢]| is their essential supremum.
We denote by L?(G;R?) (resp. L?(F;;RY)) the set of R%valued square integrable random
variables on (Q',G,P') (resp. on (Q, F;,P)). For any random variable X on (Q, F,P), we
denote by Px its probability law (or distribution) under P, and we know that P,(R%) =
{P; = I@’% & € L*(G;RY)} since (Q',G,P') is Polish and atomless (we say that G is rich
enough). We often write £L(§) = P¢ = I@’% for the law of ¢ € L?(G;R?). The space P,(R%)
is a metric space equipped with the 2-Wasserstein distance

1

Wo(u, ') = inf {(/ |z — y\zﬂ(dx,dy)) * 1 e P,(RY x RY) with marginals y and u'}
RIxR4

_ inf{(m - 5’12)% D &,¢ e LG RY) with L(€) = p, L&) = u'}-

o Admissible controls. We are given a Polish set A equipped with the distance d ,, satisfying
w.l.o.g. d, < 1, representing the control set, and we denote by A the set of F'-progressive
processes « valued in A. Notice that A is a separable metric space endowed with the Krylov
distance A(a, ) = EO[fOT d , (o, Br)dt]. We denote by B4 the Borel o-algebra of A.

e Controlled stochastic McKean-Viasov dynamics. For (t,£) € [0,T] x L?(Fy; R%), and given
a € A, we consider the stochastic McKean-Vlasov equation:

dX, = b(Xs,PY', as)ds + (X, PY’, ay)dB,
+ Uo(ijp)%O’as)de’ t S S S T7 (21)
X, = &

Here, P)Vgso denotes the regular conditional distribution of X, given F°, and its realization

at some w”

€ QY also reads as the law under P! of the random variable X,(w’,.) on
QL FL P, ie. IP’)V}/SO (W% = IP}XS(WO it The coefficients b, o, oy are measurable functions

from R? x P,(RY) x A into R?, respectively R?" R¥*™ and satisfy the condition:
(H1)



1 ere exists some positive constant C s.t. tor all x, 2" € , Uy € X ,and a
i) Th i iti C s.t. for all z,2’ € R? "€ xP,(RY), and
€A,
|b($wu7a) - b($/nu/7a)| + |0-(':E7lu’7a) - J(x/,,u/,a)| + |00(x,,u,a) - O-O(x/nulvaﬂ
< C(!w — '] + Wz(u,u')),

and

16(0, 0, a)| +[0(0, b0, a)| + |o0(0,d0,a)| < C.

(ii) For all (z,u) € R? x P,(R%), the functions a ~ b(x, u,a), o(x, u,a), oo(x, i1, a) are
continuous on A.

Under (H1)(i), there exists a unique solution to (ZII) (see e.g. [27]), denoted by
{X ;’g’a,t < s < T}, which is F-adapted, and satisfies the square-integrability condition:

EL;EET‘X?&QP} < C(l—i—E]fF) < o0, (2.2)

for some positive constant C' independent of . We shall sometimes omit the dependence of
X' = X1 on o when there is no ambiguity. Since {X*,t < s < T} is F-adapted, and W°
is a (P,IF)-Wiener process, we notice that IP’)W(/;5 (dz) = P[X5¢ € da| FO) = P[XLE € dz| FY,

and thus {Pg{v&,t < s < T} admits an FO-progressive modification (see e.g. Theorem 2.24

in []), that will be identified with itself in the sequel, valued in P,(R?), and we have for
any ¢ € B,(R?), the set of Borel-measurable functions on R¢ with quadratic growth:

Piie(o) = E|p(Xi9)|F] = Elp(xt|F?], t<s<T, (23

e Cost functional and value function. We are given a running cost function f defined on
R? x P,(R?) x A, and a terminal cost function g defined on R x P, (R%), assumed to satisfy
the condition

(H2)

(i) There exists some positive constant C' s.t. for all (x,u,a) € R? x P,(RY) x A,
(2, )l + gz, p)| < C(L+ |2+ [|ull?).

(ii) The functions f, g are continuous on R% x P,(R%) x A, resp. on R? x P,(R?), and
satisfy the local Lipschitz condition, uniformly w.r.t. A: there exists some positive
constant C' s.t. for all 2,2/ € R?, pu, 1/ € P,(RY), a € A,

|f(3§‘,/,t,(1) - f(x',,u',a)| + |g($wu) - g($/wu,)|
< COAF |+ 2|+ el + 16 1) (12— 2] + Walp, 1))

We then consider the cost functional:

T
Jt6i0) = B[ [ FOX0E P a)ds + g (X3S P,

7



which is well-defined and finite for all (¢,&,a) € [0,7] x L?(G;R%) x A, and we define the
value function of the conditional McKean-Vlasov control problem as

v(t, &) = irelij(t,f,a), (t,€) € [0,T] x L*(G;R?). (2.4)

From the estimate (2.2)) and the growth condition in (H2)(i), it is clear that v also satisfies
a quadratic growth condition:

w(t, &) < C+E[f), Ve L*(G;RY). (2.5)

Our goal is to characterize the value function v as solution of a partial differential
equation by means of a dynamic programming approach.

3 Dynamic programming

The aim of this section is to prove the dynamic programming principle (DPP) for the value
function v in (24)) of the conditional McKean-Vlasov control problem.

3.1 Flow properties

We shall assume that (20, W0 P?) is the canonical space, i.e. Q0 = C(R,,R™), the set of
continuous functions from R into R™, WY is the canonical process, and P° the Wiener
measure. Following [I8], we introduce the class of shifted control processes constructed by
concatenation of paths: for a € A, (t,@°) € [0,T] x Q°, we set

(W) = @ @rw), (s,w°) €[0,T] x
where @° ®; w? is the element in Q° defined by
@ @ w?(s) = @0%s)lscr + (@(F) + wO(s) — WO(t)) Lsns.

We notice that for fixed (¢,&"), the process o’ lies in A;, the set of elements in A which
are independent of 7y under P’. For any o € A, and F’-stopping time 6, we denote by a?
the map

of (. F) — (A Ba)
W s @
The key step in the proof the DPP is to obtain a flow property on the controlled
conditional distribution F°-progressive process {]P’)Vgé,t < s < T}, for (t,€) € [0,T] x

L*(Fi;RY), and o € A.

Lemma 3.1 For anyt € [0,T], u € P,(RY), a € A, the relation given by

pre = P)Véo,s,a, t<s<T, for €€ L*(FuRY) st PV =y, (3.1)



defines a square integrable FO-progressive continuous process in P,(R?), which satisfies the
typ,o0 0

flow property: ps b — pe’pg " PO-a.s., d.e.
0(w0).pits (w0),a?@) e
P = pe Y (W), sel0,T], P>dw’) —as  (32)

for all 8 € 7;0 , the set of FO-stopping times valued in [t,T).

Proof. 1. First observe that for any t € [0,7], ¢ € L?*(F;RY), a € A, we have:
IEO[H]P’WO5 N H | = [|X§’§’a|2] < 00, which means that the FO-progressive process {P)ng’a’t <
s < T} is square integrable.

