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Abstract

In this note our aim is to give a proof of the Pontryagin maximum principle for a general
optimal control problem with running state constraints and smooth dynamics. Our proof is
based on the classical Ekeland variational principle.

The main result (and its proof) of this note are not new and are already well-known in
the literature. The aim of the author is only to provide a complete and detailed proof of this
classical theorem in the case of smooth dynamics. If you have any remarks or questions, do
not hesitate to contact the author at loic.bourdin@unilim.fr.
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1 Main result

We first introduce some notations available throughout the paper. Let T > 0 be fixed. For every
n ∈ N

∗ and every 1 ≤ r ≤ +∞, we denote by

• BFn := BF([0, T ],Rn) the classical space of bounded functions endowed with the classical
uniform norm ‖ · ‖∞;

• Cn := C([0, T ],Rn) the classical space of continuous functions endowed with ‖ · ‖∞;

• ACn := AC([0, T ],Rn) the classical space of absolutely continuous functions;

• BVn := BV([0, T ],Rn) the classical space of functions with bounded variations endowed with
‖ · ‖BVn

(see Appendix C for some recalls);

• Lr
n := Lr([0, T ],Rn) the classical Lebesgue space of r-integrable functions endowed with its

usual norm ‖ · ‖Lr
n
.

In the whole paper, when no confusion is possible, we remove the subscript n and we just denote
by BF, C, AC, BV or Lr.

We denote by BF+
1 := BF([0, T ],R+) and C+

1 := C([0, T ],R+) where R
+ = [0,+∞).

Then, η ∈ BVn is said to be normalized if η(0) = 0 and η is left-continuous on (0, T ). The subspace
of normalized functions with bounded variations will be denoted by NBVn.

Finally, the classical Lebesgue measure on [0, T ] will be denoted by λ.

1.1 A state constrained optimal control problem

Let m, n and j ∈ N
∗ be fixed. In this paper we consider the optimal control problem (OCP) given

by
minimize Ψ(q(T )),

subject to q ∈ ACn, u ∈ L∞
m ,

q̇(t) = f(q(t), u(t), t), a.e. t ∈ [0, T ],

q(0) = q0,

u(t) ∈ Ω, a.e. t ∈ [0, T ],

Gi(q(t), t) ≤ 0, ∀t ∈ [0, T ], ∀i = 1, . . . , j,

(OCP)

where Ψ : Rn → R is of class C1, where f : Rn × R
m × [0, T ] → R

n is continuous and of class C1

in its two first variables, where G = (Gi)i=1,...,j : R
n × [0, T ] → R

j is continuous and of class C1 in
its first variable, and where q0 ∈ R

n is fixed and Ω ⊂ R
m is a nonempty closed subset.
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Since Ψ, f and G are all regular, Problem (OCP) is said to be an optimal control problem with
smooth dynamics. The last constraint corresponds to running state constraints.

We now introduce the Hamiltonian H : Rn ×R
m ×R

n × [0, T ] → R associated to Problem (OCP)
defined by

H(q, u, p, t) := 〈p, f(q, u, t)〉Rn×Rn .

1.2 Pontryagin maximum principle

Our main result in this note is given by the following theorem.

Theorem 1 (Pontryagin maximum principle). Let (q∗, u∗) ∈ ACn ×L∞
m be an optimal solution of

Problem (OCP). There exists a nontrivial couple (ψ, η) where ψ ≥ 0 and η = (ηi)i=1,...,j ∈ NBVj

such that
u∗(t) ∈ argmin

v∈Ω
H(q∗(t), v, p(t), t)

for a.e. t ∈ [0, T ], where p ∈ BVn is the unique global solution of the backward linear Cauchy-
Stieltjes problem given by

{

−dp = ∂1H(q∗, u∗, p, ·) dt+∑j
i=1 ∂1Gi(q

∗, ·) dηi, on [0, T ],

p(T ) = ψ∇Ψ(q∗(T )).

In addition, it holds that

ηi is monotically increasing on [0, T ] and

∫ T

0

Gi(q
∗(τ), τ) dηi(τ) = 0,

for every i = 1, . . . , n.

We refer to Appendix C for some recalls about functions of bounded variations and to Appendix D
for details on linear Cauchy-Stieltjes problems.

2 Proof

This section is entirely devoted to the proof of Theorem 1. This proof is based on the classical
Ekeland variational principle and is inspired from several references like [3, 11].

2.1 Preliminaries

Let u ∈ L∞. In this preliminary section we focus on the forward (nonlinear) Cauchy problem (CPu)
given by

{

q̇(t) = f(q(t), u(t), t), a.e. t ∈ [0, T ],

q(0) = q0.
(CPu)

A couple (q, I) is said to be a (local) solution of (CPu) if

1. I ⊂ [0, T ] is an interval with nonempty interior such that min I = 0;

2. q : I → R
n is absolutely continuous on I and q satisfies

{

q̇(t) = f(q(t), u(t), t), a.e. t ∈ I,

q(0) = q0,
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or equivalently, q : I → R
n is continuous on I and q satisfies

q(t) = q0 +

∫ t

0

f(q(τ), u(τ), τ) dτ,

for every t ∈ I.

The couple (q, I) is said to be a global solution of (CPu) if I = [0, T ].

Let (q, I) and (q′, I ′) be two local solutions of (CPu). We say that (q, I) is an extension of (q′, I ′)
if I ′ ⊂ I and q(t) = q′(t) for every t ∈ I ′. We say that (q, I) is a maximal solution of (CPu) if it
extends all other local solutions of (CPu).

2.1.1 Some Cauchy-Lipschitz and continuous dependence results

Recall the two following classical Cauchy-Lipschitz (or Picard-Lindelöf) results.

Lemma 1. For every u ∈ L∞, there exists a unique maximal solution of (CPu).

In the sequel we denote by (q(·, u), I(u)) the maximal solution of (CPu) associated to u ∈ L∞.

Lemma 2. Let u ∈ L∞. If (q(·, u), I(u)) is not global (that is, T /∈ I(u)) then I(u) is not closed
and q(·, u) is unbounded on I(u).

In the sequel we denote by U ⊂ L∞ the set of controls u ∈ L∞ such that T ∈ I(u). A control
u ∈ U is usually said to be admissible. For every u ∈ U and every R > ‖u‖L∞, we introduce

Ku,R := {(x, v, t) ∈ R
n × R

m × [0, T ] | ‖x− q(t, u)‖Rn ≤ 1 and ‖v‖Rm ≤ R}.

From continuity of q(·, u) on [0, T ], Ku,R is a compact subset of Rn×R
m× [0, T ]. As a consequence,

f , ∂1f and ∂2f are bounded on Ku,R by some Lu,R ≥ 0 and it holds that

‖f(x2, v2, t)− f(x1, v1, t)‖Rn ≤ Lu,R(‖x2 − x1‖Rn + ‖v2 − v1‖Rm), (1)

for all (x1, v1, t), (x2, v2, t) ∈ Ku,R.

Proposition 1. Let u ∈ U . For every R > ‖u‖L∞, there exists νu,R > 0 such that

Eu,R := BL∞(0, R) ∩ BL1(u, νu,R)

is contained in U . Moreover, for every u′ ∈ Eu,R, it holds that (q(τ, u′), u′(τ), τ) ∈ Ku,R for a.e.
τ ∈ [0, T ].

Proof. Let R > ‖u‖L∞ and let νu,R > 0 be such that νu,RLu,Re
TLu,R < 1. Let u′ ∈ Eu,R. Our aim

is to prove that T ∈ I(u′). By contradiction, let us assume that the set

A := {t ∈ I(u′) | ‖q(t, u′)− q(t, u)‖Rn > 1}

is not empty and let t0 := inf A. From continuity, it holds that ‖q(t0, u′) − q(t0, u)‖Rn ≥ 1.
Moreover, one has t0 > 0 since q(0, u′) = q(0, u) = q0. Hence, ‖q(τ, u′) − q(τ, u)‖Rn ≤ 1 for every
τ ∈ [0, t0). Therefore (q(τ, u′), u′(τ), τ) and (q(τ, u), u(τ), τ) belong to Ku,R for a.e. τ ∈ [0, t0).
Since one has

q(t, u′)− q(t, u) =

∫ t

0

f(q(τ, u′), u′(τ), τ) − f(q(τ, u), u(τ), τ) dτ,
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for every t ∈ I(u′), it follows from (1) that

‖q(t, u′)− q(t, u)‖Rn ≤ Lu,R

∫ t

0

‖u′(τ) − u(τ)‖Rm dτ + Lu,R

∫ t

0

‖q(τ, u′)− q(τ, u)‖Rn dτ,

for every t ∈ [0, t0], which implies from the classical Gronwall lemma that

‖q(t, u′)− q(t, u)‖Rn ≤ Lu,Re
TLu,R‖u′ − u‖L1 ≤ νRLu,Re

TLu,R < 1,

for every t ∈ [0, t0]. This raises a contradiction at t = t0. Therefore A is empty. We conclude
that q(·, u′) is bounded on I(u′), then T ∈ I(u′). Moreover, since A is empty, we also conclude
that ‖q(t, u′) − q(t, u)‖Rn ≤ 1 for every t ∈ [0, T ], and thus (q(τ, u′), u′(τ), τ) ∈ Ku,R for a.e.
τ ∈ [0, T ].

We conclude this section with the following continuous dependence result.

Proposition 2. Let u ∈ U and R > ‖u‖L∞. The mapping

Fu,R : (Eu,R, ‖ · ‖L1) −→ (Cn, ‖ · ‖∞)
u′ 7−→ q(·, u′)

is Cu,R-Lipschitz continuous for some Cu,R ≥ 0.

Proof. Let u′ and u′′ be two elements of Eu,R ⊂ U . We know that (q(τ, u′′), u′′(τ), τ) and
(q(τ, u′), u′(τ), τ) are elements of Ku,R for a.e. τ ∈ [0, T ]. Following the same arguments as
in the previous proof, it follows that

‖q(t, u′′)− q(t, u′)‖Rn ≤ Lu,Re
TLu,R‖u′′ − u′‖L1 ,

for every t ∈ [0, T ]. The lemma follows with Cu,R := Lu,Re
TLu,R ≥ 0.

2.1.2 Implicit spike variations and a differentiable dependence result

Before introducing the concept of implicit spike variations, we first need to recall the following
lemma (see [11, Paragraph 3.2 p.143]). The proof is recalled in Appendix A.

