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ABSTRACT
Subset selection constitutes an important stage of any evo-
lutionary multiobjective optimization algorithm when trun-
cating the current approximation set for the next iteration.
This appears to be particularly challenging when the number
of solutions to be removed is large, and when the approx-
imation set contains many mutually non-dominating solu-
tions. In particular, indicator-based strategies have been
intensively used in recent years for that purpose. However,
most solutions for the indicator-based subset selection prob-
lem are based on a very simple greedy backward elimination
strategy. In this paper, we experiment additional heuristics
that include a greedy forward selection and a greedy sequen-
tial insertion policies, a first-improvement hill-climbing local
search, as well as combinations of those. We evaluate the
effectiveness and the efficiency of such heuristics in order
to maximize the enclosed hypervolume indicator of candi-
date subsets during a hypothetical evolutionary process, or
as a post-processing phase. Our experimental analysis, con-
ducted on randomly generated as well as structured two-,
three- and four-objective mutually non-dominated sets, al-
lows us to appreciate the benefit of these approaches in terms
of quality, and to highlight some practical limitations and
open challenges in terms of computational resources.

1. INTRODUCTION
The design and analysis of evolutionary multiobjective op-

timization (EMO) algorithms and other randomized search
heuristics for multiobjective optimization is nowadays a well-
established research area. These approaches can usually be
viewed as an iterative process evolving a set of solutions,
that constitutes the current Pareto set approximation, and
selecting a representative subset that will take part in the

next iteration. A main issue when designing such algorithms
is how to decide on the solutions to be deleted and the ones
to be kept at each iteration in order to maximize the over-
all approximation set quality at the selection or archiving
stages of EMO algorithms. When the goal of the search pro-
cess is defined in terms of a quality indicator, which assigns
a scalar value that reflects the quality of any approxima-
tion set [20], a key issue of multiobjective optimizers is to
iteratively maximize this indicator-value when extracting a
limited number of solutions within the current approxima-
tion. It is well understood that computing such a subset
is a challenging problem to be solved in practice. In ad-
dition, the corresponding indicator-based subset selection
problem relevantly arises when a post-processing phase has
to be designed, after a multiobjective optimizer had gath-
ered a whole set of solutions from which one has to choose
only a subset. In such a scenario, the goal is to select the
best representative subset from all solutions recorded during
the search process [9].

Among quality indicators, the hypervolume is more and
more preferred when designing indicator-based EMO algo-
rithms, but also when assessing the quality of the approx-
imation set obtained at termination. This indicator has in
fact some interesting properties such as the strict mono-
tonicity property [22]. However, the computation of the
hypervolume covered by a set is known to be #P -complete
with respect to the number of objective functions [7]. Gener-
ally speaking, a conventional approach consists in restricting
the evaluation of the hypervolume for sets which only dif-
fer by one solution, consequently optimizing computations
and reducing in practice the hypervolume computing cost by
typically evaluating the hypervolume contribution of every
single solution [4]. Nevertheless, this computation remains
#P -complete in the general case, even if it can be efficiently
computed for problems with a small number of objectives [8].

As a consequence, the subset selection problem is a bi-
partitioning problem in which the cost function is itself #P -
complete. When dealing with the hypervolume indicator, a
common approach in EMO consists in applying a Greedy
Backward Elimination (GBE) procedure, that removes the
worst solution with respect to the hypervolume contribu-
tion, and iterates until the considered set shrinks to the tar-
get size; see e.g. [2, 21]. It is not difficult to see that the
subset returned by such a heuristic procedure is generally



not optimal with respect to the problem under considera-
tion. Alternatively, one can find other heuristics [5, 6], as
well as exact methods [1, 8, 10, 14, 16] and approximation
algorithms with performance guarantee [12, 13].

In this paper, we investigate the design of alternative
heuristic procedures and consider to study empirically their
relative performance under several configurations. The pro-
posed heuristics can be classified into two categories. In the
first one, we present two simple yet efficient greedy heuris-
tics: Greedy Forward Selection (GFS) [6, 13] and Greedy Se-
quential Insertion (GSI). In the second category, we consider
the application of a basic local search procedure (LS) similar
to [6], a first-improvement hill-climbing, as a second stage
that operates after an initial greedy or random stage. In or-
der to study the performance of these heuristics, we propose
to compete them in some mutually non-dominated sets in
which various proportions of solutions have to be selected.
More specifically, we use some known Pareto fronts from
the literature as well as artificial empirical sets generated at
random. Besides the quality of the subset approximation,
our experimental analysis includes a study of the sensitiv-
ity of the proposed methods to several features such as the
number of objectives, the number of solutions, and the size
of the subset. Through an extensive experimental analysis,
we are in particular able to highlight some improvements
over the standard GBE heuristic, both in terms of compu-
tational cost and approximation quality. More importantly,
our study provides new insights into the design of alterna-
tive subset selection heuristics, thus suggesting that more
efficient and effective EMO algorithms could be designed in
the future.