(i) Notice that for P%-a.s w® € Q) the law of the solution {tha( )t < s < T} to

@) on (Q, F1, P! is unique in law, which implies that P tga( 0) = Pi{’ff‘*( 0.y
t < s < T, depends on £ only through IP’W (W) = ]P’l( 0 In other words, for
any §1, & € L2(Fy;RY) sit. ]P’W0 = ]P’g , the processes {PY, tgla,t < s < T} and

{IP’ : 52 ot < s < T} are indistinguishable.
(ii) Let us now check that for any pu € P,(R?), one can find ¢ € L?*(F; RY) s.t. IP’EVO = [
Indeed, recalling that G is rich enough, one can find ¢ € L?*(G;R?) C L?(F;RY) s.t.

L(€) = p. Since G is independent of W, this also means that ]P’EVO = L.

In view of the uniqueness result in (i), and the representation result in (ii), one can define
the process {ps’“ "t < s < T} by the relation (31]), and this process is a square integrable
FO-progressive process in P, (Rd). It has also continuous trajectories as p*% is valued in
P,(C([t, T]; R?)), the set of square integrable probability measures on the space C([t, T]; R?)
of continuous functions from [t, T] into R

2. Let us finally check the flow property (8:2)). From pathwise uniqueness of the solution
{Xs(w,.),t < s <T}to @I) on (Q, FL,PL) for Pl-a.s. w® € QY and recalling the definition
of the shifted control process, we have the flow property: for t € [0,T], £ € L*(F;.RY), o €
A, and P%-a.s. w® € Q,

0y 0
O(w0), X160 (W0,.),af (@)
t 0(w0 h 1
Xl ) = X, “" W°.), P'—as.

for all F-stopping time 6 valued in [t, T]. It follows that for any Borel-measurable bounded
function ¢ on R? and for P’-a.s w® € QF,

0(w0), X150 (w0,),a0@ )
P ONe) = BN (XIS, )] = B e(n @)
0(w0),pt8 (0),a0 )"
= ps @)(p),
where the last equality is obtained by noting that p (“ ’ )( W) = Pg{v&,a (@0, and the defini-
6(w0) ”
tion of pi™®. This shows the required flow property ([B:2). O



Now, by the law of iterated conditional expectations, from (23], (3], and recalling
that o € A is FO-progressive, we can rewrite the cost functional as

_ T
JtEa) = E / B[ (X0, B L, ) | 7] ds + B [g (X5, PYL) [ 79])

-Jt

T
- E'/t pg’u(f("/’?“aas))ds+ptT’”(g(.,ptT’“))]

A
= B[ [ fra0ds+alei) (33)

for t € [0,T], ¢ € L*(G;R?) with law pu = L£(§) = ]P’ZVO € P,(RY), o € A, and with the
functions f : P,(RY) x A — R, and § : P,(R%) — R, defined by

flpa) = p(f(pa) = [oa f, pa)p(de) (3.4)
) = pleop) = fpag(@ wp (dfc)- ’

(To alleviate notations, we have omitted here the dependence of piH = pht® on «). Relation

B3)) means that the cost functional depends on & only through its distribution p = £(§),
and by misuse of notation, we set:

T ~
J(tau7a) = J(t7€7a) = EO|:/t f(p?”,as)ds—i—g(p?ﬂ) ?

for (t,u) € [0, T] x P,(R%), € € L2(G;RY) with £(£) = p, and the expectation is taken under
PO since {pé’” .t < s < T} is FO-progressive, and the control o € A is an F'-progressive
process. Therefore, the value function can be identified with a function defined on [0, 7] X
P,(R%), equal to (we keep the same notation v(t, 1) = v(t,€)):

o) = it B / Fok# an)ds + 3],
and satisfying from (2.5 the quadratic growth condition

ot ml < CA+[lull3), Vi e Py(RY). (3.5)

As a consequence of the flow property in Lemma [3.I] we obtain the following con-
ditioning lemma, also called pseudo-Markov property in the terminology of [I§], for the
controlled conditional distribution FO-progressive process {pi’“ CEr<s<T}.

Lemma 3.2 For any (t,u, ) € [0,T] x P,(R%) x A, and 6 € T, we have

T
J(0, 05" 0") = E| /9 F(oe, a,)ds + ()| F§), P —as  (36)

In particular,

T
ot = int B[ [ ot auds + gl (3.7)
ac Ay t
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Proof. By the flow property [82), and since pg’” “ s fg—measurable for 6 FO-stopping
time, we have for P%-a.s w® € Q°,

T A
L[ dote s + g0 78] 0

- / Foe™2,B,) + 40| 2 ()

0

T’ZG(WO)WZP;’(’:S) (w0)7B:ar,w

)

= EO{ / ' Fos™8, 8s) + g(pp™" )}

r=0(w0),m=pt3 (w0),B=ar’

where we used in the second equality the fact that for fixed w°, r € [t,T], m € P,(R%)
represented by n € L*(G;R?) s.t. L£(£) = 7, the process o™ lies in A, hence is indepen-
0 0

dent of FY

r,al .
is also

+, which implies that X0t g independent of F,., and thus ps

independent of ]:,9 for r < s. This shows the conditioning relation (3.6]).
Let us denote by o(t, ) the r.h.s. of B7). Since A; C A, it is clear that v(¢, u) <

0(t, ). To prove the reverse inequality, we apply the conditioning relation (3.0) for § = t,

and get in particular for all o € A:
[ ot B = It ) (38)
Q0

Now, recalling that for any fixed w® € QU, " lies in A, we have J(t,,u,oztvwo) > o(t, ),
which proves the required result since « is arbitrary in ([B.8]). O

3.2 Continuity of the value function and dynamic programming principle

In this paragraph, we show the continuity of the value function, which is helpful for proving
next the dynamic programming principle. We mainly follow arguments from [26] for the
continuity result that we extend to our McKean-Vlasov framework.

Lemma 3.3 The function (t,p) — J(t,pu,) is continuous on [0,T] x P,(R), uniformly
with respect to a € A, and the function o — J(t,x, ) is continuous on A for any (t,p) €
[0, 7] x P,(R%). Consequently, the cost functional J is continuous on [0,T] x P,(R?) x A,
and the value function v is continuous on [0,T] x P,(R%).

Proof. (1) Forany 0 <t < s < T, u,m € P,(RY), a € A, recall that P0-a.s. w® € QY

we have Pﬁ(ﬁ,&,a(w ) = = P (W), P;@q,a(w )= = pr™ WO for r € [5,T], and any &,( €

L*(G;RY) s.t. L(€) = p, L(¢) = 7. By definition of ||.||, and the Wasserstein distance in
P, (RA), we then have: [[pt**(w0)], = EUXES (W0, ), and WA (p#*(w0), pi™ (@) <
EYX05% (w0,.) — X70%(wP, )2, so that

[ sup flpmef?] < B[ sup |xieep], (3.9)

s<r<T s<r<T

E°[ sup WR(pie,ppm)| < B[ sup |XPEe - xp<op). (3.10)
s<r<T s<r<T

11



From the state equation (Z1]), and using standard arguments involving Burkholder-Davis-
Gundy inequalities, ([8.9]), (3I0), and Gronwall lemma, under the Lipschitz condition in
(H1)(i), we obtain the following estimates similar to the ones for controlled diffusion pro-
cesses (see [20], Chap.2, Thm.5.9, Cor.5.10): there exists some positive constant C' s.t. for
allt € [0,7)], £,¢ € L2(G;RY), a € A, h € [0,T —t],

E[ sup |XI5*—¢P] < CO+E|EP)h,
t<s<t+h

E[ sup |XL5%— Xboo)?] < CE[¢ - ¢P,
t<s<T

from which we easily deduce that for all 0 <t <s < T, ¢, ¢ € L2(G;RY), a € A

E[gugTrX$’f’a—Xﬁ’<’a12} < C(EIE— (P + A +EEP +EIC)]s —t]). (3.11)

Together with the estimates (Z2]), and by definition of W, (u, ), ||gll, [|7]l,, we then get
from (B3, EI0):

E°| sup [l 2] < O+ i), (3.12)
s<r<T

B0 sup WA o] < COMB )+ (1l + Im)ls — ). (313)

(2) Let us now show the continuity of the cost functional J in (¢, ), uniformly w.r.t. « €
A. First, we notice from the growth condition in (H2)(i) and the local Lipschitz condition
in (H2)(ii) that there exists some positive constant C s.t. for all y, 7 € P,(RY), a € A,

[fma)] < CO+]Ipl),
(@) = f(m @)l +13(w) = g(m)] < O+ [lplly + lllla) Walu, ).