Lemma 3. Let h ∈ L1
n. Then, for all ρ ∈ (0, 1), there exists a measurable set Qρ ⊂ [0, T ] such

that λ(Qρ) = ρT and

sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

(

1− 1

ρ
1Qρ

(s)

)

h(s) ds

∥

∥

∥

∥

Rn

≤ ρ.

Note that Qρ depends on h.

Let u ∈ U and u′ ∈ L∞. For every ρ ∈ [0, 1), we introduce the so-called implicit spike variation
u(·, ρ) of u associated to u′ as

u(τ, ρ) :=

{

u′(τ) if τ ∈ Qρ,
u(τ) if τ /∈ Qρ,

for a.e. τ ∈ [0, T ], where Qρ is defined in Lemma 3 associated to hu,u′ ∈ L∞
n ⊂ L1

n defined by

hu,u′(τ) := f(q(τ, u), u′(τ), τ) − f(q(τ, u), u(τ), τ),

for a.e. τ ∈ [0, T ].1

1For ρ = 0, we fix Qρ = ∅.
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Finally, we introduce the so-called variation vector w(·, u, u′) associated to (u, u′) as the unique
maximal solution, which is moreover global (see Appendix D.2), of the forward linear Cauchy
problem given by

{

ẇ(t) = ∂1f(q(t, u), u(t), t)× w(t) + hu,u′(t), a.e. t ∈ [0, T ],

w(0) = 0.

Let us prove the following differentiability dependence result.

Proposition 3. The mapping Fu,u′ defined by

Fu,u′(ρ) := q(·, u(·, ρ)) ∈ Cn,

for sufficiently small ρ ≥ 0, is Fréchet-differentiable at ρ = 0, with DFu,u′(0) = w(·, u, u′).

Proof. Let R := max(‖u‖L∞ + 1, ‖u′‖L∞). Since λ(Qρ) = ρT (see Lemma 3), it holds that
‖u(·, ρ) − u‖L1 ≤ 2RTρ for every ρ ∈ [0, 1). As a consequence, for sufficiently small ρ ≥ 0,
u(·, ρ) ∈ Eu,R ⊂ U and then Fu,u′ (ρ) is well-defined. Moreover, it follows from Proposition 2 that
‖q(·, u(·, ρ)) − q(·, u)‖∞ ≤ 2RTCu,Rρ, and consequently q(·, u(·, ρ)) uniformly converges on [0, T ]
to q(·, u).

Let us assume by contradiction that Fu,u′ is not Fréchet-differentiable at ρ = 0 with DFu,u′(0) =
w(·, u, u′). Then, there exists ε > 0 et (ρk)k a positive sequence such that (ρk)k tends to zero and
such that

∥

∥

∥

∥

Fu,u′ (ρk)− Fu,u′ (0)

ρk
− w(·, u, u′)

∥

∥

∥

∥

∞

≥ ε

for all k ∈ N. In this proof, for the ease of notations, we denote by w := w(·, u, u′), q := q(·, u) and
by qk := q(·, u(·, ρk)), uk := u(·, ρk) for every k ∈ N. Since the sequence (uk)k converges to u in L1,
we deduce from the (partial) converse of the classical Lebesgue dominated convergence theorem
that there exists a subsequence (that we do not relabel) such that (uk)k tends to u a.e. on [0, T ].

For every k ∈ N and every t ∈ [0, T ], we define zk(t) :=
qk(t)−q(t)

ρk
− w(t). From our assumption, it

holds that ‖zk‖∞ ≥ ε for all k ∈ N. On the other hand, we have

zk(t) =

∫ t

0

f(qk(τ), uk(τ), τ) − f(q(τ), u(τ), τ)

ρk
− ∂1f(q(τ), u(τ), τ) × w(τ) − hu,u′(τ) dτ,

that is,

zk(t) =

∫ t

0

f(qk(τ), uk(τ), τ) − f(q(τ), uk(τ), τ)

ρk
− ∂1f(q(τ), u(τ), τ) × w(τ)

+
f(q(τ), uk(τ), τ) − f(q(τ), u(τ), τ)

ρk
− hu,u′(τ) dτ,

for every t ∈ [0, T ]. From the classical Taylor formula with integral rest, we obtain that

zk(t) =

∫ t

0

∂1f(q(τ), u(τ), τ) × zk(τ) dτ +

∫ t

0

(

1

ρk
1Qρk

(τ) − 1

)

hu,u′(τ) dτ

+

∫ t

0

[
∫ 1

0

∂1f(q(τ) + θ(qk(τ)− q(τ)), uk(τ), τ) dθ − ∂1f(q(τ), u(τ), τ)

]

qk(τ) − q(τ)

ρk
dτ,
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for every t ∈ [0, T ]. Hence, from Lemma 3, we get that

‖zk(t)‖Rn ≤ ρk + 2RTCu,Rκk + Lu,R

∫ t

0

‖zk(τ)‖Rn dτ,

for every t ∈ [0, T ], where

κk :=

∫ T

0

∫ 1

0

‖∂1f(q(τ) + θ(qk(τ) − q(τ)), uk(τ), τ) − ∂1f(q(τ), u(τ), τ)‖Rn×Rn dθdτ.

From the continuity and the boundedness of ∂1f on Ku,R, since (uk)k tends to u a.e. on [0, T ]
and from the classical Lebesgue dominated convergence theorem, one can easily prove that (κk)k
tends to zero. Finally, from the classical Gronwall lemma, we obtain that ‖zk(t)‖Rn ≤ (ρk +
2RTCu,Rκk)e

TLu,R for every t ∈ [0, T ]. This raises a contradiction with the inequality ‖zk‖∞ ≥ ε
for all k ∈ N. The proof is complete.

2.2 Application of the Ekeland variational principle

Let us introduce g = (gi)i=1,...,j : Cn → Cj the application defined by g(q) := G(q, ·) for every
q ∈ Cn, and let S be the nonempty closed convex cone of Cj defined by S := C([0, T ], (R−)j). Thus
the running state constraints in Problem (OCP) can equivalently be replaced by

g(q) ∈ S.

Note that g is of class C1 with Dg(q)(w) = ∂1G(q, ·) × w for every q, w ∈ Cn, and that S has a
nonempty interior.

Since (Cj , ‖·‖∞) is a separable Banach space, we endow Cj with an equivalent norm ‖·‖Cj
such that

the associated dual norm ‖ · ‖C∗

j
is strictly convex (see Proposition 4 in Appendix B.1). Then, we

denote by dS the 1-Lipschitz continuous distance function to S defined by dS(q) := infz∈S ‖q−z‖Cj

for every q ∈ Cj . Since the dual norm ‖ · ‖C∗

j
is strictly convex, we know that dS is strictly

Hadamard-differentiable on Cj\S with ‖DdS(q)‖C∗

j
= 1 for every q ∈ Cj\S (see Proposition 5

in Appendix B.2). As a consequence, d2S is also strictly Hadamard-differentiable on Cj\S with
Dd2S(q) = 2dS(q)DdS(q) for every q ∈ Cj\S. We also recall that d2S is Fréchet-differentiable on S
with Dd2S(q) = 0 for every q ∈ S (see Remark 6 in Appendix B.2).

In the whole section, let q(·, u∗) ∈ AC and u∗ ∈ L∞ be an optimal solution of Problem (OCP). Let
(Rℓ)ℓ be a positive sequence such that Rℓ > ‖u∗‖L∞ for every ℓ ∈ N and such that limℓRℓ = +∞.
Let (εk)k be a positive sequence such that limk εk = 0. For every ℓ, k ∈ N, we consider the
penalized functional given by

Jℓ
k : EΩ

u∗,Rℓ
−→ R

+
∗

u 7−→
√

(

(

Ψ(q(T, u))−Ψ(q(T, u∗)) + εk
)+
)2

+ d2S

(

g
(

q(·, u)
)

)

,

where
EΩ
u∗,Rℓ

:= {u ∈ Eu∗,Rℓ
| u(τ) ∈ Ω for a.e. τ ∈ [0, T ]}.

Note that Jℓ
k is a positive functional because of the optimality of u∗. We endow EΩ

u∗,Rℓ
with the

classical norm ‖ · ‖L1 . Since Ω is a nonempty closed subset of Rm, it follows from the (partial) con-
verse of the classical Lebesgue dominated convergence theorem that (EΩ

u∗,Rℓ
, ‖ · ‖L1) is a nonempty
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closed subset of (L1, ‖·‖L1) and consequently (EΩ
u∗,Rℓ

, ‖·‖L1) is a complete metric space. Moreover,

from the continuities of Ψ, Fu∗,Rℓ
(see Proposition 2), dS and of g, one can easily see that Jℓ

k is
continuous on (EΩ

u∗,Rℓ
, ‖ · ‖L1).

Moreover it holds that Jℓ
k(u

∗) = εk. As a consequence, from the classical Ekeland variational
principle, we conclude that for every ℓ, k ∈ N, there exists uℓk ∈ EΩ

u∗,Rℓ
such that ‖uℓk−u∗‖L1 ≤ √

εk
and

−√
εk‖u− uℓk‖L1 ≤ Jℓ

k(u)− Jℓ
k(u

ℓ
k), (2)

for all u ∈ EΩ
u∗,Rℓ

. In particular, for a fixed ℓ ∈ N, note that the sequence (uℓk)k converges to

u∗ in L1 and consequently, the sequence (q(·, uℓk))k uniformly converges on [0, T ] to q(·, u∗) (see
Proposition 2).

For every ℓ, k ∈ N, we introduce

ψℓ
k :=

1

Jℓ
k(u

ℓ
k)

(

Ψ(q(T, uℓk))−Ψ(q(T, u∗)) + εk
)+ ≥ 0,

and

ϕℓ
k :=















1

Jℓ
k(u

ℓ
k)
dS

(

g(q(·, uℓk))
)

DdS

(

g
(

q(·, uℓk)
)

)

∈ C∗
j if g(q(·, uℓk)) /∈ S,

0 ∈ C∗
j if g(q(·, uℓk)) ∈ S.

In particular it holds that |ψℓ
k|2 + ‖ϕℓ

k‖2C∗

j
= 1 for every ℓ, k ∈ N.

In the sequel our aim is to derive some important inequalities from Inequality (2) using implicit
spike variations on uℓk.