The remainder of the paper is organized as follows. In Sec-
tion 2, we recall some definitions related to multiobjective
optimization and we propose a formulation of the problem
under consideration, before introducing greedy heuristics as
well as a local search to solve it. In Sections 3 to 5, we
provide a experimental analysis of the proposed methods on
various sets of mutually non-dominated solutions. Finally,
we provide some conclusions in Section 6.

2. INDICATOR-BASED SUBSET SELECTION

2.1 Problem Formulation
Let Z ⊆ Rd be a space of d-dimensional vectors, and let
I : 2Z → R+ be a unary quality indicator which assigns to
any set of d-dimensional vectors a scalar value that reflects
its quality. Without loss of generality, we assume this in-
dicator to be maximized. Given R ⊆ Z a reference set of
cardinality n, and k 6 n a positive subset size, the indicator-
based subset selection problem (ISSP) consists in determining
the set S ⊆ R of maximal quality:

arg max
S⊆R
|S|=k

I(S) (1)

Let us remark that a binary quality indicator I : 2Z ×2Z →
R+ could be considered as well, simply by replacing I(S)
by I(S,R). It is obvious to see that the solution space size
associated with ISSP is

(
n
k

)
. Apart from the inherent com-

plexity of computing indicator-values, this makes from ISSP
a challenging problem from combinatorial optimization.

In the following, we focus on ISSP in the context of mul-
tiobjective optimization. Let us then recall some general

background relative to multiobjective optimization in order
to better illustrate the problem description, as well as our
experimental setup.

2.2 ISSP in Multiobjective Optimization
A multiobjective optimization problem (MOP) is defined

by a decision space X, and an objective function vector
f := (fi)i∈J1,dK such that each objective fi : X → R is to be
minimized. It shall be clear for the reader that we differenti-
ate between the set of candidate subsets for ISSP, denoted as
solution space, and the space of candidate solutions for the
underlying MOP to be solved, denoted as decision space.
f [X] ⊆ Rd is called the objective space. A d-dimensional
vector z := {zi} ∈ Rd dominates a vector z′ := {z′i} ∈ Rd

(z � z′) iff ∀i ∈ J1, dK, zi 6 z′i and ∃i ∈ J1, dK, zi < z′i.
Similarly, z ∈ Rd weakly dominates z′ ∈ Rd (z � z′) iff
z � z′ or z = z′. z and z′ are mutually non-dominated
iff z 6� z′ and z′ 6� z. This dominance relation can be
extended to solutions from the decision space: given two
solutions x, x′ ∈ X, x �(�) x

′ iff f(x) �(�) f(x′). In the

same way, a set S (∈ X or Rd) strictly dominates a set S′

iff ∀x′j ∈ S′, ∀xi ∈ S, xi � x′j and ∃x′j ∈ S′, ∃xi ∈ S, xi � x′j .
Solving a multiobjective optimization problem (X, f) is to
determine a Pareto set X? = {x ∈ X, ∀x′ ∈ X,x′ 6� x}.
X? is minimal if ∀x, x′ ∈ X?, f(x) 6= f(x′); Z? := f [X?] is
called the Pareto front.

For difficult and intractable MOPs, heuristic approaches
like EMO algorithms seek a good Pareto set approxima-
tion. To assess the performance of such approximation sets,
a large number of (unary and binary) multiobjective set
quality indicators, that assign a scalar value reflecting a
given aspect of each approximation set quality, have been
proposed in the literature [20, 22]. Importantly, a Pareto-
compliant quality indicator I is strictly monotonic with re-
spect to the Pareto dominance relation iff, ∀S, S′ ∈ 2X , S �
S′ ⇒ I(f [S]) > I(f [S′]). Such an indicator does not dis-
agree with the (partial) order induced by the dominance
relation [20]. We give below some examples of ISSP appli-
cations that find their root in multiobjective optimization
and EMO techniques.