Then, we have for all 0 <t < s < T, u,7 € P,(RY), a € A

Jte) = Isma)| < B[]

' f f ¢
o [/ [Fo 00) = Flor™an)ldr + |a(o7®) = 37|

< CE"|(1+ sup (loh"],)ls — 1]
t<r<
+ CE”| (14 sup ([, + ;™)) sup Wa(pt#e, prme
s<r<T s<r<T
< OO+ ul)ls 1)

1
+ C A+ el + lImlls) Walp, m) + L+ (|l + llml,)]s — t2),

by Cauchy Schwarz inequality and (3.12))-(B.I3]), which shows the desired continuity result.

(3) Let us show the continuity of the cost functional with respect to the control. Fix (¢, u)
€ [0,7] x P,(RY), and consider a € A, a sequence (a”), in A s.t. A(a™ a) — 0, ie.
da(al,a;) — 0 in dt ® dPP-measure, as n goes to infinity. Denote by p" = pht" p =

12
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phie X1 = Xb&e" L X = Xb&a for ¢ € L2(G;R?) s.t. L(€) = p. By the same arguments
as in (3.10)), we have

EO[ sup W%(p?,ps)} < E{ sup |X;‘—Xs|2]. (3.14)
t<s<T t<s<T

Next, starting from the state equation (2.1]), using standard arguments involving Burkholder-
Davis-Gundy inequalities, ([3.I14]), and Gronwall lemma, under the Lipschitz condition in
(H1)(i), we arrive at:

T
E sup |X§L - Xs|2] < O{E[/ |b(Xsap3yas) - b(XsnOsyO‘?)Fds
t<s<T t

T
T / 10(Xs, pis @ts) — 0( X ps ) 2ds
t
T
+ / ‘UO(Xsupsaas)_UO(XS7p87a?)‘2dS:|}7
t

for some positive constant C' independent of n. Recalling the bound (22), and (39),
we deduce by the dominated convergence theorem under the linear growth condition in
(H1)(i), and the continuity assumption in (H1)(ii) that E[sup,<,<r | X — X[?] — 0, and
thus by (BI4)

EO[ sup W%(p?,ps)] — 0, as n— oo. (3.15)
t<s<T

Now, by writing
‘J(ty Ky an) - J(t7 Ky O‘)‘

T
< EO[/t |f(P?7a?)—f(ps,as)\ds+!f/(p%)—fl(pT)ﬂ, (3.16)

and noting that f and § are continuous on P, (R%)x A, resp. on P, (R%), under the continuity
assumption in (H2)(ii), we conclude by the same arguments as in [26] using BI5]) (see

Chapter 3, Sec. 2, or also Lemma 4.1 in [23]) that the r.h.s. of [BI0) tends to zero as n
goes to infinity, which proves the continuity of J(t, u,.) on A.

(4) Finally, the global continuity of the cost functional .J on [0, 7] x P,(R%) x A is a direct
consequence of the continuity of J(.,., ) on [0, T] x P, (R%) uniformly w.r.t. o € A, and the
continuity of J(, u1,.) on A, while the continuity of the value function v on [0,T] x P, (R%)
follows immediately from the fact that

|U(tnu) - U(877T)| < sup |J(t,,u,oz) - J(S,W,Oé)|, t78 € [07T]7 p, T e Pz(Rd)v
acA

and again from the continuity of J(.,.,a) on [0,T] x P,(RY) uniformly w.rt. « € A. O

We can now state the dynamic programming principle (DPP) for the value function to
the stochastic McKean-Vlasov control problem.

13



Proposition 3.1 (Dynamic Programming Principle)
We have for all (t,n) € [0,T] x P,(R?),

0
v(t, = inf inf EO[/ £ ?u,a7a8 ds + (0, t,p,,ai|
(t, 1) duf o B, flp ) (0, P )

)
= inf sup EO[/ Flpbr, ag)ds + v(@,pg’“’a)},
aGAge/Tt?T +

which means equivalently that

(i) for alla € A, 0 € 7;?T,

ot < B[ / P an)ds + (6,05 (3.17)

(ii) for all e > 0, there exists a € A, such that for all 6 € 7;?T,

o(t,p)+e > EO / Flphe ag)ds + (6, pt’w‘)] (3.18)

Remark 3.1 The above formulation of the DPP implies in particular that for all § € ’EOT,

o(t,p) = mf EO / F(pbe, ag)ds + v(0, pt“’ )]

which is the usual formulation of the DPP. The formulation in Proposition [3.1]is stronger,
and the difference relies on the fact that in the inequality (B.I8]), the e-optimal control
a = of does not depend on 6. This condition will be useful to show later the viscosity
supersolution property of the value function. O

Proof. 1. Fix (t,u) € [0,T] x P,(R?). From the conditioning relation (B:6)), we have for
all 6 € T%, o € A,

6
J(tpa) = B / F(ote, ag)ds + 70, " a?) . (3.19)

Since J(.,.,a?) > v(.,.), and @ is arbitrary in 7;?T, we have

J(twa) > sup B / Fot, as)ds + v(6, 97
967}%

and since « is arbitrary in A, it follows that

0
ot = inf sup B[ [ F(n au)ds + o0, o) (3.20)
€A peTd, t

2. Fix (t,u) € [0,T] x P,(R%), a € Aand 0 € ’E?T. For any € > 0, w® € Q° one can find
from (B7) some o) € Agoy 8.t

(0, oyt (@) e = TOD), ol (@°), al=), (3.21)
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Since J and v are continuous (by Lemma [B.3]), one can invoke measurable selection argu-
ments (see e.g. [36]), to claim that the map w® € (20, F0) — a(&+") € (A4, B.4) can be chosen
measurable. Let us now define the process @ on (20, 72, PY%) obtained by concatenation at
0 of the processes a and ae+”) in A, namely:

as (W) = as(w0)15<9(w0) + a(a’wo)(wo)lszg(w()), 0<s<T.

By Lemma 2.1 in [35], and since A is a separable metric space, the process a is F0-
progressively measurable, and thus & € A. Notice with our notations of shifted control
process that @ = " for all WO in 00, and then (B2I)) reads as

v, pg" ) +e > J(0, 05" a%), PO —as.