Remark 1. In this remark (and in Remarks 2 and 3), our aim is to provide two crucial inequalities
satisfied by ϕℓ

k. In the case g(q(·, uℓk)) /∈ S, recall that DdS(g(q(·, uℓk))) belongs to the subdifferential
of dS at the point g(q(·, uℓk)). As a consequence, in both cases g(q(·, uℓk)) /∈ S and g(q(·, uℓk)) ∈ S,
it holds that

〈ϕℓ
k, z − g(q(·, uℓk))〉C∗

j×Cj
≤ 0, (3)

for every z ∈ S. Since S has a nonempty interior, there exists ξ ∈ S and δ > 0 such that ξ+ δz ∈ S
for every z ∈ B(Cj ,‖·‖Cj

)(0, 1). As a consequence, we obtain that

δ〈ϕℓ
k, z〉C∗

j×Cj
≤ 〈ϕℓ

k, g(q(·, uℓk))− ξ〉C∗

j×Cj
,

for every z ∈ B(Cj ,‖·‖Cj
)(0, 1). We deduce that

δ‖ϕℓ
k‖C∗

j
= δ
√

1− |ψℓ
k|2 ≤ 〈ϕℓ

k, g(q(·, uℓk))− ξ〉C∗

j×Cj
. (4)

2.2.1 First inequality depending on ℓ fixed

In this section, we fix ℓ ∈ N. Recall that the sequence (uℓk)k converges to u∗ in L1. Using compact-
ness arguments, we infer the existence of a subsequence of (εk)k (that we do not relabel)2 such that
(uℓk)k converges to u∗ a.e. on [0, T ], (ψℓ

k)k converges to some ψℓ ≥ 0 and (ϕℓ
k)k weakly* converges

2The subsequence of (εk)k is not relabel. However, it is worth to note that the extracted subsequence depends
on ℓ fixed.
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to some ϕℓ ∈ C∗
j . In particular, it holds that |ψℓ|2 + ‖ϕℓ‖2C∗

j
≤ 1.

In the whole section, for the ease of notations, we denote by qℓk := q(·, uℓk) for every k ∈ N. Let
u′ ∈ L∞ such that u′(τ) ∈ Ω ∩ BRm(0, Rℓ) for a.e. τ ∈ [0, T ]. For every ρ ∈ [0, 1), we consider the
implicit spike variation

uℓk(τ, ρ) :=

{

u′(τ) if τ ∈ Qρ,
uℓk(τ) if τ /∈ Qρ,

for a.e. τ ∈ [0, T ], where Qρ is defined in Lemma 3 associated to huℓ
k
,u′ ∈ L∞

n ⊂ L1
n defined by

huℓ
k
,u′(τ) := f(qℓk(τ), u

′(τ), τ) − f(qℓk(τ), u
ℓ
k(τ), τ),

for a.e. τ ∈ [0, T ].3

First of all, note that ‖uℓk(·, ρ)− u∗‖L1 ≤ ‖uℓk(·, ρ)− uℓk‖L1 + ‖uℓk − u∗‖L1 ≤ 2RℓTρ+
√
εk < νu∗,Rℓ

for sufficiently small ρ and sufficiently large k and then uℓk(·, ρ) ∈ EΩ
u∗,Rℓ

. For such a sufficiently

small ρ and sufficiently large k, we apply Inequality (2) with u = uℓk(·, ρ) and we obtain that

−2RℓT
√
εk ≤ Jℓ

k(u
ℓ
k(·, ρ))− Jℓ

k(u
ℓ
k)

ρ
=
Jℓ
k(u

ℓ
k(·, ρ))2 − Jℓ

k(u
ℓ
k)

2

ρ
× 1

Jℓ
k(u

ℓ
k(·, ρ)) + Jℓ

k(u
ℓ
k)
.

From the continuity of Jℓ
k, we get that limρ→0 J

ℓ
k(u

ℓ
k(·, ρ)) + Jℓ

k(u
ℓ
k) = 2Jℓ

k(u
ℓ
k). From the differen-

tiabilities of the application x 7→ (x+)2 for x ∈ R, of Ψ, of g, of d2S and of Fuℓ
k
,u′ (see Proposition 3),

we obtain that

lim
ρ→0

Jℓ
k(u

ℓ
k(·, ρ))2 − Jℓ

k(u
ℓ
k)

2

ρ

= 2
(

Ψ(qℓk(T ))−Ψ(q(T, u∗)) + εk

)+〈

∇Ψ(qℓk(T )), w(T, u
ℓ
k, u

′)
〉

Rn×Rn

+
〈

2dS(g(q
ℓ
k))DdS(g(q

ℓ
k)), Dg(q

ℓ
k)(w(·, uℓk, u′))

〉

C∗

j×Cj

,

with the convention that the second term is zero if g(qℓk) ∈ S. Finally, we have obtained that

−2RℓT
√
εk ≤ ψℓ

k

〈

∇Ψ(qℓk(T )), w(T, u
ℓ
k, u

′)
〉

Rn×Rn
+
〈

ϕℓ
k, Dg(q

ℓ
k)(w(·, uℓk, u′))

〉

C∗

j×Cj

. (5)

To conclude this section, we need the following result.4

Lemma 4. The sequence (w(·, uℓk, u′))k uniformly converges on [0, T ] to w(·, u∗, u′).

Proof. In this proof, for the ease of notations, we denote by q∗ := q(·, u∗), w := w(·, u∗, u′) and by
wk := w(·, uℓk, u′) for all k ∈ N. It holds that

wk(t)− w(t) =

∫ t

0

∂1f(q
ℓ
k(τ), u

ℓ
k(τ), τ) × wk(τ) + huℓ

k
,u′(τ)

− ∂1f(q
∗(τ), u∗(τ), τ) × w(τ) − hu∗,u′(τ) dτ,

3For ρ = 0, we fix Qρ = ∅.
4This result requires to fix ℓ ∈ N. Indeed, one needs a bound on ‖uℓ

k
‖L∞ in order to conclude from the classical

Lebesgue dominated convergence theorem.
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that is,

wk(t)− w(t) =

∫ t

0

∂1f(q
ℓ
k(τ), u

ℓ
k(τ), τ) × (wk(τ) − w(τ)) dτ +

∫ t

0

huℓ
k
,u′(τ) − hu∗,u′(τ) dτ

+

∫ t

0

(

∂1f(q
ℓ
k(τ), u

ℓ
k(τ), τ) − ∂1f(q

∗(τ), u∗(τ), τ)
)

× w(τ) dτ,

for every t ∈ [0, T ]. Recall that uℓk ∈ Eu∗,Rℓ
and u′ ∈ BL∞(0, Rℓ), then (qℓk(τ), u

ℓ
k(τ), τ) ∈ Ku∗,Rℓ

(see Proposition 1) and (qℓk(τ), u
′(τ), τ) ∈ Ku∗,Rℓ

for a.e. τ ∈ [0, T ] and recall that f and ∂1f are
bounded on Ku∗,Rℓ

by Lu∗,Rℓ
≥ 0. Recall also that (uℓk)k tends to u∗ a.e. on [0, T ]. Finally, using

similar arguments than in the proof of Proposition 3 and the classical Gronwall lemma, one can
easily conclude the proof.

Using the above lemma and the C1-regularity of Ψ and g, by letting k tend to +∞ in Inequality (5),
we obtain that

0 ≤ ψℓ
〈

∇Ψ(q(T, u∗)), w(T, u∗, u′)
〉

Rn×Rn
+
〈

ϕℓ, Dg(q(·, u∗))(w(·, u∗, u′))
〉

C∗

j×Cj

. (6)

Remark 2. Letting k tend to +∞ in Remark 1, one can easily obtain the two following crucial
inequalities:

〈ϕℓ, z − g(q(·, u∗))〉C∗

j
×Cj

≤ 0, (7)

for every z ∈ S, and

δ
√

1− |ψℓ|2 ≤ 〈ϕℓ, g(q(·, u∗))− ξ〉C∗

j
×Cj

. (8)

2.2.2 Second inequality independent of ℓ

In the previous section, we have obtained Inequality (6) that is valid for a fixed ℓ ∈ N and for every
u′ ∈ L∞ such that u′(τ) ∈ Ω ∩ BRm(0, Rℓ). Our aim in this section is to remove the dependence
in Rℓ (in order to cover the case where Ω is unbounded).

Since |ψℓ|2 + ‖ϕℓ‖2C∗

j
≤ 1 for every ℓ ∈ N and from compactness arguments, we infer the existence

of a subsequence of (Rℓ)ℓ (that we do not relabel) such that (ψℓ)ℓ converges to some ψ ≥ 0 and
(ϕℓ)ℓ weakly* converges to some ϕ ∈ C∗

j .

Let u′ ∈ L∞ such that u′(τ) ∈ Ω for a.e. τ ∈ [0, T ]. Let ℓ ∈ N be sufficiently large in order to have
Rℓ > ‖u′‖L∞ . From Inequality (6), it holds that

0 ≤ ψℓ
〈

∇Ψ(q(T, u∗)), w(T, u∗, u′)
〉

Rn×Rn
+
〈

ϕℓ, Dg(q(·, u∗))(w(·, u∗, u′))
〉

C∗

j×Cj

.

Letting ℓ tend to +∞, we prove that

0 ≤ ψ
〈

∇Ψ(q(T, u∗)), w(T, u∗, u′)
〉

Rn×Rn
+
〈

ϕ,Dg(q(·, u∗))(w(·, u∗, u′))
〉

C∗

j×Cj

, (9)

for every u′ ∈ L∞ such that u′(τ) ∈ Ω for a.e. τ ∈ [0, T ].

Remark 3. Letting ℓ tend to +∞ in Remark 2, one can easily obtain the two following crucial
inequalities:

〈ϕ, z − g(q(·, u∗))〉C∗

j
×Cj

≤ 0, (10)
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for every z ∈ S, and

δ
√

1− |ψ|2 ≤ 〈ϕ, g(q(·, u∗))− ξ〉C∗

j×Cj
. (11)

Inequality (11) proves that the couple (ψ, ϕ) is not trivial.

2.3 Introduction of the adjoint vector p

2.3.1 Introduction of η

Let us denote by ϕ = (ϕi)i=1,...,j where ϕi ∈ C∗
1 and let us apply the classical Riesz theorem (see

Proposition 6 in Appendix C.1). For every i = 1, . . . , j, there exists a unique ηi ∈ NBV1 such that

〈ϕi, z〉C∗

1×C1
=

∫ T

0

z(τ) dηi(τ),

for every z ∈ C1. Recall that ϕi = 0 if and only if ηi = 0. As a consequence, from Remark 3, the
couple (ψ, η) is not trivial, where η := (ηi)i=1,...,j ∈ NBVj .