Example 1: Solving a combinatorial MOP (X, f), where
X is a discrete set, can itself be formulated as the following
variant of subset selection in the decision space, relatively
to a Pareto-compliant quality indicator I:

arg min
S∈argmaxX?⊆X I(f [X?])

|S| (2)

Example 2: Finding the best Pareto front approximation
of a predefined size k within an objective space Z is actually
a (large-scale) subset selection problem (see Eq. (1)), with
R = Z and I Pareto-compliant.

Example 3: In a more practical way, indicator-based sub-
set selection might occur during the resolution process of a
MOP, with R being explicitly described and containing a
reasonable number of mutually non-dominated points. In
particular, EMO algorithms handle populations which rep-
resent sets containing individual solutions. Evolving a popu-
lation by means of variation (crossover, mutation) or neigh-
borhood operators implies to fix or restrict its size. De-
pending of the evolutionary process, a few or many new in-
dividuals are considered to integrate the population at each
iteration, and selecting the subset of individuals defining the



next-step population is generally considered as a challeng-
ing issue. Given a population P := {xi}i∈J1,nK ⊆ X, i.e. a
set of individual solutions, let us denote R := {f(xi)}xi∈P
its associated set of d-dimensional vectors in the objective
space. Then, choosing k individuals among P with respect
to a quality function I amounts to solve Problem (1). For
instance, this ISSP application is investigated in [2].

Example 4: Similarly, an unbounded archive can easily be
set up in order to record all solutions evaluated during any
EMO search process, and is a common practice in the multi-
objective literature. Obviously, the obtained archive cardi-
nality can be large, and a possible post-processing procedure
can actually compute a subset of a limited size maximizing
an indicator-value, which corresponds to an ISSP. Its has
been shown in [9] that such a post-processing phase allows
for a significant improvement compared against the final
population obtained by the corresponding EMO algorithm,
without any overhead in terms of function evaluations.

In our experiments, we consider artificial scenarios mimick-
ing the process of indicator-based subset selection that arises
in the last couple of examples.

2.3 Hypervolume Quality Indicator
The hypervolume (hv) [22] is a unary quality indicator

which gives the multidimensional volume of the portion of
IRd which is weakly dominated by a set S ⊆ Z:

hv(S) :=

∫ zmax

zmin

αS(z)dz

such that:

αS(z) :=

{
1 if ∃s ∈ S such that z ≺ s
0 otherwise

In practice, for minimization problems, only the upper-bound
zmax ∈ IRd is required to compute the hypervolume. This
parameter is called the reference point. A larger hypervolume-
value implies a set of better quality. Note that generally, the
hypervolume computation is considered over approximation
sets, i.e. sets of mutually non-dominated elements of Rd.

The hypervolume is the only known Pareto-compliant qual-
ity indicator [20]. However the hypervolume is parameter-
dependent, since it is based on a reference point that must
be specified by the practitioner. More importantly, the com-
putational resources required to compute an indicator-value
constitute and important feature of the indicator character-
istics. The computational complexity of the hypervolume is
exponential in the number of objectives; see e.g. [3, 11, 17].

2.4 Heuristics for ISSP
ISSP frequently occurs in multiobjective optimization, and

is usually tackled using simple greedy techniques. Indeed,
in many cases, a greedy backward elimination (GBE) proce-
dure is used; see e.g. [2, 21]. In the following, we focus on
solving ISSP as described previously and considering score
values provided in terms of hypervolume. Four algorithms
are considered in this paper and are described below. Com-
putationally speaking, a subset solution to ISSP is repre-
sented as a binary string x = (x1, . . . , xi, . . . , xn) of size n,
with xi = 1 if the corresponding vector is included in the
subset of selected elements, and xi = 0 otherwise. Within
all algorithms, ties are broken at random.