Therefore, by using again (319) to @, and since pi™*® = pi*® for s < 6 (recall that &, =
ag for s < 6, and ph*® has continuous trajectories), we get

o(t,p) < J(tpa) = EO / Flpbre, ag)ds + (6, pt”’“fe)]
< EO / F(pbre asds—i—v(Hpt“a)]—ka

Since «, 6 and ¢ are arbitrary, this gives the inequality

t, <'f'fE0/ b o )ds 4+ (0, pht )],
v(t, 1) _OllgMé%?T Fpir, a5)ds + (0, pg )}

which, combined with the first inequality (B.20), proves the DPP result. O

4 Bellman equation and viscosity solutions

4.1 Differentiability and It6’s formula in Wasserstein space

We shall rely on the notion of derivative with respect to a probability measure, as introduced
by P.L. Lions in his course at College de France [32]. We provide a brief introduction to
this concept and refer to the lecture notes [10] (see also [9], [I7]) for the details.

This notion is based on the lifting of functions u : P,(R?) — R into functions @ defined
on L*(G;R?) (= L*(Q', G, PY; R?)) by setting @(¢) = u(L(€)) (= u(]?’%)) Conversely, given
a function @ defined on L?(G;RY), we call inverse-lifted function of @ the function u defined
on P,(RY) by u(p) = a(€) for u = L(£), and we notice that such u exists iff %(¢) depends
only on the distribution of ¢ for any ¢ € L?(G;R%). In this case, we shall often identify in
the sequel the function u and its lifted version u, by using the same notation v = .

We say that u is differentiable (resp. C') on P, (R?) if the lift @ is Fréchet differentiable
(resp. Fréchet differentiable with continuous derivatives) on L?(G;R?). In this case, the
Fréchet derivative [Di](¢), viewed as an element Dai(€) of L?(G;RY) by Riesz’ theorem:
[Da)(€)(Y) = E[Da(€).Y], can be represented as

Du(§) = 9u(L(£))(&), (4.1)



for some function d,u(L(¢)) : RY — RY, which is called derivative of u at u = L(£).
Moreover, d,u(p) € Li(Rd) for u € P,(RY) = {L£(¢) : ¢ € L*(G;RY)}. Following [I7], we
say that u is fully C? if it is C*, the mapping (u, x) € P,(R?) x R? — J,u(p)(z) is continuous
and

(i) for each fixed yu € P,(R?), the mapping z € R? — J,u(p)(z) is differentiable in the
standard sense, with a gradient denoted by 9,0, u(u)(z) € R4, and s.t. the mapping
(1,z) € P,(RY) x RY  9,0,u(p)(x) is continuous

(ii) for each fixed z € R? the mapping u € P,(RY) — 9 u(p)(z) is differentiable in
the above lifted sense. Its derivative, interpreted thus as a mapping z/ € RY —
O [0pu(p)(z)](2) € R in Li(RdXd), is denoted by 2/ € R? d2u(p)(x,2'), and
s.t. the mapping (u, z,2") € P,(R?) x R? x R? 8ﬁu(,u)(x,x’) is continuous.

We say that u € CZ(P,(R?)) if it is fully C2, 9,0,u(u) € LZO(]RdXd), Doulp) € L/‘f’@w(RdXd)

for any p € P,(R?), and for any compact set K of P,(R?), we have

sup [ [ [0,u0@) () + o000l +|2u)l] < o (42)
pell - JRd

If u lies in CZ(P,(R?)), then its lifted function @ is twice continuously Fréchet differentiable
on L?(G;R%). In this case, the second Fréchet derivative D?@(€) is identified indifferently by

Riesz’ theorem as a bilinear form on L?(G; R?) or as a self-adjoint operator (hence bounded)
on L?(G;R%), denoted by D?u(¢) € S(L*(G;R?%)), and we have the relation (see Appendix

A.2 in [12]):

DrEW,Y] =  EYD%O)Y] = BN E[tr(02u(£E)(E )Y ())]]
+ R [tr(@x%u(ﬁ(g))(é)YYT)] ,

D2(€)[ZN, ZN] = El[p?a(g)(zzv).zzv} - INEl[tr(@mauu(ﬁ(f))(g)ZZT)],
(4.3)

for any ¢ € L2(G;RY), Y € L%(G;R%), Z € L?*(G;R¥9), and where (¢/,Y”) is a copy of
(£,Y) on another Polish and atomless probability space (Q'1,G,P"), N € L%(G;RY) is
independent of (£, Z) with zero mean, and unit variance. Here T denotes the transpose of
any vector or matrix.

We next need an It6’s formula along a flow of conditional measures proved in [12]. Let
(92, F,P) be a probability space of the form (2, F,P) = (Q x Q', FO @ F!, P’ @ P'), where
(00, FO P%) supports W0 and (Q', F1 P!) supports B as in Section Bl Let us consider an
It6 process in R? of the form:

t t t
X: = Xo —I—/ bsds —I—/ o0sdBs + / o%dW? 0<t<T, (4.4)
0 0 0

where X is independent of (B, W?), b, o, 0° are progressively measurable processes with
respect to the natural filtration F generated by (XY, B,W?), and satisfying the square
integrability condition: E[ fOT |be|? + |oy|> + |o?[?dt] < oo. Denote by P¥’ the conditional
law of X;, t € [0,T], given the o-algebra F° generated by the whole filtration of W9, and
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by E , = E! the conditional expectation w.r.t. F0. Let u € CZ(P,(R?)). Then, for all ¢ €
[0,T], we have (see Proposition 6.3 in [12]):

uPE) = uPy,)+ /0 By [P (X.) b+ 51 (0:0,(PE) ) (X,) (o203 + o300
o [E [5r(G2u(PE) (X, X0)o%(o0)7)] | ds
+ [ By [ oot aws. (45)

where X’ and o’© are copies of X and ¢ on another probability space (=00 x R
F1 P x P, with (Q'1, F'*,P'!) supporting B’ a copy of B, and Eiyo = E'

Alternatively, we can formulate It6’s formula for the lifted function @ on L?(G,R%) (=
L2(Ql,g,]f”1;}Rd)). For this, consider a copy B of B on the probability space (Ql,g,]?ﬂ),
denote by Xo, b, &, 69 copies of Xo, b, o, oy on Q=0xQ"F=F'oGP=>P P,
and consider the Itd process X on (Q, F, ]5) of the form

t t ~ t
X, = X0+/b5ds+/&Sst+/&2dW£, 0<t<T,
0 0 0

which is then a copy of X in [@4]). The process X defined by X;(w®) = X;(w?,.),0<t < T,
is FO-progressive, and valued in L%(G;R?). Similarly, the processes defined by Bt(wo) =
b (wP,.), 5e(w0) = G(w°,.), 59(wW®) = 69(wP,.), 0 <t < T, are valued in L?*(G;R%), PO-
a.s. The Ito’s formula (@F) is then written for the lifted function @ € C2(L?(G;R?)) from
EID)-E@3) as:
. § b S| Y 1 .
a(X,) = a(Xp)+ / E! [Dﬂ(Xs).bs + §D2ﬂ(Xs)(c}sN).6sN—|— §D2ﬂ(Xs)(c}2).c}2 ds
0

t
+ / E'[Da(X,)769]dW?,  0<t<T, P’—a.s. (4.6)

0

where N € L?(G;R%) is independent of (B, Xy), with zero mean, and unit variance.