Taking

z =
(

g1(q(·, u∗)), . . . , gi−1(q(·, u∗)), 0, gi+1(q(·, u∗)), . . . , gj(q(·, u∗))
)

∈ S

and

z =
(

g1(q(·, u∗)), . . . , gi−1(q(·, u∗)), 2gi(q(·, u∗)), gi+1(q(·, u∗)), . . . , gj(q(·, u∗))
)

∈ S

in Inequality (10), we obtain that 〈ϕi, gi(q(·, u∗))〉C∗

1
×C1

= 0, that is,

∫ T

0

Gi(q(τ, u
∗), τ) dηi(τ) = 0,

for every i = 1, . . . , n.

Moreover, it follows that 〈ϕi, z〉C∗

1×C1
≥ 0 for every z ∈ C+

1 . From the classical Riesz theorem (see
Proposition 6 in Appendix C.1), we deduce that ηi is monotically increasing on [0, T ] for every
i = 1, . . . , j.

2.3.2 Definition of p

Using notations introduced in Appendix C.2, one has

〈ϕ, z〉C∗

j×Cj
=

∫ T

0

〈z(τ), dη(τ)〉

for every z ∈ Cj . From Inequality (9) and since Dg(q)(w) = ∂1G(q, ·)×w for every q, w ∈ Cn, we
have proved that

0 ≤ ψ
〈

∇Ψ(q(T, u∗)), w(T, u∗, u′)
〉

Rn×Rn
+

∫ T

0

〈

∂1G(q(τ, u
∗), τ)× w(τ, u∗, u′), dη(τ)

〉

, (12)

for every u′ ∈ L∞ such that u′(τ) ∈ Ω for a.e. τ ∈ [0, T ].

11



Let Z(·, ·) be the state-transition matrix associated to ∂1f(q(·, u∗), u∗, ·) ∈ L∞([0, T ],Rn,n) (see
Appendix D.1). From the classical Duhamel formula (see Proposition 8 in Appendix D.2), it holds
that

w(t, u∗, u′) =

∫ t

0

Z(t, s)× hu∗,u′(s) ds

for every t ∈ [0, T ]. Replacing w(·, u∗, u′) in (12), using first the Fubini-type formula (18) and then
Equality (17), one can obtain that

0 ≤
∫ T

0

〈

hu∗,u′(s), ψZ(T, s)⊤ ×∇Ψ(q(T, u∗))

+

∫ T

s

Z(τ, s)⊤ × ∂1G(q(τ, u
∗), τ)⊤ × dη(τ)

〉

Rn×Rn
ds, (13)

for every u′ ∈ L∞ such that u′(τ) ∈ Ω for a.e. τ ∈ [0, T ].

Let p ∈ BVn be the unique global solution of the backward linear Cauchy-Stieltjes problem given
by

{

−dp = ∂1f(q(·, u∗), u∗, ·)⊤ × p dt+
∑j

i=1 ∂1Gi(q(·, u∗), ·) dηi, on [0, T ],

p(T ) = ψ∇Ψ(q(T, u∗)).

We refer to Proposition 9 in Appendix D.3 for the existence and uniqueness of p. Note that p is
independent of u′. From the Duhamel-type formula (see Proposition 10 in Appendix D.3), it holds
that

p(s) = ψZ(T, s)⊤ ×∇Ψ(q(T, u∗)) +

∫ T

s

Z(τ, s)⊤ × ∂1G(q(τ, u
∗), τ)⊤ × dη(τ) ∈ R

n,

for every s ∈ [0, T ]. It follows from the above expression of p and from Inequality (13) that
∫ T

0 〈hu∗,u′(s), p(s)〉Rn×Rnds ≥ 0, that is,

∫ T

0

H(q(s, u∗), u′(s), p(s), s) −H(q(s, u∗), u∗(s), p(s), s) ds ≥ 0, (14)

for every u′ ∈ L∞ such that u′(τ) ∈ Ω for a.e. τ ∈ [0, T ].

2.4 End of the proof

Let v ∈ Ω be fixed. Let t ∈ [0, T ) be a continuity point of p ∈ BVn and be a Lebesgue point of
the application s 7→ H(q(s, u∗), u∗(s), p(s), s) which belongs to L∞

1 . Let α ∈ (0, T − t) and let us
consider

u′(τ) :=

{

v if τ ∈ [t, t+ α),
u∗(τ) if τ /∈ [t, t+ α),

for a.e. τ ∈ [0, T ]. From Inequality (14), it holds that

∫ t+α

t

H(q(s, u∗), v, p(s), s)−H(q(s, u∗), u∗(s), p(s), s) ds ≥ 0.

Dividing by α > 0 and letting α→ 0+, we obtain that

H(q(t, u∗), v, p(t), t)−H(q(t, u∗), u∗(t), p(t), t) ≥ 0.

12



Since the last inequality is true for every v ∈ Ω and for a.e. t ∈ [0, T ], we obtain the maximization
condition

u∗(t) ∈ argmin
v∈Ω

H(q(t, u∗), v, p(t), t)

for a.e. t ∈ [0, T ].

A Proof of Lemma 3

Recall that the classical Lesbesgue measure λ is a nonatomic measure (see, e.g., [8, Remark
1.161 p.111]). As a consequence, from the classical Sierpinski (or Lyapunov) theorem (see [14]
or [9, p.37]), for all measurable set R ⊂ [0, T ], there exists a measurable set Rρ ⊂ R such that
λ(Rρ) = ρλ(R) for all ρ ∈ (0, 1).

The whole section is dedicated to the proof of Lemma 3. Let ρ ∈ (0, 1).

Lemma 5. Let b : [0, T ]2 → R
n be defined by

b(t, s) := h(s)1[0,t](s).

Then, b ∈ C([0, T ],L1
n).

Proof. Let t ∈ [0, T ] and let (tn) ⊂ [0, T ] be a decreasing sequence such that tn → t. Then, it holds
that

‖b(tn, ·)− b(t, ·)‖L1 =

∫ T

0

|b(tn, s)− b(t, s)| ds

=

∫ t

0

|b(tn, s)− b(t, s)| ds+
∫ tn

t

|b(tn, s)− b(t, s)| ds =
∫ tn

t

|h(s)| ds→ 0.

Similarly, we prove that ‖b(tn, ·)− b(t, ·)‖L1 → 0 for any increasing sequence (tn) ⊂ [0, T ] such that
tn → t. The proof is complete.

Since [0, T ] is compact, there exists δ > 0 such that ‖b(t, ·)− b(t̄, ·)‖L1 ≤ ρ2

2(ρ+1) for all t, t̄ ∈ [0, T ]

satisfying |t− t̄| < δ. In the sequel, we fix 0 = t0 < t1 < . . . < tN = T such that |tr+1 − tr| < δ for
all r = 0, . . . , N − 1 and we define

B(·) :=
(

b(t0, ·), b(t1, ·), . . . , b(tN , ·)
)

∈ L1([0, T ], (Rn)N+1).

Lemma 6. There exists a measurable set Qρ ⊂ [0, T ] such that λ(Qρ) = ρT and

∥

∥

∥

∥

∥

∫ T

0

(

1− 1

ρ
1Qρ

(s)

)

B(s) ds

∥

∥

∥

∥

∥

(Rn)N+1

≤ ρ

2
.

Proof. Since B ∈ L1([0, T ], (Rn)N+1), there exists a simple function J : [0, T ] → (Rn)N+1 such

that
∫ T

0 ‖B(s)− J(s)‖(Rn)N+1ds ≤ ρ2

2(ρ+1) . Let us denote by J :=
∑K

i=1 ai1Ri , where ai ∈ (Rn)N+1

and Ri ⊂ [0, T ] are measurable sets such that
∐K

i=1 R
i = [0, T ]. Since λ is nonatomic, there exist

Ri
ρ ⊂ Ri such that λ(Ri

ρ) = ρλ(Ri) for all i = 1, . . . ,K. Let us define Qρ :=
∐K

i=1 R
i
ρ ⊂ [0, T ].
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Note that λ(Qρ) = ρT . Moreover, it holds that
∥

∥

∥

∥

∥

∫ T

0

(

1− 1

ρ
1Qρ

(s)

)

B(s) ds

∥

∥

∥

∥

∥

(Rn)N+1

≤
∥

∥

∥

∥

∥

∫ T

0

(

1− 1

ρ
1Qρ

(s)

)

J(s) ds

∥

∥

∥

∥

∥

(Rn)N+1

+

∥

∥

∥

∥

∥

∫ T

0

(

1− 1

ρ
1Qρ

(s)

)

(B(s) − J(s)) ds

∥

∥

∥

∥

∥

(Rn)N+1

.

The second integral in the left term can be easily bounded by ρ
2 and the first one is equal to

∥

∥

∥

∥

∥

K
∑

i=1

ai

∫ T

0

(

1Ri(s)− 1

ρ
1Qρ∩Ri(s)

)

ds

∥

∥

∥

∥

∥

(Rn)N+1

=

∥

∥

∥

∥

∥

K
∑

i=1

ai

(

λ(Ri)− 1

ρ
λ(Ri

ρ)

)

∥

∥

∥

∥

∥

(Rn)N+1

= 0.

The proof is complete.

Let us now conclude the proof of Lemma 3. Let t ∈ [0, T ]. There exists r ∈ {0, . . . , N − 1} such

that t ∈ [tr, tr+1]. In particular, it holds that |t − tr| < δ and thus ‖b(t, ·) − b(tr, ·)‖L1 ≤ ρ2

2(ρ+1)

(see remark after Lemma 5). It holds that

∥

∥

∥

∥

∫ t

0

(

1− 1

ρ
1Qρ

(s)

)

h(s) ds

∥

∥

∥

∥

Rn

=

∥

∥

∥

∥

∥

∫ T

0

(

1− 1

ρ
1Qρ

(s)

)

b(t, s) ds

∥

∥

∥

∥

∥

Rn

≤
∥

∥

∥

∥

∥

∫ T

0

(

1− 1

ρ
1Qρ

(s)

)

(b(t, s)− b(tr, s)) ds

∥

∥

∥

∥

∥

Rn

+

∥

∥

∥

∥

∥

∫ T

0

(

1− 1

ρ
1Qρ

(s)

)

b(tr, s) ds

∥

∥

∥

∥

∥

Rn

.

The first term can be bounded by (1 + 1
ρ)‖b(t, ·) − b(tr, ·)‖L1 ≤ ρ

2 and the second one can be

bounded by
∥

∥

∥

∫ T

0

(

1− 1
ρ1Qρ

(s)
)

B(s)ds
∥

∥

∥

(Rn)N+1
≤ ρ

2 (see Lemma 6). Finally, we have proved that

∥

∥

∥

∥

∫ t

0

(

1− 1

ρ
1Qρ

(s)

)

h(s) ds

∥

∥

∥

∥

Rn

≤ ρ.