Algorithm 1 Greedy Backward Elimination (GBE)

S ← R
repeat
z? ← arg maxz∈S hv(S \ {z})
S ← S \ {z?}

until |S| = k

Algorithm 2 Greedy Forward Selection (GFS)

S ← ∅
repeat
z? ← arg maxz∈{R\S} hv(S ∪ {z})
S ← S ∪ {z?}

until |S| = k

Algorithm 3 Greedy Sequential Insertion (GSI)

shuffle R such that R = {zi}i∈J1,nK
S ← {zi}i∈J1,kK
for z ∈ {zi}i∈Jk+1,nK do

S ← S ∪ {z}
z? ← arg maxz′∈S hv(S \ {z′})
S ← S \ {z?}

end for

Algorithm 4 First-improvement Local Search (LS)

start with a subset S ⊆ R s. t. |S| = k
while ∃z ∈ S, z′ ∈ R \ S s.t. hv(S \ {z} ∪ {z′}) > hv(S)
do
S ← S \ {z} ∪ {z′}

end while

GBE: The aforementioned greedy backward elimination GBE
(Algorithm 1) starts with the complete initial set R, and the
iterative process always removes the worst element in terms
of hypervolume contribution, until k elements remain in the
set [2, 21]. The hypervolume contribution of an element s ∈
S corresponds to the difference hv(S)− hv(S \ {s}).
GFS: The greedy forward selection (GFS, Algorithm 2), orig-
inally proposed in [6, 13], starts with an empty set, and the
iterative process always adds the best element in terms of hy-
pervolume contribution, until k elements are selected. This
approach is known to provide a (1−1/e)−approximation to
the optimal subset [13].

GSI: The greedy sequential insertion (GSI, Algorithm 3)
starts with a set S of k elements randomly selected from R.
At each iteration, a remaining element from R is selected at
random and added to S, and the element with the worst hy-
pervolume contribution is deleted. Notice that the element
that is to be removed can actually map to the most recently
inserted one. This process iterates until all elements from R
have been considered exactly once for integrating S.

LS: The first-improvement hill-climbing local search (LS, Al-
gorithm 4) starts with a set of k elements from R, provided
by some initialization process. At each step, LS seeks a pair
of elements to be swapped, one being selected while the other
being not, in order to improve the hypervolume value of the
obtained subset. Hence, at each iteration, the number of
possible swaps is k · (n−k). The local search continues until
no swap can bring any hypervolume improvement. Notice



that a similar approach has been investigated in [5, 6].

3. EXPERIMENTAL SETUP

3.1 Competing Algorithms
The competing algorithms consist of all greedy heuristics

presented in the previous section (GBE, GSI and GFS), from
which we add the construction of a random subset RND,
that we use as a baseline approach. Moreover, we measure
the performance of the local search procedure LS depending
on the starting solution (either random RND, or constructed
by means of a greedy heuristic GBE, GSI, or GFS). The cor-
responding two-stage approaches are denoted as RND+LS,
GBE+LS, GSI+LS, and GFS+LS, respectively. In the follow-
ing, 8 variants of hypervolume subset selection heuristics are
then investigated. Notice that there exists polynomial exact
algorithms for the two-objective case [10, 14], which are not
used for comparison since we focus on heuristics that can be
applied to higher problem dimensions.

3.2 Problem Instances
In order to experiment those approaches, we consider two

types of indicator-based subset selection problem instances.

Random instances: The first set of instances consists of
reference sets containing randomly-generated mutually non-
dominated vectors in [0, 1]d. Their structure can then poten-
tially take any form within this hyper-box. The procedure is
as follows. We first initialize an empty reference set R := ∅.
Then, we iteratively generate a random objective vector z
in [0, 1]d. If z does not dominate any point in R, and there
does not exist any point in R that dominates z, then we add
z to R (R := R∪{z}). The procedure stops when the refer-
ence set reaches the expected cardinality, i.e. |R| = n. This
set of instances share similarities with the ones from [5].

Structured instances: The second set of instances con-
sist of reference sets from the CEC 2009 special session
and competition on the performance assessment of multi-
objective optimization algorithms [19]. The corresponding
benchmark continuous functions have been specifically de-
signed to resemble complicated real-life optimization prob-
lems, and their Pareto front presents different properties
in terms of dimension and shape. We consider all the un-
constrained functions UF01–10, with the exception of UF05
which is not relevant in our context, because it contains a
very small number of points in the Pareto front. The ob-
jective space dimension is d = 2 for UF01–06 and d = 3 for
UF07–10. The Pareto front from UF01, UF02 and UF03
is convex, the one from UF04, UF08 and UF10 is concave,
and the one from UF06, UF07 and UF09 is a line or plane.
In addition, there are gaps in the Pareto front of UF06
and UF09. Based on the code provided by the organizers
at the following URL: http://dces.essex.ac.uk/staff/qzhang/
moeacompetition09.htm, we generate a set of uniformly dis-
tributed points along the Pareto front in order to construct
a reference set R for each function. Notice that for all prob-
lems, the reference set lies in [0, 1]d.