4.2 Dynamic programming equation

The dynamic programming Bellman equation associated to the value function of the stochas-
tic McKean-Vlasov control problem takes the form:

{ —0w — inf [f(u, a) + p(Lo(t, p)) + p @ p(Mo(t, u))] = 0, (t,n) €[0,T) x P,(RY),

u(T,m) = g(u), neP,RY),
(4.7)
where for ¢ € C2(P,(RY)), a € A, and pu € P,(R?), L(n) € L2 (R) is the function RY —
R defined by

L)) = 0ub() (@)D @) + 51r(D:0,6(n) (@) (00" + 0007) (4, 0)), (48)

and M%p(u) € Lf@M(R) is the function R? x RY — R defined by
1
MO a) = (0200w Yoo oo 1), (49)
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Alternatively, by viewing the value function as a function on [0,7] x L2(G;R%) via
the lifting identification, and keeping the same notation v(¢,&) = v(t,£(£)) (recall that
v depends on ¢ only via its distribution), we see from the connection ([£I])-([Z3]) between
derivatives in the Wasserstein space P,(R?) and in the Hilbert space L?(G;R?) that the
Bellman equation (7)) is written also in [0, 7] x L?(G;R%) as

—Ow = H(EDU(t.E).DP(E) = 0. (LYEDT) X AGRY, o
o(T,6) = E'fg(&L()], €€ L*(GRY), '
where H : L?(G;RY) x L*(G;R%) x S(L*(G;R%)) — R is defined by
H(EP.Q) = inf B'[£(¢.L(S),a) + Pb(E L(S),a) (4.11)

+ 5QUo0(E £(€),0)).00(6, £(6), ) + 5Q((6,£(8), )N (€, £(6), )N,

with N € L?(G;R") of zero mean, and unit variance, and independent of ¢.

The purpose of this section is to prove an analytic characterization of the value function
in terms of the dynamic programming Bellman equation. We shall adopt a notion of
viscosity solutions following the approach in [32], which consists via the lifting identification
in working in the Hilbert space Lz(g;Rd) instead of working in the Wasserstein space
P, (}Rd). Indeed, comparison principles for viscosity solutions in the Wasserstein space, or
more generally in metric spaces, are difficult to obtain as we have to deal with locally
non compact spaces (see e.g. [2], [24], [22]), and instead by working in separable Hilbert
spaces, one can essentially reduce to the case of Fuclidian spaces by projection, and then
take advantage of the results developed for viscosity solutions this context, in particular
here, for second order Hamilton-Jacobi-Bellman equations, see [31], [21]. We shall assume
that the o-algebra G is countably generated upto null sets, which ensures that the Hilbert
space L?(G;R?) is separable, see [20], p. 92. This is satisfied for example when G is the
Borel o-algebra of a canonical space Q! of continuous functions on R (see Exercise 4.21
in Chapter 1 of [34]).

Definition 4.1 We say that a continuous function u : [0,T] x P,(R%) — R is a viscosity
(sub, super) solution to @X) if its lifted version @ on [0,T] x L*(G;R?) is a viscosity (sub,
super) solution to [@I0l), that is:

(i) a(T,¢) < E! [9(&, £(8))], and for any test function ¢ € C*([0,T] x L*(G;RY) (the set of
real-valued continuous functions on [0, T] x L?(G;R?) which are continuously differentiable
int € [0,T), and twice continuously Fréchet differentiable on L*(G;R?)) s.t. @ — ¢ has a
mazimum at (t,€) € [0,T) x L*(G;R?), one has

—Oip(t, &) — H(&, Dp(t,€), D*0(t,€)) < 0.

(ii) W(T,€) > B! [9(¢,£(€))]. and for any test function ¢ € C*([0,T] x L*(G;RY) s.t. i — ¢
has a minimum at (t,€) € [0,T) x L?(G;RY), one has

—Oup(t, &) — H(&, Dop(t,£), D*p(t,€)) > 0.
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The main result of this section is the viscosity characterization of the value function for
the stochastic McKean-Vlasov control problem (2.4)) to the dynamic programming Bellman

equation ([£L7) (or (£I10).

Theorem 4.1 The value function v is the unique continuous viscosity solution to (41
satisfying a quadratic growth condition (3.3]).

Proof. (1) Viscosity property. Let us first reformulate the dynamic programming principle
(DPP) of Proposition B for the value function viewed now as a function on [0,77] x
L?(G;RY). For this, we take a copy B of B on the probability space (Ql, g, I@’l), and given
(t,€) € [0,T] x L*(G:R%Y), o € A, we consider on (Q = Q0 x Q! F = FO o G,P = P’ @ P!)
the solution X6 ¢t < s < T, to the McKean-Vlasov equation

Xtee = §+/ (Xtﬁapxtga, r)dr—i—/ o(Xb&e PW). | on)dB,
t t s
+/00(Xt§a]P’ WO a) WO, t<s<T,
t

where PV, Ie & . denotes the regular conditional distribution of X! Lea given F°. In other words,

X462 is a copy of X446 on (€, F,P), and denoting by XLe Ywd) = XES (W0, ), t < s < T,
we see that the process {Xﬁ’g’o‘, t < s < T} is F-progressive, valued in L?(G; RY), and ]p}t,s,a

= pi"® for p = L(€). Therefore, the lifted value function on [0, 7] x L2(G;R%) identified
with the value function on [0,T] x P,(R?) satisfies v(s, XE5%) = v(s, pb™®), t < s < T.

By noting that f(pi"®, o) = E! [f(Xt ol P;t gar

lifted DPP: for all (,€) € [0,T] x L2(G;RY),

)] , we obtain from Proposition B.1] the

0
o . 0 =1 té,a o1&,
o(t,€) = iléﬁxaé%%TE [/t B [f(XE9, Py e, as)]ds + (0, X )] (4.12)

0 ~ ~
- 52‘95% EO[/t E'[f(XESe, Ptha,as)}dS + v(e,Xgﬁ"l)]. (4.13)
€

We already know that v is continuous on [0,7] x L2(Q;Rd), hence in particular at T, so
that v(T, &) = El[g(&, £(£))], and it remains to derive the viscosity property for the value
function in [0, T') x L?(G; R?) by following standard arguments that we adapt in our context.
(i) Subsolution property. Fix (t,£) € [0,T) x L?(G;R?), and consider some test function ¢
€ C%([0,T] x L?(G;R%)) s.t. v— ¢ has a maximum at (¢, &), and w.lo.g. v(t,&) = ¢(t,£), so
that v < ¢. Let a be an arbitrary element in A, o = a the constant control in A equal to
a, and consider the stopping time in 7;?T: 0, = inf{s >t : | X5 — 2] > 6} A (t + h),
with 0 some positive constant, and h € (0,7 — ). From the first part (£I2]) of the DPP,
we get

0 ~
olt.6) < E| / B [F(X05,PYycasa)]ds + (0, X557

Applying Itd’s formula (£0) to @(S,Xﬁ’é’a), and noting that the stochastic integral w.r.t.
WO vanishes under expectation E° by the localization with the stopping time 6y,, we then
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have
0 1 on ot,6,a w1l vt,&,a ml ot,6,a ot,8,a Ml
0 S E [E at(p(sw)(s7 ’ )+E [f(“X*s7 ' 7]P>X§,§,a7a) —i_D(p(Sr‘X*s7 ' )b(“X*s7 ' 7]P)Xt,§,a=a)
t S S
1 - . - . -
+ 5 D%, X&) (0 (X3, Py cas )N) (X9 P c )N