The proof of Lemma 3 is complete.

B Some recalls about Banach spaces geometry

B.1 Renorming a separable Banach space

Let (X, ‖ · ‖) be a normed linear space. The dual space of (X, ‖ · ‖) is X∗ := L((X, ‖ · ‖),R) and
X∗ can be endowed with the dual norm of ‖ · ‖ defined by

‖ · ‖∗ : X∗ −→ R
+

f 7−→ sup
x∈X
‖x‖≤1

|〈f, x〉X∗×X |.

In this case, we denote (X∗, ‖ · ‖∗) = dual((X, ‖ · ‖)). Recall that (X∗, ‖ · ‖∗) is a Banach space,
even if (X, ‖ · ‖) is not.
Lemma 7. Let (X, ‖ · ‖) be a Banach space5 and (X∗, ‖ · ‖∗) = dual((X, ‖ · ‖)). Let N∗ be a norm
on X∗ equivalent to ‖ · ‖∗. Then, the following properties are equivalent:

5The Banach assumption is necessary in order to apply [4, Proposition 3.13 p.63] deriving from the classical
Banach-Steinhaus theorem.
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1. N∗ is weak* lower semicontinuous on (X∗, ‖ · ‖∗);

2. There exists N a norm on X equivalent to ‖ · ‖ such that (X∗, N∗) = dual((X,N)).

Remark 4. This lemma is given in [13, Lemma 3.94 p.251].

Proof. 2 ⇒ 1. Since (X, ‖ · ‖) is a Banach space and since N is equivalent to ‖ · ‖, note that
(X,N) is a Banach space. Let us prove that N∗ is weak* lower semicontinuous on (X∗, ‖ · ‖∗).
Let (fn) ⊂ X∗ and f ∈ X∗. From [4, Proposition 3.13 p.63], (fn) weak* converges to f in
(X∗, ‖ · ‖∗) = dual((X, ‖ · ‖)) if and only if 〈fn, x〉X∗×X tends to 〈f, x〉X∗×X for every x ∈ X if and
only if (fn) weak* converges to f in (X∗, N∗) = dual((X,N)). Since (X,N) is a Banach space, we
obtain from [4, Proposition 3.13 p.63] that (N∗(fn)) is bounded and N∗(f) ≤ lim inf N∗(fn).

1 ⇒ 2. We know that there exist 0 < µ1 ≤ µ2 such that µ1‖f‖∗ ≤ N∗(f) ≤ µ2‖f‖∗ for every
f ∈ X∗. Our proof is based on two steps.

First step - Definition of N and equivalence to ‖ · ‖. We define

N : X −→ R
+

x 7−→ sup
f∈X∗

N∗(f)≤1

|〈f, x〉X∗×X |.

First of all, let us note that N is well-defined since |〈f, x〉X∗×X | ≤ ‖f‖∗‖x‖ ≤ 1
µ1
N∗(f)‖x‖ ≤ 1

µ1
‖x‖

for every x ∈ X and every f ∈ X∗ such that N∗(f) ≤ 1. In particular it holds that N(x) ≤ 1
µ1
‖x‖

for every x ∈ X . Let us prove that N is a norm on X . Clearly we have N(λx) = |λ|N(x) and
N(x + y) ≤ N(x) +N(y) for every x, y ∈ X and every λ ∈ R. Moreover, it holds that N(0) = 0.
Now let us consider x 6= 0. From the classical Hahn-Banach theorem (see [4, Corollary 1.3 p.3])
applied to (X, ‖ · ‖) (with dual (X∗, ‖ · ‖∗)), there exists f ∈ X∗ such that 〈f, x〉X∗×X = ‖x‖2
and ‖f‖∗ = ‖x‖. Let g := f

µ2‖x‖
∈ X∗. It holds that N∗(g) = N∗(f)

µ2‖x‖
≤ µ2‖f‖∗

µ2‖x‖
= 1 and

|〈g, x〉X∗×X | = |〈f,x〉X∗×X |

µ2‖x‖
= ‖x‖

µ2
. Thus N(x) ≥ ‖x‖

µ2
> 0. As a consequence, we have proved that

N(x) = 0 if and only if x = 0. We conclude that N is a norm on X . Moreover, we have also proved
that 1

µ2
‖x‖ ≤ N(x) ≤ 1

µ1
‖x‖ for every x ∈ X (the case x = 0 is obvious). As a consequence, N is

equivalent to ‖ · ‖.

Second step - (X∗, N∗) = dual((X,N)). Since N is equivalent to ‖ · ‖, L((X,N),R) = L((X, ‖ ·
‖),R) = X∗, i.e. X∗ is the dual space of (X,N). Let us introduce Ñ the dual norm of N on X∗

given by
Ñ : X∗ −→ R

+

f 7−→ sup
x∈X

N(x)≤1

|〈f, x〉X∗×X |.

In particular, we have (X∗, Ñ) = dual((X,N)). Our aim is to prove that N∗ = Ñ . Firstly,
let f ∈ X∗ such that f 6= 0. Let x ∈ X such that N(x) ≤ 1. From the definition of N ,
since N∗( f

N∗(f) ) = 1, we have |〈 f
N∗(f) , x〉X∗×X | ≤ N(x) ≤ 1. Thus, |〈f, x〉X∗×X | ≤ N∗(f)

for every x ∈ X such that N(x) ≤ 1. As a consequence, from the definition of Ñ , we obtain
that Ñ(f) ≤ N∗(f) for every f ∈ X∗ (the case f = 0 is obvious). Secondly, let us assume by
contradiction that there exists f0 ∈ X∗ such that Ñ(f0) < N∗(f0). Thus f0 6= 0 and we can define
g := f0

Ñ(f0)
∈ X∗ satisfying Ñ(g) = 1 < N∗(g). Hence g /∈ B(X∗,N∗)(0, 1). From Hypothesis 1, one

can easily see that B(X∗,N∗)(0, 1) is a nonempty weakly* closed convex of (X∗, ‖ · ‖∗). Then, recall
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that the dual of (X∗, ‖ · ‖∗) = dual((X, ‖ · ‖)) endowed with the classical weak* topology is the set
(〈·, x〉X∗×X)x∈X (see [4, Proposition 3.14 p.64]). Finally, from the classical Hahn-Banach theorem6

(see [4, Theorem 1.7 p.7]), there exists x ∈ X , α ∈ R and ε > 0 such that 〈f, x〉X∗×X ≤ α − ε <
α + ε ≤ 〈g, x〉X∗×X for every f ∈ B(X∗,N∗)(0, 1). As a consequence, from the definition of N , we

obtain that N(x) < 〈g, x〉X∗×X ≤ Ñ(g)N(x) and finally Ñ(g) > 1. This is a contradiction.

Proposition 4. Let (X, ‖·‖) be a separable Banach space and (X∗, ‖·‖∗) = dual((X, ‖·‖)). There
exists a norm N on X equivalent to ‖ · ‖ such that:

1. N∗ is equivalent on X∗ to ‖ · ‖∗;

2. N∗ is strictly convex on X∗;

where (X∗, N∗) = dual((X,N)).

Remark 5. This proposition is given in [11, Theorem 2.18 p.42].

Proof. Our proof is based on four steps, including the application of Lemma 7.

First step (definition of N∗ and equivalence to ‖ · ‖∗). Let (ek)k∈N∗ ⊂ X be a sequence dense in
B(X,‖·‖)(0, 1). Then, let us consider the linear operator given by

A : X∗ −→ ℓ2(N∗,R)

f 7−→
(

1

2k/2
〈f, ek〉X∗×X

)

k∈N∗

.

Let us note that

‖A(f)‖2ℓ2 =
∑

k∈N∗

1

2k
|〈f, ek〉X∗×X |2 ≤ ‖f‖2∗,

for every f ∈ X∗. Now we define

N∗ : X∗ −→ R
+

f 7−→ ‖f‖∗ + ‖A(f)‖ℓ2 .

ClearlyN∗ is a norm onX∗ that is equivalent to ‖·‖∗ since ‖f‖∗ ≤ N∗(f) ≤ 2‖f‖∗ for every f ∈ X∗.

Second step (strict convexity of N∗). Let f , g ∈ X∗ and let λ ∈ (0, 1) such that N∗(λf+(1−λ)g) =
λN∗(f)+ (1−λ)N∗(g). Our aim is to prove that f = µg for some µ ≥ 0. Since ‖ · ‖∗ and ‖A(·)‖ℓ2
are convex, we get that ‖A(λf + (1 − λ)g)‖ℓ2 = λ‖A(f)‖ℓ2 + (1 − λ)‖A(g)‖ℓ2 . Computing the
square of the previous equality and using the linearity of A and the bilinearity of 〈·, ·〉ℓ2 , one
can easily obtain that 〈A(f), A(g)〉ℓ2 = ‖A(f)‖ℓ2‖A(g)‖ℓ2 . From the classical Cauchy-Schwarz
inequality in ℓ2(N∗,R), there exists µ ≥ 0 such that A(f) = µA(g), that is, A(f − µg) = 0 and
〈f − µg, ek〉X∗×X = 0 for every k ∈ N

∗. From density and homogeneity, we easily obtain that
〈f − µg, x〉X∗×X = 0 for every x ∈ X , i.e. f − µg = 0.

Third step (N∗ is weak* lower semicontinuous on (X∗, ‖·‖∗)). Let (fn) ⊂ X∗ and f ∈ X∗ such that
(fn) weak* converges to f in (X∗, ‖ · ‖∗) = dual((X, ‖ · ‖)), i.e. 〈fn, x〉X∗×X tends to 〈f, x〉X∗×X

for every x ∈ X (see [4, Proposition 3.13 p.63]). Let us prove that N∗(f) ≤ lim inf N∗(fn).
First of all, recall that (‖fn‖∗) is bounded by some M ≥ 0 and that ‖f‖∗ ≤ lim inf ‖fn‖∗ (see
[4, Proposition 3.13 p.63]). Thus, lim inf N∗(fn) ≥ lim inf ‖fn‖∗ + lim inf ‖A(fn)‖ℓ2 ≥ ‖f‖∗ +

6The classical Hahn-Banach theorem can be applied here since (X∗, ‖ · ‖∗) = dual((X, ‖ · ‖)) endowed with the
classical weak* topology is a topological vector space that is locally convex.
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lim inf ‖A(fn)‖ℓ2 . Let us recall that ‖A(fn)‖2ℓ2 =
∑

k∈N∗

1
2k
〈fn, ek〉2X∗×X . Since ( 1

2k
〈fn, ek〉2X∗×X)

converge to 1
2k 〈f, ek〉2X∗×X and since | 1

2k 〈fn, ek〉2X∗×X | ≤ 1
2k ‖fn‖2∗‖ek‖2 ≤ M2

2k ∈ ℓ1(N∗,R) for every
n ∈ N, we obtain from the classical Lebesgue dominated convergence theorem that lim ‖A(fn)‖ℓ2 =
‖A(f)‖ℓ2 . Finally, we have proved that lim inf N∗(fn) ≥ ‖f‖∗ + ‖A(f)‖ℓ2 = N∗(f).