3.3 Parameter Setting and Implementation
For all the instances, we consider minimizing objectives,

and we define the hypervolume indicator as the selection cri-
terion. The hypervolume reference point is set to zmax

i = 1.1,
i ∈ J1, dK. For random instances, we consider the following

parameters: an objective space dimension d ∈ {2, 3, 4}, a
reference set cardinality n ∈ {200, 500, 1000}, and a tar-
get subset size of k ∈ {0.1, 0.2, 0.5} · n. A set of 10 in-
stances is independently generated for each parameter com-
bination 〈d, n, k〉. For structured instances, the objective
space dimension is d = 2 for UF01–06, d = 3 for UF07–10,
the reference set cardinality is n = 1 000 for two-objective
problems, n = 2 025 for three-objective problems, and we in-
vestigate a target subset size of k ∈ {0.05, 0.1, 0.5}·n as well.
As pointed out in [8], k is typically much smaller than n.
Notice that a k−value of k = 0.5 · n allows to simulate an
indicator-based subset selection problem arising at each it-
eration of a generational EMO search process, while lower
k−values rather mimic a post-processing scenario, which
would be based on the archive of all non-dominated solu-
tions evaluated during an EMO search process. Overall, this
leads to a total of 297 subset selection problem instances.

For each algorithm and each instance, 30 independent
executions are performed. All algorithms have been ex-
ecuted under comparable conditions and share the same
base components for a fair comparison. They have been
implemented in C++, and compiled with g++ 4.8.4 using
the -O3 compilation option. The hypervolume computa-
tion is based on [3], for which the worst-case complexity
is O(`d−2 log `), where ` is the number of points in the set.
The corresponding implementation is available at the follow-
ing URL: http://lopez-ibanez.eu/hypervolume/. The exper-
imental analysis has been conducted in R [15], using the
ggplot2 [18] package.

4. RESULTS ON RANDOM INSTANCES
Our experimental analysis on random instances is two-

fold. We first investigate the performance of competing al-
gorithms in terms of approximation quality. To this end,
we compute the relative deviation of the output of each al-
gorithm hv(A) with respect to the best-found hypervolume
value hv? for the instance under consideration as follows:
(hv? − hv(A))/hv?. As a consequence, a lower value is bet-
ter. Next, we focus on the algorithms running time, mea-
sured both in terms of CPU time, and in terms of the number
of calls performed on the hypervolume calculation function,
which can be considered as a bottleneck of all hypervolume-
based subset selection approaches.

4.1 Approximation Quality
Figure 1 reports, for each heuristic, the relative devia-

tion to the best-found hypervolume for the instance under
consideration, with respect to the problem dimension d, the
reference set size n, and the target subset size k. Let us start
with the performance of stand-alone greedy heuristics with-
out any local search performed (in red color on the figure).
First of all, selecting a subset of cardinality k at random,
as done with RND, obviously lead to a poor strategy com-
pared against any other competing heuristic. Second, the
conventional greedy heuristic based on a backward selection
strategy GBE, which is used in many indicator-based EMO
algorithms [2, 21], is far from being the most effective ap-
proach for all subset selection problem instances. Interest-
ingly, this suggests that other simple heuristics can actually
provide an attractive alternative to enhance the performance
of indicator-based EMO algorithms for some instances. For
example, for two-objective instances, the GSI heuristic, that
sequentially inserts solutions in a random order with imme-
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Figure 1: Approximation quality of each heuristic
for random instances, given in terms of relative hy-
pervolume deviation (in log-scale, lower is better).

diate truncation of the worst-contributing solution, is actu-
ally better than GBE for a small k−value, while being worst
for a larger k. However, for d ∈ {3, 4}, the performance of
GBE and GSI can hardly be distinguished. Next, the ap-
proach based on forward selection GFS that iteratively in-
serts the best-fit solution to the subset is never outperform-
ing the other greedy heuristics for two and three objectives,
except for d = 2, n = 200 and k = 20 where it is slightly
better. However, for d = 4, GFS appears to be especially
effective, particularly for n = 200 and k = 20, as well as
for n = 1000 and k ∈ {50, 100}. To summarize, for greedy
heuristics, the overall ranking is as follows: GBE > GFS >
GSI for all the random instances we experimented. Notice,
however, that this ranking is actually reversed for d = 2.