1 - . - . -
+ §D2<p(s,Xﬁ’s’“)(ao(Xﬁ’g’“,IPlv 7 a))‘O_O(Xzé,a’IP}t,&,a,a)]ds}

= E° [% /teh Fy(t,¢&, a)ds], (4.14)

with N € L?(G;R") of zero mean, and unit variance, and independent of (B, ). It is known
that, for any continuous function 1, the map s € [t, T] — E![(X55")] = E[p(XL5F0] =
Pt () (for p = L(€)) is cad-lag PO-a.s. (see e.g. Theorem 2.9 in [4]). Recalling also that
(X4, cocr and {]?’}t’&a = pi* t < s < T} have continuous trajectories, we deduce that

the process (F(t, €, a))i<s<r has cad-lag paths P? almost surely. Moreover, by (standard)
1to’s formula, we have for all t < s < T,

E'| X5 — €] = E[| X045 - ¢2|F0] = / E[2(XE5 — €).by + 0v07 + o2 (02)T|F]dr
t
" / E[2(X169 — €)700| FOdW?,
t

t7 ,a 0 t, ,a 0 t, ,a 0
where we set by = b(Xs§ ,P%,g,a,a), 0 = cr(Xs5 ,Pg{v%a,a), 02 = O'O(XS5 ,P%,g,a,a).
S S S

This shows that the map s € [t, T] — E}| X525 — ¢|?] is continuous P%-a.s., and thus 6, (w°)
=t + h for h small enough (< h(w?)), PY(dw)-a.s. By the mean-value theorem, we then
get PV almost surely, % te” Fy(t,&,a)ds — Fy(t,&,a), as h goes to zero, and so from the
dominated convergence theorem in (4.14):

0 < F(t,&a) = 0p(t,) +E[f(& L(E),a) + Dp(t, €).b(¢, L(€), a)
+ 5 D(1,€)(0(E, £(6), a)N).o (&, £(E), a) N
+ %mgo(s,s)(oo(s,ﬁ(s),a>>.oo<s,£<s>,a> .

Since a is arbitrary in A, this shows the required viscosity subsolution property.

(ii) Supersolution property. Fix (t,€) € [0,T) x L?(G;R%), and consider some test function
@ € C%([0, T] x L?(G;R?)) s.t. v— ¢ has a minimum at (¢,¢), and w.l.o.g. v(t,€) = @(t, &), so
that v > ¢. From the continuity assumptions in (H1)-(HZ2), we observe that the function
H defined on [0,T] x L?(G;R?) by

H(s,Q) = H(C Do(s,C), D*¢(s,¢)),

is continuous. Then, given an arbitrary & > 0, there exists h € (0,7 —t), § > 0 s.t. for all
s € [t,t+h], and ¢ € L*(G;RY) with E'[|¢ — ¢?] < 6,

‘ (Bip + H)(5,0) — (Brp + H) (¢, 5)\ < e
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From the second part ([I3]) of the DPP, for any h € (0, h), there exists a € A s.t.
o, ) i ]
plt.6) +eh > E| /t B [F(XE5 Breas a0)]ds + 9(0n, X557,

where we take 0y, = inf{s > ¢ : I~E1[|X£’£’a — &%) > 6} A (t+h). Applying again It&’s formula
(3] to @(S,Xﬁ’g’a), and by definition of H, we get

e = 1 [ @+ W) X5
> [0+ ) (.6 - L (415)

by the choice of h, §, and 6. Now, by noting from Chebyshev’s inequality that

P19, <t+h] < ]P’O[ sup E[|XL6e —¢)?] > J)

t<s<t+h
EO[ sup E! Xt’g’o‘—£2] -
N RCIt e 1[5
< <
- 0 - o
and using the obvious inequality: 1 —P°[§, <t+h] = P[§, =t +h] < % < 1, we see
that % converges to 1 when h goes to zero, and deduce from ([LI5) that

26 > (Owp+H)(t,€).

We obtain the required viscosity supersolution property by sending € to zero.

(2) Uniqueness property. In view of our definition of viscosity solution, we have to show
a comparison principle for viscosity solutions to the lifted Bellman equation (£I0). We
use the comparison principle proved in Theorem 3.50 in [2I] and only need to check that
the hypotheses of this theorem are satisfied in our context for the lifted Hamiltonian H
defined in ([AII). Notice that the Bellman equation (A.I0) is a bounded equation in the
terminology of [2I] (see their section 3.3.1) meaning that there is no linear dissipative
operator on L?(G; Rd) in the equation. Therefore, the notion of B-continuity reduces to the
standard notion of continuity in L?(G;R?) since one can take for B the identity operator.
Their Hypothesis 3.44 follows from the uniform continuity of b, o, op and f in (H1)-(H2).
Hypothesis 3.45 is immediately satisfied since there is no discount factor in our equation,
i.e. H does not depend on v but only on its derivatives. The monotonicity condition in @)
€ S(L*(G;R%)) of H in Hypothesis 3.46 is clearly satisfied. Hypothesis 3.47 holds directly
when dealing with bounded equations. Hypothesis 3.48 is obtained from the Lipschitz
condition of b,0,00 in (H1), and the uniform continuity condition on f in (HZ2), while
Hypothesis 3.49 follows from the growth condition of o, o in (H1). One can then apply
Theorem 3.50 in [21] and conclude that comparison principle holds for the Bellman equation

@), 0

We conclude this section with a verification theorem, which gives an analytic feedback
form of the optimal control when there is a smooth solution to the Bellman equation.
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Theorem 4.2 (Verification theorem)

Let w : [0,T] x P,(RY) — R be a function in C;’%[O,T] x P,(RY)), i.e. w is continuous on
0,7] x P,(RY), w(t,.) € C2(P,(RY)), and w(.,u) € CH([0,T)), and satisfying a quadratic
growth condition as in [B0]). Suppose that w is solution to the Bellman equation (@), and
there exists for all (t,p) € [0,T) x P,(RY) an element a(t,p) € A attaining the infimum
in (7)) s.t. the map (t,p) — a(t,p) is measurable, and the stochastic McKean-Viasov
equation

Y. — - pwe pW° wo . Wwo
dX; = b(X,,PY (s, PY))ds + o(X,, P a(s, P ))dB,
+ o (X, PR a(s, PY)AWY, t<s<T, X, =¢,

admits a unique solution denoted (X;’g)tSSST, for any (t,€) € [0,T] x L?(G;RY) (This is
satisfied e.g. when pu +— a(t, ) is Lipschitz on P,(RY)). Then, w = v, and the feedback
control o € A defined by

of = a(s,PWe), t<s<T, (4.16)

is an optimal control for v(t, ), i.e. v(t,u) = J(t, pu, ™), with p = L(§).