Fourth step (conclusion). We conclude the proof by applying Lemma 7.

B.2 The distance function

For this section, we essentially refer to [12, 13].

In the whole section, (X, ‖ · ‖) denotes a normed linear space and (X∗, ‖ · ‖∗) := dual((X, ‖ · ‖)).
In this section, we denote by 〈·, ·〉 := 〈·, ·〉X∗×X .

Lemma 8. Let S ⊂ X be a convex subset such that Int(S) 6= ∅. Then, Adh(Int(S)) = Adh(S).

Proof. Let us prove that Adh(S) ⊂ Adh(Int(S)). Let x ∈ Adh(S) and let y ∈ Int(S) such that y 6= x.
There exists ε > 0 such that y + BX(0, ε) ⊂ S. Let us prove that the line segment (x, y) ⊂ Int(S).
Let w := tx+(1−t)y for some t ∈ (0, 1). Since x ∈ Adh(S), there exists x′ ∈ S such that ‖x−x′‖ <
ε 1−t

t . Let us denote by z := x− x′. Finally, we have w = tx′ + (1− t)y + tz = tx′ + (1− t)(y + ξ)
where ξ := t

1−tz ∈ BX(0, ε). As a consequence, since x′ ∈ S, since y +BX(0, ε) ⊂ S and since S is
convex, w ∈ tx′ + (1 − t)(y + BX(0, ε)) ⊂ S, that is, w belongs to an open subset included in S,
i.e. w ∈ Int(S). Finally, we have proved that (x, y) ⊂ Int(S) and thus x ∈ Adh(Int(S)).

Let ϕ : X → R be a convex function and x ∈ X . Recall that the subdifferential of ϕ at x is defined
by

∂ϕ(x) := {f ∈ X∗ | 〈f, y − x〉 ≤ ϕ(y)− ϕ(x), ∀y ∈ X}.
Note that ∂ϕ(x) is a weakly* closed convex subset of X∗.

Lemma 9. If ϕ : X → R is continuous, then ∂ϕ(x) 6= ∅ for every x ∈ X.

Proof. Recall that the epigraph of ϕ is defined by

Epiϕ := {(y, λ) ∈ X × R | ϕ(y) ≤ λ} ⊂ X × R.

Since ϕ is convex and continuous on X , Epiϕ is clearly a nonempty closed convex subset of X×R.
Let x ∈ X . It is clear that (x, ϕ(x)) /∈ Int(Epiϕ) (since (x, ϕ(x) − ε) /∈ Epiϕ for all ε > 0)
and that Int(Epiϕ) is a nonempty7 open convex8 subset of X × R. From the classical Hahn-
Banach theorem (see [4, Lemma 1.3 p.6]), there exists (f, c) ∈ (X × R)∗ = X∗ × R such that
〈(f, c), (x, ϕ(x))〉 < 〈(f, c), (w, r)〉, i.e. 〈f, w−x〉+ c(r−ϕ(x)) > 0 for all (w, r) ∈ Int(Epiϕ). From
the continuity of ϕ at x, it follows that (x, ϕ(x)+1) ∈ Int(Epiϕ). Thus, taking (w, r) = (x, ϕ(x)+1),
we obtain that c > 0. From Lemma 8, we also obtain that 〈f, w − x〉 + c(r − ϕ(x)) ≥ 0 for all
(w, r) ∈ Epiϕ. Finally, taking r = ϕ(w), we conclude that 〈− 1

cf, w − x〉 ≤ ϕ(w) − ϕ(x) for all

w ∈ X , i.e. − 1
cf ∈ ∂ϕ(x). The proof is complete.

Lemma 10. If ϕ : X → R is L-Lipschitz continuous on X for some L ≥ 0, then ∂ϕ(x) 6= ∅ and
∂ϕ(x) ⊂ BX∗(0, L) for every x ∈ X.

Proof. Let x ∈ X and f ∈ ∂ϕ(x) 6= ∅ (see Lemma 9). One can easily obtain that |〈f, z〉| =
〈f,±z〉 = 〈f,±z + x− x〉 ≤ ϕ(±z + x)− ϕ(x) ≤ |ϕ(±z + x)− ϕ(x)| ≤ L‖ ± z + x− x‖ = L‖z‖ for
every z ∈ X . Thus ‖f‖∗ ≤ L.

7Int(Epiϕ) is nonempty since, from Lemma 8, Adh(Int(Epiϕ)) = Adh(Epiϕ) = Epiϕ is nonempty.
8One can easily prove that the interior of a convex set is a convex set.
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Lemma 11. If ϕ : X → R is Gâteaux-differentiable at some x ∈ X, then ∂ϕ(x) = {Dϕ(x)}.

Proof. Firstly, let us prove that Dϕ(x) ∈ ∂ϕ(x). From the convexity of ϕ, it holds that ϕ(x +

λ(y − x)) ≤ ϕ(x) + λ(ϕ(y) − ϕ(x)), i.e. ϕ(x+λ(y−x))−ϕ(x)
λ ≤ ϕ(y) − ϕ(x) for any y ∈ X and any

λ ∈ (0, 1). Passing to the limit λ → 0+, we obtain that 〈Dϕ(x), y − x〉 ≤ ϕ(y) − ϕ(x) for every
y ∈ X . Thus Dϕ(x) ∈ ∂ϕ(x). Secondly, let us prove that ∂ϕ(x) ⊂ {Dϕ(x)}. Let f ∈ ∂ϕ(x). It

holds that 〈f, λ(y−x)〉 ≤ ϕ(x+λ(y−x))−ϕ(x), i.e. 〈f, y−x〉 ≤ ϕ(x+λ(y−x))−ϕ(x)
λ for every y ∈ X

and λ ∈ (0, 1). Passing to the limit λ → 0+, we get that 〈f, y − x〉 ≤ 〈Dϕ(x), y − x〉 for every
y ∈ X . From linearity, we conclude that 〈f, y〉 = 〈Dϕ(x), y〉 for all y ∈ X , i.e. f = Dϕ(x).

Lemma 12. If ϕ : X → R is Lipschitz continuous around x ∈ X and if ∂ϕ(x) is reduced to a
singleton {f}, then ϕ is strictly Hadamard-differentiable at x with Dϕ(x) = f .

Proof. See [12, Theorem 3.54 p.313].

Lemma 13. Let S ⊂ X be a nonempty subset and let dS : X → R be the distance function to S.
The following properties hold:

1. dS is 1-Lipschitz continuous;

2. If S is convex, dS is convex;

3. If S is closed and convex, ∂dS(x) 6= ∅ and ∂dS(x) ⊂ SphX∗(0, 1) for every x ∈ X \ S.

Proof. 1. Let x, y ∈ S. Let (yn) ⊂ S be a sequence such that ‖y− yn‖ → dS(y). Then it holds that
dS(x) ≤ ‖x − yn‖ ≤ ‖x− y‖+ ‖y − yn‖ → ‖x− y‖+ dS(y). In a very similar way we obtain that
dS(y) ≤ ‖x− y‖+ dS(x). We conclude that |dS(y)− dS(x)| ≤ ‖y − x‖.

2. Let x, y ∈ S and λ ∈ [0, 1]. Let (xn), (yn) ⊂ S such that ‖x−xn‖ → dS(x) and ‖y−yn‖ → dS(y).
Note that (1 − λ)xn + λyn ∈ S since S is convex. Then, dS((1 − λ)x + λy) ≤ ‖[(1 − λ)x + λy] −
[(1 − λ)xn + λyn]‖ ≤ (1− λ)‖x− xn‖+ λ‖y − yn‖ → (1− λ)dS(x) + λdS(y). Thus, dS is convex.

3. Let x ∈ X \ S and f ∈ ∂dS(x) 6= ∅ (see Lemma 10). From Lemma 10, we already know that
‖f‖∗ ≤ 1. Since S is closed, note that dS(x) > 0. There exists (xn) ⊂ S such that ‖x−xn‖ → dS(x).
Moreover, it holds that 〈f, xn − x〉 ≤ dS(xn) − dS(x) = −dS(x). Thus, dS(x) ≤ 〈f, x − xn〉 ≤
‖f‖∗‖x− xn‖ → ‖f‖∗dS(x). Thus, ‖f‖∗ ≥ 1. We conclude that ∂dS(x) ⊂ SphX∗(0, 1).

Remark 6. Since dS is 1-Lipschitz continuous on X , one can easily prove that d2S is Fréchet-
differentiable on S, with Dd2S(x) = 0 for every x ∈ S.

Proposition 5. Let us assume that ‖·‖∗ is strictly convex on X∗. Let S ⊂ X be a nonempty closed
and convex subset. Then, dS is strictly Hadamard-differentiable on X \ S with ‖DdS(x)‖∗ = 1 for
every x ∈ X \ S.

Proof. Let x ∈ X \ S. From Lemma 13, it follows that ∂dS(x) 6= ∅ and ∂dS(x) ⊂ SphX∗(0, 1).
Since ∂dS(x) 6= ∅ is a convex subset included in SphX∗(0, 1) and since ‖ · ‖∗ is strictly convex, it
follows that ∂dS(x) is necessarily reduced to a singleton {f} satisfying ‖f‖∗ = 1. We conclude
from Lemma 12.

C Functions of bounded variations and Stieltjes integrals

For this section, we essentially refer to [2, 5, 6, 7, 10, 15].
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C.1 Some recalls

Recall that a function η : [0, T ] → R is said to be of bounded variations if

V(η) := sup
(tk)k

{

∑

k

|η(tk+1)− η(tk)|
}

< +∞

where the supremum is taken over all partitions (tk)k of [0, T ]. In that case, we denote by η ∈ BV1.

Recall that η : [0, T ] → R belongs to BV1 if and only if η is equal to the difference of two monot-
ically increasing functions. In particular, if η ∈ BV1, then η admits a left-limit denoted by η(t−)
(resp. a right-limit denoted by η(t+)) at every point t ∈ (0, T ] (resp. t ∈ [0, T )) and the set of
discontinuity points of η is at most countable.