If we now focus on the local search heuristic (in green
color on the figure), our experiments clearly show that, in-
dependently of the starting solution, LS is significantly bet-
ter than any standalone greedy heuristic for almost all ran-
dom instances, and is actually never outperformed by any
of them (the performance is comparable in some cases, with
d ∈ {3, 4} and k = 0.5 · n). In fact, all LS variants are
always very close to the best-found hypervolume, although
more fluctuations appear as n and k grow. This means that
LS accurately identifies high-quality subsets independently
of the problem dimension. However, no matter if a greedy
heuristic is used to initialize the starting solution of LS or
not, and which greedy heuristic is used, its performance re-
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Figure 2: Number of hypervolume calls (in log-scale)
performed by each heuristic for random instances.

mains nearly unchanged. Indeed, the distribution of hyper-
volume values for different LS settings overlaps for almost
any random instance.

4.2 Computational Cost
Figure 2 reports the number hypervolume computations

required by each algorithm to terminate. Indeed, this is an
essential aspect to measure the efficiency of subset selection
approaches, the hypervolume calculation being particularly
heavy computationally speaking. However, the computa-
tional complexity is not only exponentially impacted by the
problem dimension d, but it is polynomially affected by the
number points in the set from which the indicator-value is
sought. Hence, a hypervolume call for GFS, which manipu-
lates increasing-size subsets from cardinality 1 to k, is less
expensive than a hypervolume call for GBE, which manipu-
lates decreasing-size subsets from cardinality n−1 to k. As a
consequence, the number of hypervolume calls only partially
define the running time of the competing approaches. This
is the reason why we also report the CPU time required by
each heuristic in Figure 3. For the sake of generality and in
order to ease the deployment of our thorough experiments,
our implementation is the same for all dimensions d, the run-
ning time of all greedy approaches can however be definitely
improved for fixed and smaller dimensions, for instance by
using the pre-computations from [13].

Overall, the computational cost of all approaches seems to
increase exponentially with the objective space dimension d
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Figure 3: CPU time (in log-scale) required by each
heuristic for random instances.

and the reference set size n, and to increase linearly with
the target subset size k. The GSI and GFS greedy heuris-
tics are the less computationally demanding heuristics. GFS
requires more hypervolume calls than GSI as n and k grow,
but since each hypervolume call is cheaper for GFS than for
GSI, the former is actually faster in terms of CPU time. On
the contrary, GBE is much more computationally demand-
ing than other stand-alone heuristics, in terms hypervolume
calls and even more in terms of CPU time. In fact, GBE is
usually more costly than any LS variant, except of course
the one that is seeded with GBE. The trend for the effi-
ciency of LS heuristics roughly correspond to the following
ranking: GFS+LS > GSI+LS > LS > GBE+LS for all the
random instances we experimented. This means that, apart
from GBE, initializing the search process of LS with a greedy
heuristic (GSI or GFS) actually allows speeding up the iden-
tification of a local optima, independently of its obtained
quality. More importantly, the small overhead implied by
LS when performed after a greedy heuristic comes with a
significant improvement in terms of solution quality.

5. RESULTS ON STRUCTURED INSTANCES
In this section, we focus on structured instances, based on

the reference sets from the CEC 2009 competition [19].

5.1 Approximation Quality
Figure 4 reports the approximation quality obtained by

greedy and local search heuristics for structured instances.
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Figure 4: Approximation quality of each heuristic
for structured instances, given in terms of relative
hypervolume deviation (in log-scale, lower is better).

First, GSI is clearly outperforming other stand-alone greedy
heuristics for this set of instances. Indeed, it is never outper-
formed by GBE nor GFS, except for UF04 when k = 0.5 · n.
However, GBE obtains the same performance than GSI for
k = 0.05 · n, it is slightly worse for k = 0.1 · n (except
for three-objective instances UF08–10), and it is better for
k = 0.5 · n. At last, GFS is never outperforming GBE nor
GSI. Overall, for structured instances, the ranking of stand-
alone greedy heuristics is: GSI > GBE > GFS. This ranking
is different compared to random instances, where GSI was
the best-performing greedy heuristic only for d = 2, but the
worst one for other d−values.