Proof. Fix (t,u = L£(£)) € [0,7] x P,(R%), and consider some arbitrary control a € A

associated to pi*® = ]P’)w(/toga, t < s < T. Denote by X;t’g’o‘ a copy of X5 on another

probability space (€ = Q0 x Q" FO @ F1, PV x P'1), with (Q, F1,P'!) supporting B’ a

copy of B. Applying Itd’s formula ([@3]) to w(s, P ) between t and the FC-stopping time

0 = inf{s >t : ||ps"“|, > n} AT, we obtain
w(eTHOG’# a)
o ow N6l t t,€,« t,la  tu,a
=l + [ { G ) B [t g XN B )
t

1
+ §tr [amauw((s’ pg,u,a)(X?ﬁ,a)(UO_T(X;ZS,O:’ pé,u,a, o) + 0006(){2,&&, pé,u,a, Oés))]]

1 ! /
By [, [Str(GRu(s, o) (XEE2, X600 (XEE™, i, a)of (X264, g, ,))] | fds

o7
+ / E._ [Ow(s, pl®) (K00 To (X102 om0 )] dIV0
t

07 Aw
e w(t’ M) + / |: at (s psuu‘7 ) + uu'7 (LQS ( pts,u’a)) + p?“’a ® p?“’a (Masw(s, pts’u’a))]ds
t

07
[ B 0l o) X o (X e ) v
t

by definition of L% and M in (@X)-@J), and recalling again that pi** = ]P’)Vgto5 «- Now,
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the integrand of the stochastic integral w.r.t. W in ([@I7) satisfies:

2
By [Outw(s, g ) (X g (X002, i, )]

2
< ([ 0wt )t routa, o ) | )
Rd
< / |Bjw(s, pl) ()|l (dib"/ oo (@, p, ag) | ot (dar)
R4 Rd
< C(1+mn) sup / ‘auw(s,w)(x)Pﬂ(d:E) <oo, t<s<67p,
Rd

[l <n

from Cauchy-Schwarz inequality, the linear growth condition of o in (H1), the choice of 67,
and condition ([f2]). Therefore, the stochastic integral in ([&IT) vanishes in E%-expectation,
and we get

0 o
E°[w(Of, o )] = wit.w) + E°| t (s, )l (L w(s, 1)
P @ g (M (s, g ) ) ds|
or
> w(t,p) — EO[/ f(p’;’“’a,ozs)ds], (4.18)
t

since w satisfies the Bellman equation (£7]). By sending n to infinity into (AI8]), and from
the dominated convergence theorem (under the condition that w, f satisfy a quadratic
growth condition and recalling the estimation (3I12])), we obtain:

T
wt) < Jlta) = B[ [ foe s+ gl ).

Since « is arbitrary in A, this shows that w < v.

Finally, by applying the same It0’s argument with the feedback control a* € A in
(@I6), and noting that Xi* = X6 ]P’)Vgto5 = pi" we have now equality in (EIR),
hence w(t,p) = J(t,pu,a*) (> v(t,p)), and thus finally the required equality: w(t,u) =

v(t,p) = J(t, p,a*). O

5 Linear quadratic stochastic McKean-Vlasov control

We consider the linear-quadratic (LQ) stochastic McKean-Vlasov control problem where
the control set A is a functional space, which corresponds to the McKean-Vlasov problem
with common noise as presented in the introduction.

The control set A is the set L(R?;R™) of Lipschitz functions from R? into A = R™,
and we consider a multivariate linear McKean-Vlasov controlled dynamics with coefficients
given by

b(x,pu,a) = bg+ Bx+ Bji+ Ca(x),
o(z,p,a) Y+ Dx + Dji+ Fa(x), (5.1)
oo(t,z,pu,a) = Yo+ Dox + Dofi + Foa(z),
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for (z,p,a) € R? x P,(RY) x L(R% R™), where we set

. /R ).

Here B, B, D, D, Dy, Dy, are constant matrices in R?>*?, C, F, Fyy are constant matrices
in R¥™>™ and by, ¥, U9 are constant vectors in R?. The quadratic cost functions are given
by

flzpa) = 27Qox + ATQ2fi + a(x)T Raa(x)

, 5.2
g, p) = a7Pox + TP, (5:2)

where Qa, Q2, Py, P, are constant matrices in R?*? R, is a constant matrix in R™*.
Since f and g are real-valued, we may assume w.l.o.g. that all the matrices Qa, Q2, Ro,
Py, P, are symmetric. We denote by S? the set of symmetric matrices in R%¢, by Si the
subset of nonnegative symmetric matrices, by S‘i o the subset of symmetric positive definite
matrices, and similfirly for S™, ST, ST, .

The functions f and ¢ defined in (3.4]) are then given by

{ f(tpa) = Var(u)(Q2) + B7(Qz + Qo)+ A%y (R2) (53

g(p) = Var(u)(Pp) 4+ @™ (P2 + Py)j

for any u € P,(R%), a € A = L(R% R™), where we set for any A in S¢ (resp. in S™), and
i € P(RY) (resp. P,(R™)):

pa) = [oAou(dn), Var(u)(d) = m(8) - m"AR,

and ax p € P,(R™) is the image by a € L(R%;R™) of the measure u € R™, so that

axjp = / a(z)u(dr),  axm,(A) = /a(x)TAa(x),u(dx).
R4
We look for a value function solution to the Bellman equation (A7) in the form

w(t,p) = Var(u)(AQ®) + T ()p + pty () + x (1), (5.4)

for some functions A, I' € C1([0,7];S%), v € C1([0,T);R%), and x € C'([0,T];R). One
easily checks that w lies in C; 2([0,T] x P,(R%)) with

Opw(t,u) = Var(u)(A'(t) + £ (A + ' ()8 + X (),
Ouw(t, p)(x) 2A(t)(z — i) + 20 (1) 4 (1),
O Opw(t, ) () 2A(t),
aiw(t, w(x, 2"y = 2(C(t) — A)).

Together with the quadratic expression (5.3) of f, §, we then see after some tedious but
direct calculations that w satisfies the Bellman equation (1) iff

Var(u)(A(T)) + AT(T) i + @™ y(T) + x(T)
= Var(p)(P) + i"(Py + P, (5.5)
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holds for all u € P,(R?), and

Var(p) (A'(t) + Q2 + DTA(t)D + DJA(t) Dy + A(t)B + BTA(t)) + eLgﬂg}j - GY(a)

+ i (T'(t) + Q2+ Q> + (D + DY A(t)(D + D)

+ (Do + Do)™T(t)(Dy + Do) + T(t)(B + B) + (B + B)T(t))ﬂ

AT (Y (t) + (B + B)™y(t) + 2(D + D)TA(t)d + 2(Dg + Do) T ()90 + 2L'()bo)

+ x’(t) A(#)Tho + ITAE)Y + 90T (£)9g

- 0, (5.6)

holds for all ¢ € [0,7), 1 € P,(R?%), where the function G : L(R%;R™) — R is defined by

Gl{@) = Varlaxp)(Uy) + TrEViaes + 2 | (o ) Siala)(da)

+2u"Ziaxp + Yiax g,

and we set Uy = U(t,A(t)), Vi = V(t,A(t),D(t)), Sy = S(t,A(t)), Zs = Z(t,A(t),T()), Y
= Y(£,T(t),~(t)) with

U(t,A(t)) = FTAt)F + FJA(t)Fo + Ro,
V(t,A(t),T(t) = FTA()F + FIT(t)Fy + Ry

S(t,A(t)) = DTA(t)F + DJA(t)Fy + A(t)C + My, (5.7)
Z(t,At),T(t)) = (D+ D)TA(t)F + (Do + Do)'T'(t)F +T(t)C + M,

Y(t,T(t),v(t) = CTy(t) +2FTA(t)Y + 2F]T(t)dy.