Recall that the application ‖ · ‖BV1
given by

‖ · ‖BV1
: BV1 −→ R

+

η 7−→ η(0) + V(η)

defines a norm on BV1. Moreover, recall that (BV1, ‖ · ‖BV1
) is a Banach space.

Let η ∈ BV1. For every t ∈ [0, T ], |η(t)| ≤ |η(0)|+|η(t)−η(0)| ≤ |η(0)|+|η(t)−η(0)|+|η(T )−η(t)| ≤
|η(0)|+V(η) ≤ ‖η‖BV1

. As a consequence, η ∈ BF1 with ‖η‖∞ ≤ ‖η‖BV1
.

Recall that if z ∈ C1 and η ∈ BV1, then the classical Riemann-Stieltjes integral defined by

∫ T

0

z(τ) dη(τ) := lim
∑

k

z(tk)(η(tk+1)− η(tk))

exists. In the above equality, the limit means that the length of the partition (tk)k tends to zero.

Let us recall the following classical Riesz theorem.

Proposition 6 (Riesz theorem). Let ϕ ∈ C∗
1. There exists a unique η ∈ NBV1 such that

〈ϕ, z〉C∗

1
×C1

=

∫ T

0

z(τ) dη(τ),

for every z ∈ C1. Moreover, if 〈ϕ, z〉C∗

1×C1
≥ 0 for every z ∈ C+

1 , then η is monotically increasing.

We refer to [10, p.245] for a complete proof of Proposition 6. In this section we will only detail the
proof of the following weaker result, which is sufficient for the completeness of this note.

Proposition 7 (Riesz corollary). Let ϕ ∈ C∗
1 such that 〈ϕ, z〉C∗

1×C1
≥ 0 for every z ∈ C+

1 . There
exists η ∈ NBV1 such that η is monotically increasing on [0, T ] and

〈ϕ, z〉C∗

1
×C1

=

∫ T

0

z(τ) dη(τ),

for every z ∈ C1. Moreover, from construction of η, ϕ = 0 if and only if η = 0.

Proof. If ϕ = 0, it is sufficient to consider η = 0 ∈ NBV1 that is monotically increasing. Now let
us consider that ϕ 6= 0. In the sequel we simply denote by 1 ∈ C+

1 ⊂ BF+
1 the constant function
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equal to 1 on [0, T ]. Finally we denote by 〈·, ·〉 := 〈·, ·〉C∗

1×C1
. When no confusion is possible, 〈·, ·〉

also denotes 〈·, ·〉BF∗

1×BF1
.

Since 〈ϕ, z〉 ≥ 0 for every z ∈ C+
1 , it holds that 1 − ξ ∈ C+

1 and then 〈ϕ, ξ〉 ≤ 〈ϕ, 1〉 for every
ξ ∈ C1 such that ‖ξ‖∞ ≤ 1. We deduce that ‖ϕ‖C∗

1
≤ 〈ϕ, 1〉 ≤ ‖ϕ‖C∗

1
‖1‖∞ = ‖ϕ‖C∗

1
and then

‖ϕ‖C∗

1
= 〈ϕ, 1〉. From the classical Hahn-Banach theorem (see [4, Corollary 1.2 p.3]), there exists

a linear continuous application ϕ̃ : BF1 → R such that ϕ̃ extends ϕ to BF1 and ‖ϕ̃‖BF∗

1
= ‖ϕ‖C∗

1
.

In particular it holds that ‖ϕ̃‖BF∗

1
= 〈ϕ̃, 1〉. Let us prove that 〈ϕ̃, z〉 ≥ 0 for every z ∈ BF+

1 . Let

z ∈ BF+
1 such that z 6= 0 and let ξ := 2

‖z‖∞

z− 1. Then ξ ∈ BF1 with ‖ξ‖∞ ≤ 1. As a consequence

−〈ϕ̃, ξ〉 ≤ |〈ϕ̃, ξ〉| ≤ ‖ϕ̃‖BF∗

1
‖ξ‖∞ ≤ 〈ϕ̃, 1〉. Finally, it holds that 〈ϕ̃, z〉 = ‖z‖∞

2 (〈ϕ̃, ξ〉+ 〈ϕ, 1〉) ≥ 0.

Now we introduce η(t) := 〈ϕ̃,1(0,t]〉 for every t ∈ [0, T ]. In particular η(0) = 0. Moreover, since

1(0,t]−1(0,s] ∈ BF+
1 for every 0 ≤ s ≤ t ≤ T and since 〈ϕ̃, z〉 ≥ 0 for every z ∈ BF+

1 , it follows that
η is monotically increasing on [0, T ]. In particular η ∈ BV1 with V(η) = η(T )− η(0).

Now let us prove that 〈ϕ, z〉 =
∫ T

0
z(τ)dη(τ) for every z ∈ C1. Let z ∈ C1 and let ε > 0. Since z

is uniformly continuous on [0, T ], there exists δ > 0 such that

‖ϕ‖C∗

1
|z(t)− z(s)| ≤ ε

2

for every (t, s) ∈ [0, T ]2 such that |t−s| ≤ δ. Let (tk)k be a partition of [0, T ] such that tk+1−tk ≤ δ
and such that

∣

∣

∣

∣

∣

∫ T

0

z(τ) dη(τ) −
∑

k

z(tk)(η(tk+1)− η(tk))

∣

∣

∣

∣

∣

≤ ε

2
.

Then, we introduce u =
∑

k z(tk)1(tk,tk+1] ∈ BF1. It clearly holds that

‖ϕ‖C∗

1
‖z − u‖∞ ≤ ε

2
and 〈ϕ̃, u〉 =

∑

k

z(tk)(η(tk+1)− η(tk)).

As a consequence it holds that

∣

∣

∣

∣

∣

∫ T

0

z(τ) dη(τ) − 〈ϕ, z〉
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ T

0

z(τ) dη(τ) − 〈ϕ̃, u〉
∣

∣

∣

∣

∣

+ |〈ϕ̃, u〉 − 〈ϕ, z〉| ≤ ε.

In particular, it holds that η(T ) = η(T )− η(0) =
∫ T

0
1dη(τ) = 〈ϕ, 1〉 = ‖ϕ‖C∗

1
6= 0. Thus η 6= 0.

To conclude the proof, let us prove that η can be chosen left-continuous on (0, T ). First of all,
since η(0) = 0 and η is monotically increasing on [0, T ], η(t−) exists for all 0 < t ≤ T and it holds
that

0 ≤ η(s) ≤ η(t−) ≤ η(t) ≤ η(T ), (15)

for every 0 ≤ s < t ≤ T . Let us define

ν(t) :=







0 if t = 0,
η(t−) if 0 < t < T,
η(T ) if t = T.

In particular ν 6= 0. Using (15), one can easily prove that ν is monotically increasing on [0, T ]. Let
us assume by contradiction that ν is not left-continuous on (0, T ), that is, there exists t ∈ (0, T )
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and ε > 0 such that ν(t−) ≤ ν(t)− ε. Finally, from (15), we obtain that

η

(

t− 2

k

)

= η

(

t− 1

k
− 1

k

)

≤ η

(

(

t− 1

k

)−
)

= ν

(

t− 1

k

)

≤ ν(t−) ≤ ν(t)− ε = η(t−)− ε,

for every k ∈ N
∗. This raises a contradiction when k tends to +∞. Hence ν ∈ NBV1. Now let us

prove that
∫ T

0

z(τ) dη(τ) =

∫ T

0

z(τ) dν(τ)

for every z ∈ C1. Since η and ν can be different only at discontinuity points of η (which are at
most countable), we consider a sequence of partitions ((tℓk)k)ℓ of [0, T ] such that the length of the
partitions tends to zero when ℓ tends to +∞ and such that no point tℓk is a discontinuity point of
η. As a consequence, it holds that
∫ T

0

z(τ) dη(τ) = lim
ℓ→∞

∑

k

z(tk)(η(tk+1)−η(tk)) = lim
ℓ→∞

∑

k

z(tk)(ν(tk+1)−ν(tk)) =
∫ T

0

z(τ) dν(τ)

for every z ∈ C1.

In Appendix D.3, we will need the two following results.

Lemma 14. If h ∈ AC1, then h ∈ BV1.

Proof. One can easily get that

∑

k

|h(tk+1)− h(tk)| =
∑

k

∣

∣

∣

∣

∫ tk+1

tk

ḣ(τ) dτ

∣

∣

∣

∣

≤
∫ T

0

|ḣ(τ)| dτ = ‖ḣ‖L1 ,

for every partition (tk)k of [0, T ].

Lemma 15. Let η ∈ NBV1 be monotically increasing and z ∈ C1. The function h : [0, T ] → R

defined by

h(t) :=

∫ t

0

z(τ) dη(τ),

is of bounded variations, i.e. h ∈ BV1.

Proof. One can easily get that

∑

k

|h(tk+1)− h(tk)| =
∑

k

∣

∣

∣

∣

∫ tk+1

tk

z(τ) dη(τ)

∣

∣

∣

∣

≤
∑

k

∫ tk+1

tk

|z(τ)| dη(τ) ≤
∫ T

0

|z(τ)| dη(τ),

for every partition (tk)k of [0, T ].

We conclude this section with some recalls about the Lebesgue-Stieltjes integral. Let η ∈ NBV1

be monotically increasing. Then η induces a finite nonnegative measure on the Borel set of [0, T ]
denoted by dη. This measure is constructed from the equalities dη([a, b)) = η(b) − η(a) for every
0 ≤ a ≤ b ≤ T and extended from the classical Carathéodory extension theorem. For every z ∈ C1,
the Riemann-Stieltjes integral of z with respect to η and the Lebesgue-Stieltjes integral of z with
respect to dη (that corresponds to the classical Lebesgue integral of z with respect to the measure
dη) coincide. We refer to [7, p.83] or [15, p.288] for more details. Finally, the following Fubini-type
formula holds:

∫ T

0

∫ τ

0

z(τ, s) ds dη(τ) =

∫ T

0

∫ T

s

z(τ, s) dη(τ) ds (16)

for every z ∈ L∞([0, T ]2,R) such that z is continuous in its first variable.
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Remark 7. Note that the Stieltjes integrals in (16) are both well-defined in terms of Riemann-
Stieltjes integration9 and the classical integrals in (16) have to be understood in the Lebesgue
sense. Actually, one can easily see that the double integrals in (16) both exist.