With respect to local search heuristics, any LS variant
is always outperforming standalone greedy heuristics. Fur-
thermore, running LS on the solution obtained by any greedy
heuristic invariably allow for a significant improvement. For
UF01–04, GSI+LS is slightly better than RND+LS, and both
approaches are better than GBE+LS and GFS+LS. For other
instances, there is no clear difference between the differ-
ent LS strategies, although GBE+LS tends to be better for
small k, but not anymore for larger k−values. Overall,
GFS+LS appears to be the less efficient LS approach. As
a consequence, initializing the solution from which the local
search is started at random or with the GSI heuristic allows
to obtain a sound subset in terms of hypervolume, while
using GBE or GFS as a seeding strategy tends to make the
local search being trapped in worse-quality local optima.
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Figure 5: Number of hypervolume calls (in log-
scale) performed by each heuristic for structured
instances.

5.2 Computational Cost
Figures 5 and 6 respectively report the number of hyper-

volume calls and the CPU time required by each greedy
and local search heuristic for structured instances. As for
random instances, GBE, which is the suggested approach in
many indicator-based EMO algorithms [2, 21], is invariably
the most costly stand-alone greedy approach: not only it
makes more calls to the hypervolume function, but each hy-
pervolume computation is actually more demanding in terms
of computational time. The number of hypervolume calls is
roughly the same for GSI and GFS, except for k = 0.5 · n,
where GFS needs additional ones. However, in terms of CPU
time, GFS is clearly faster than any other greedy heuristic.

As for local search, independently of the initialization
strategy, the number of hypervolume calls is roughly the
same. GBE+LS tends to be more demanding for k = 0.05 ·
n, and less demanding for larger k−values and UF01–04
(i.e. reference sets from two-objective Pareto fronts without
any gap). This means that, apart from GBE+LS, the number
of LS steps remains almost unchanged whatever the start-
ing solution. The same conclusions can be drawn in terms
of CPU time, except that GBE+LS is now clearly more de-
manding for k < 0.5 · n. Interestingly, LS is also more effec-
tive than GBE alone for many instances. Overall, this makes
from RND+LS and GSI+LS the most effective and efficient
local search variants for structured instances.

k: 0.05 · n k: 0.1 · n k: 0.5 · n
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Figure 6: CPU time (in log-scale) required by each
heuristic for structured instances.

6. CONCLUSIONS
In this paper, we investigated different greedy and local

search heuristics for indicator-based subset selection. This
problem constitutes an important challenge in multiobjec-
tive optimization, not only during the survival selection or
archiving phase of indicator-based EMO algorithms, but
as a post-processing step as well. More particularly, our
empirical study investigates the effectiveness and the effi-
ciency of three greedy heuristics, a local search algorithm,
and combinations of those on random and structured in-
stances. Our experimental findings reveal important infor-
mation on the performance of these different algorithmic so-
lutions to the hypervolume-based subset selection problem.
Indeed, the performance of the greedy backward elimination
heuristic, which is commonly employed in practice, can be
outperformed by local searches, without necessarily requir-
ing more computation resources. As well, this conventional
procedure may be improved by a greedy sequential inser-
tion heuristic with immediate truncation, especially on two-
objective structured instances. As a consequence, within an
hypervolume-based EMO search process, instead of merg-
ing the parent and the offspring populations and then it-
eratively removing the less contributing solution, it might
actually be more effective to add offspring solutions one by
one while truncating the population to its expected size af-
ter each insertion. This might be one of the reasons why
steady-state indicator-based EMO algorithms tend to be fa-
vored over generational ones [4]. In addition, allowing a



reasonable computational overhead by running a simple lo-
cal search process, initialized with a solution obtained from
a greedy heuristic, constantly leads to an improvement in
terms of hypervolume, independently of the actual initial-
ization strategy.

In the future, we plan to measure the hypervolume cu-
mulative improvement within the EMO search process, and
to extend our experimental analysis, especially with respect
to lower bounds [14], exact or approximation methods [8,
10, 12, 14], and to implementations using more sophisti-
cated data structures [13]. In fact, the computational cost
of subset selection shall be explicitly related to the overall
computational cost of the EMO search process it operates
with. Indeed, one can consider different scenarios where the
complexity of subset selection is negligible compared against
the cost of the evaluation function from the multiobjective
optimization problem to be solved. In such a case, the hy-
pervolume, or any other indicator’s computational cost shall
not be an issue for designing a subset selection algorithm,
i.e. only quality matters. On the contrary, if the prob-
lem at hand is not expensive, then the computational cost
induced by several hypervolume calls shall be taken into
account more carefully when deriving a subset selection ap-
proach in the course of an EMO search process, or even as
a post-processing procedure.
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