Then, under the condition that the symmetric matrices Uy and V; in (5.7)) are positive,
hence invertible (this will be discussed later on), we get after square completion:

Gia) = Var((a—a’(t,..p) x 0)(Up) + (@ —a () * 1 Vila — @ (6 1)) %
V() (ST S7) — T (27 20 - YV 2 - YV

where a(t,., ) € LR R™) is given by
* - _ I 1.
a*(t,w,p) = —U7'Si(x—f) = V7 200 = SV (5.8)

This means that G} attains its infimum at a*(¢, ., ), and plugging the above expression of
G (a*(t,.,p)) in (58], we observe that the relation (5.5)-(5.6]), hence the Bellman equation,
is satisfied by identifying the terms in Var(.), a7(.)f, [, which leads to the system of ordinary
differential equations (ODEs) for (A, T, 7, x):

N (t) + Q2+ DTA(t)D + DJA(t) Do + A(t)B + BTA(t)
—S(t, AU, A(t))"1S(t, A1) = 0, (5.9)
A(T) = P27
I'(t) + Q2 + Qo + (D + D)TA(t)(D + D)
+(Do + Do) T(t)(Dy + Do) + I'(¢)7(B + B)
+ (B + B)T(t) — Z(t,A(t), D)V (£, AL), T(t)) " Z(t,A(t), () 0,
F(T) = P+ pg,

(5.10)
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V() + (B + B)™y(t) — Z(t, A(t), D)V (£, At), T ()Y (£, T(1), (1))

+2(D + D)"A(t)d 4+ 2(Do + Do) 'T(t)0o + 2T ()b = 0, (5.11)
WT) = 0
X () = Y (6, T(), () V (¢t A®), D) Y (£, T(1), (1))
+ y(t)Tho + ITA(t)Y) + I T(t)Yy = O, (5.12)

x(T) = 0.
Therefore, the resolution of the Bellman equation in the LQ framework is reduced to the
resolution of the Riccati equations (5.9) and (B.I0) for A and T', and then given (A,T),
to the resolution of the linear ODEs (5.I1]) and (5.12]) for v and x. Suppose that there
exists a solution (A,T') € C1([0,T];S%) x C1([0,T];S%) to (I)-GI0) s.t. (U, Vi) in (&0
lies in ST, x ST, for all ¢ € [0,7] (see Remark 5.I)). Then, the above calculations are
justified a posteriori, and by noting also that the mapping (z, u) — a*(t,z, ) is Lipschitz
on R% x P,(R?), we deduce by the verification theorem that the value function v is equal

to w in (4] with (A,T',~, x) solution to (E3)-(GE10)-(GEII)-([GI2). Moreover, the optimal

control is given in feedback form from (58] by
of (X)) = a*(t, X7, PYY)
= U7SH(X7 - BIXGIF) - VO ZEDGIF) - GV (513)
where X* is the state process controlled by a*.
Remark 5.1 It is known from [37] that under the condition
P,>0,P+P >0, Q>0 Q+Q >0, Ry >6ly, (5.14)

for some 0 > 0, the matrix Riccati equations (0.9)-(5.I0) admit unique solutions (A,T)
€ C1([0,T];84) x C1([0,7];SL), and then Uy, V; in (B are symmetric positive definite
matrices, i.e. lie in ST, for all t € [0,7]. The expression in (5.I3]) of the optimal control
extends then to the case of stochastic LQ McKean-Vlasov control problem the feedback
form obtained in [38] for LQ McKean-Vlasov without common noise, i.e. oy = 0. O

Example: Interbank systemic risk model

We consider a model of inter-bank borrowing and lending studied in [15] where the log-
monetary reserve of each bank in the asymptotics when the number of banks tend to infinity,
is governed by the McKean-Vlasov equation:

dXy = [RE[X W] — X;) + ap(Xy)]dt
+ (00 + 01 X1) (V1 — p2dBy + pdW), Xo = zo € R. (5.15)

Here, k > 0 is the rate of mean-reversion in the interaction from borrowing and lending
between the banks, oy > 0, 01 € R are the affine coefficients of the volatility of the bank
reserve, and there is a common noise W9 for all the banks. This is a slight extension of
the model considered in [I5] where o3 = 0. Moreover, all banks can control their rate of
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borrowing/lending to a central bank with the same feedback policy « in order to minimize
a cost functional of the form

T
J(a) = E[/O <%o¢t(Xt)2 — qaa(X0) (ELX W] = X0) + S (E[X W) = X,)? ) dt
+ 5 B[] - X)),

where ¢ > 0 is a positive parameter for the incentive to borrowing (o > 0) or lending (o
< 0), and n > 0, ¢ > 0 are positive parameters for penalizing departure from the average.
After square completion, we can rewrite the cost functional as

T _ 42 c
To) = B[ [ (0 + L 0w - X02)dt+ §ELX W] - X)),

with & (X;) = s (Xy) — q(E[X¢|W°] — X;). This model fits into the framework of (5.1])-(5.2)
of the LQ stochastic McKean-Vlasov problem with

bo=0, B=—(k+q), B=r+gq, C=1,

o1\/1—p2,Dy=01p, D=F=D"=F"=0, 9 = 0g\/1 — p2, 99 = oop,
2
77

Q=121 0= n;qz,Rzzé,Pzzg, _22—5-
The Riccati system (5.9)-(E.10)- (511)-(G.12) for (A(t), I'(t), v(t), x(t)) is written in this case
N(®) =25 +q - AW~ 2020 + 30 —¢®) = 0. AD) = s,
I/(t) — 2T2(t) + o2p°T(t) + o3(1 — p?)A(t) = 0, TI(T) = 0, (5.16)
V() — 20 (e (¢ >+ 20001 PT0) + 2001 (1= A0 = 0, H(T) = 0.
X' (t) = 572(t) + agp?T(t) + o5 (1 — p*)A(t) 0, x(T) 0.

Assuming that ¢? < 7, the explicit solution to the Riccati equation for A is given by

@+ —7)(T—1) _q §teEt—67)(T—t) _ 5-
A(t) — 1( )(e+ _ ) +C( e _— ) S 07
2 (6(6 =0 )(T—t) _ 1) + o+ — §—e6T=0)(T—t)
where we set
+ o} 029
= —(ﬁ+q—7)i (ﬁ+q—7) +n—q>

Since A > 0, there exists a unique solution to the Riccati equation for I', and then ~, and
finally x are determined the linear ordinary differential equations in (5.16]). Moreover, the
functions (Uy, Vi, Zy, Y:) in (B.7) are explicitly given by: Uy = V; = % (hence > 0), S; =
A(t) + 2, Z, = T(t), Y3 = ~(t). Therefore, the optimal control is given in feedback form

from (BI3]) by
ap (X)) = a(t, X, P
= —(2A(t) + (X7 —E[X[ W) = 2P(OELX] W] —(t),  (5.17)
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where X* is the optimal log-monetary reserve controlled by the rate of borrowing/lending
a*. Moreover, denoting by X; = E[X;|W?Y] the conditional mean of the optimal log mo-
netary reserve, we see that Ela}(X;)|WY = —2I'(t)X; — (), and thus X* is given from
(E.15) by

dX; = —(2POX; +7(t)dt + (o1X] + 00)pdW), X = x0.
When o1 = 0, we have I'(t) = v(t) = 0, hence X; = xg + oopW}, and we retrieve the

expression found in [I5] by sending the number of banks N to infinity in their formula for
the optimal control of the borrowing/lending rate:

af (X)) = —(2AQ®) +)(X] — 20— opWY), 0<t<T.
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