C.2 Notations and Fubini-type formulas

For any η = (ηi)i=1,...,j ∈ NBVj such that ηi is monotically increasing and for any z = (zi)i=1,...,j ∈
Cj , we denote by

∫ T

0

〈z(τ), dη(τ)〉 :=
j
∑

i=1

∫ T

0

zi(τ) dηi(τ) ∈ R.

Let r ∈ N
∗. We denote by

∫ T

0

A(τ) × dη(τ) :=

(

j
∑

i=1

∫ T

0

aki(τ) dηi(τ)

)

k=1,...,r

∈ R
r,

and
∫ T

0

〈z(τ), A(τ) × dη(τ)〉 :=
∫ T

0

〈A(τ)⊤ × z(τ), dη(τ)〉 ∈ R,

for every continuous matrices A(·) = (aki(·))ki : [0, T ] → R
r,j and every z ∈ Cr. Moreover, one

can easily prove that if z ∈ R
r (i.e. z ∈ Cr constant) then

∫ T

0

〈z, A(τ)× dη(τ)〉 =
〈

z,

∫ T

0

A(τ) × dη(τ)

〉

Rr×Rr

. (17)

Finally, one can prove from Equality (16) that the following Fubini-type formulas both hold:

∫ T

0

〈
∫ τ

0

Φ(τ, s) ds, dη(τ)

〉

=

∫ T

0

∫ T

s

〈Φ(τ, s), dη(τ)〉ds, (18)

and
∫ T

0

(
∫ τ

0

A(τ, s) ds

)

× dη(τ) =

∫ T

0

(

∫ T

s

A(τ, s) × dη(τ)

)

ds, (19)

where Φ ∈ L∞([0, T ]2,Rj) and A ∈ L∞([0, T ]2,Rr,j) are continuous in their first variable.

D State-transition matrices and linear Cauchy-Stieltjes prob-

lems

In the whole section A ∈ L∞([0, T ],Rn,n).

9Indeed, one can easily prove from the classical Lebesgue dominated convergence theorem that the function
τ 7→

∫ τ
0
z(τ, s) ds is continuous on [0, T ].
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D.1 Recalls on state-transition matrices

For every s ∈ [0, T ], the backward/forward linear Cauchy problem (BFCPA,s) given by
{

Ż(t) = A(t) × Z(t), a.e. t ∈ [0, T ],

Z(s) = Idn,
(BFCPA,s)

admits a unique maximal solution that is moreover global.10 We denote this solution by Z(·, s) :
[0, T ] → R

n,n. The matrix function Z(·, ·) is the so-called state-transition matrix associated to A.

Lemma 16. The following equalities both hold

Z(t, s) = Idn +

∫ t

s

A(τ) × Z(τ, s) dτ,

= Idn +

∫ t

s

Z(t, τ)×A(τ) dτ,

for every (t, s) ∈ [0, T ]2. In particular, Z(·, ·) : [0, T ]2 → R
n,n is continuous.

Proof. The first equality is obvious since it corresponds to the definition of a global solution
of (BFCPA,s). From this equality and from the classical Gronwall lemma, one can easily prove
that Z(·, ·) is bounded on [0, T ]2. For every (t, s) ∈ [0, T ]2, we introduce

T (t, s) := Idn +

∫ t

s

Z(t, τ) ×A(τ) dτ,

that is well-defined since Z(·, ·) is bounded on [0, T ]2. Our aim is to prove that Z(t, s) = T (t, s).
From the first equality, it holds that

∫ t

s

Z(t, τ)×A(τ) dτ =

∫ t

s

A(τ) dτ +

∫ t

s

∫ t

τ

A(ξ)× Z(ξ, τ)×A(τ) dξ dτ,

for every (t, s) ∈ [0, T ]2. Using the classical Fubini formula (and inversing the roles of τ and ξ),
we obtain that

∫ t

s

Z(t, τ) ×A(τ) dτ =

∫ t

s

A(τ)

[

Idn +

∫ τ

s

Z(τ, ξ)×A(ξ) dξ

]

dτ.

Finally, adding Idn in the above equality, we obtain that T (·, ·) satisfies

T (t, s) = Idn +

∫ t

s

A(τ) × T (τ, s) dτ,

for every (t, s) ∈ [0, T ]2. From uniqueness of the global solution of (BFCPA,s), we obtain that
T (t, s) = Z(t, s). To conclude, from the definition of Z(·, ·), it is clear that Z(·, ·) is (absolutely)
continuous in its first variable. Using the second equality and the classical Lebesgue dominated
convergence theorem, one can easily prove that Z(·, ·) is continuous on [0, T ]2.

Remark 8. From Lemma 16, note that Z(t, ·) is the unique global solution of the backward/forward
linear Cauchy problem given by

{

Ż(s) = −Z(s)×A(s), a.e. s ∈ [0, T ],

Z(t) = Idn,

for every t ∈ [0, T ].
10This results follows from the classical linear version of the Cauchy-Lipschitz (or Picard-Lindelöf) theorem.
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D.2 Recalls on linear Cauchy problems

Let B ∈ L∞([0, T ],Rn) and q0, pT ∈ R
n. From the classical linear version of the Cauchy-Lipschitz

(or Picard-Lindelöf) theorem, the forward linear Cauchy problem (FCPA,B) given by

{

q̇(t) = A(t)× q(t) +B(t), a.e. t ∈ [0, T ],

q(0) = q0,
(FCPA,B)

admits a unique maximal solution that is moreover global. Similarly, the backward linear Cauchy
problem (BCPA,B) given by

{

−ṗ(t) = A(t)⊤ × p(t) +B(t), a.e. t ∈ [0, T ],

p(T ) = pT ,
(BCPA,B)

also admits a unique maximal solution that is moreover global.

Proposition 8 (Duhamel formulas). The global solutions of (FCPA,B) and (BCPA,B) are given
by

q(t) = Z(t, 0)× q0 +

∫ t

0

Z(t, s)×B(s) ds,

and

p(t) = Z(T, t)⊤ × pT +

∫ T

t

Z(τ, t)⊤ ×B(τ) dτ,

for every t ∈ [0, T ], where Z(·, ·) is the state-transition matrix associated to A.

Proof. Let q : [0, T ] → R
n be defined by

q(t) := Z(t, 0)× q0 +

∫ t

0

Z(t, s)×B(s) ds,

for every t ∈ [0, T ]. Replacing the value of Z(·, ·) by the first equality given in Lemma 16 and using
the classical Fubini formula, one can easily prove that

q(t) = q0 +

∫ t

0

A(τ) × q(τ) +B(τ) dτ,

for every t ∈ [0, T ]. As a consequence, q is the unique global solution of (FCPA,B). Similarly, let
p : [0, T ] → R

n be defined by

p(t) := Z(T, t)⊤ × pT +

∫ T

t

Z(τ, t)⊤ ×B(τ) dτ,

for every t ∈ [0, T ]. Replacing the value of Z(·, ·) by the second equality given in Lemma 16 and
using the classical Fubini formula, one can easily prove that

p(t) = pT +

∫ T

t

A(τ)⊤ × p(τ) +B(τ) dτ,

for every t ∈ [0, T ]. As a consequence, p is the unique global solution of (BCPA,B).
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D.3 Linear Cauchy-Stieltjes problems

Let q0, pT ∈ R
n. Let B := (Bi)i=1,...,j and η := (ηi)i=1,...,j where Bi ∈ Cn and ηi ∈ NBV1 is

monotically increasing for every i = 1, . . . , j. We say that q is a global solution of the forward
linear Cauchy-Stieltjes problem (FCSPA,B) given by

{

dq = A× q dt+
∑j

i=1Bi dηi, on [0, T ],

q(0) = q0,
(FCSPA,B)

if q ∈ BFn and q satisfies

q(t) = q0 +

∫ t

0

A(τ) × q(τ) dτ +

j
∑

i=1

∫ t

0

Bi(τ) dηi(τ),

for every t ∈ [0, T ]. In such a case, it follows from Lemmas 14 and 15 that q ∈ BVn.

Similarly, we say that p is a global solution of the backward linear Cauchy-Stieltjes problem (BCSPA,B)
given by

{

−dp = A⊤ × p dt+
∑j

i=1Bi dηi, on [0, T ],

p(T ) = pT ,
(BCSPA,B)

if p ∈ BFn and p satisfies

p(t) = pT +

∫ T

t

A(τ)⊤ × p(τ) dτ +

j
∑

i=1

∫ T

t

Bi(τ) dηi(τ),

for every t ∈ [0, T ]. In such a case, it follows from Lemmas 14 and 15 that p ∈ BVn.

Proposition 9. Problem (FCSPA,B) admits a unique global solution. Problem (BCSPA,B) admits
a unique global solution.

Proof. In this proof, we only treat Problem (FCSPA,B). Let us consider the functional given by

G : BFn −→ BVn ⊂ BFn

q 7−→ G(q) : [0, T ] −→ R
n

t 7−→ q0 +
∫ t

0 A(τ) × q(τ) dτ +
∑j

i=1

∫ t

0 Bi(τ) dηi(τ).

Note that G is well-defined from Lemmas 14 and 15. Our aim is to prove that G admits a unique
fixed point. To do so, we will prove that G admits a contractive iterate. One can easily prove by
induction on k ∈ N

∗ that

‖Gk(q2)(t)− Gk(q1)(t)‖Rn ≤ ‖A‖kL∞

(k − 1)!

∫ t

0

(t− τ)k−1‖q2(τ) − q1(τ)‖Rn dτ,

for every q1, q2 ∈ BFn, every t ∈ [0, T ] and every k ∈ N
∗. As a consequence, it holds that

‖Gk(q2)− Gk(q1)‖∞ ≤ (‖A‖L∞T )k

k!
‖q2 − q1‖∞,

for every q1, q2 ∈ BFn and every k ∈ N
∗. Taking k ∈ N

∗ sufficiently large to get (‖A‖L∞T )k

k! < 1,
we obtain that Gk is a contractive iterate of G. Since (BFn, ‖ · ‖∞) is a Banach space, we conclude
that G admits a unique fixed point.
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Proposition 10 (Duhamel-type formulas). The global solutions of (FCSPA,B) and (BCSPA,B)
are given by

q(t) = Z(t, 0)× q0 +

j
∑

i=1

∫ t

0

Z(t, s)×Bi(s) dηi(s),

and

p(t) = Z(T, t)⊤ × pT +

j
∑

i=1

∫ T

t

Z(τ, t)⊤ ×Bi(τ) dηi(τ),

for every t ∈ [0, T ], where Z(·, ·) is the state-transition matrix associated to A.

Proof. From the Fubini-type formulas provided in Appendix C for Stieltjes integrals, the proof is
exactly the same than in Proposition 8.
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