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Metric Visual-Inertial Ego-Motion Estimation
Using Single Optical Flow Feature

Sammy Omari' and Guillaume Ducard?

Abstract— This paper introduces a state estimation frame-
work that allows estimating the attitude, full metric speed and
the orthogonal metric distance of an IMU-camera system with
respect to a plane. The filter relies only on a single optical flow
feature as well as gyroscope and accelerometer measurements.
The underlying assumption is that the observed visual feature
lies on a static plane. The orientation of the observed plane
is not required to be known a priori and is also estimated at
runtime. The estimation framework fuses visual and inertial
measurements in an Unscented Kalman Filter (UKF). The
theoretical limitations of the UKF are investigated using a
nonlinear observability analysis based on Lie-derivatives.

Experiments in simulation using realistic sensor noise values
successfully demonstrate the performance of the filter as well
as validate the findings of the observability analysis. It is shown
that the state estimate is converging correctly, even in presence
of substantial initial state errors. To the authors’ knowledge,
this paper documents for the first time the estimation of the
heading and metric distance to a wall with no range- or bearing
sensors, relying solely on optical flow as the only exteroceptive
sensing modality. This minimal sensor set, that is both light-
weight and low-cost, renders the framework an appealing choice
for the use as a navigation system on a wide range of robotic
platforms, such as ground- or flying robots.

I. INTRODUCTION

In recent years, a considerable body of work was presented
for position or velocity estimation of robots, in particular
unmanned aerial vehicles (UAV), in GPS-denied environ-
ments using vision sensors [2],[3],[4],[5]. Especially optical
flow-based approaches have attracted a lot of attention since
their implementation requires only little computational power
and can be run at high update rates on light-weight, low-
power microcontrollers [6]. Additionally, optical flow-based
approaches are also able to handle scenes with only little
contrast [6] - especially compared to feature-based SLAM
frameworks that require high-contrast, salient features that
can be tracked over longer periods of time [2].

In [7], the authors present a framework to fuse optical
flow and inertial measurements to obtain the full metric
speed in an unstructured environment. In [8], the authors
use optical flow from a down-looking camera to control a
UAV in hovering and vertical landing. They assume that the
optical flow features lie on a horizontal plane whose normal
can be estimated with the UAVs on-board IMU. Using
this approach, they can compute the ratio ¥ between the
translational velocity v in the camera frame and orthogonal
distance to the plane d. In [6], they resolve this ambiguity
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by using an ultrasound range sensor to measure the distance
d to the plane. In [9], the authors estimate not only the ratio
7. but also the normal vector of the plane using optical flow
by incorporating the continuous homography constraint.

In contrast to these approaches ([6]-[9]), we present a
novel UKF-based observer to estimate both the full metric
velocity and distance to the plane as well as its normal vector.
The estimator makes no assumption on the orientation of the
plane and does not rely on any distance or bearing sensors.
Instead, only optical flow and inertial sensors are used as
measurement input to the UKF. Using this setup, we can
not only estimate the normal vector of the plane, but the full
attitude of the IMU-camera system with respect to the plane.

The previously mentioned approaches require multiple
optical flow features to estimate the scaled velocity through a
continuous homography- or epipolar-based approach. In our
scheme, we do not require this intermediary step and directly
use each optical flow feature as a measurement input to the
UKEF. This allows us to properly propagate the uncertainty
of the optical flow into the covariance of the state estimate.
This also enables the design of a stochastic outlier detection
mechanism since the predicted optical flow vector (with its
covariance) can be directly compared to the measurement.

One motivating example for this estimation scheme is the
operation of a UAV in front of a horizontal structure, such
as a dam, using only a forward facing camera and an IMU.
The estimated velocity could be used to navigate the UAV
along the dam while the estimated distance is used to ensure
that the UAV is not colliding with the dam. Additionally, the
estimated normal vector of the plane can be used to align
the UAV perpendicularly to the structure.

The structure of the paper is as follows. In section II, the
setup of the system is described. Section III discusses the
required sensors and the corresponding stochastic models. In
section IV, the estimation scheme, based on the Unscented
Kalman Filter is discussed. Simulations of the estimation
scheme and the discussion of the algorithm and its limitation
are found in section V.

Concerning the mathematical notation, all vectors and
matrices are written in bold text. We use a skew symmetric
matrix notation for the vector cross product a X b = |a|b.
The canonical basis of R3 is denoted {e;, es, e3}. To
describe rotations, we use the quaternion notation as defined
in [10].



II. SYSTEM SETUP

In this section, we describe the setup of the system as
depicted in Fig. 1.
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Fig. 1. Schematic representation of the system setup. The position and
orientation (red) of the body frame {B} are described in the inertial
coordinate frame {I}. The target plane passes through the origin of {I}
and is described by its normal vector 7). The camera-IMU complex in the
body frame {B} is pointed in direction of the target plane observing at least
one target point P. The projection of P on the spherical image plane of
the camera is p.

The system constitutes of an IMU (gyroscope and ac-
celerometer) rigidly fixed to a spherical camera. The body
frame is denoted {B} and is attached to the IMU-camera
system. Its origin coincides with the accelerometer of the
IMU. The orientation of the body frame with respect to
the inertial frame {/} is defined by the unit quaternion
q°. Equivalently, the same orientation mapping can also
be expressed using the rotation matrix C defined by the
quaternion q’. The position and translational velocity of
the body frame, expressed in the inertial frame, are denoted
r; € R? and v; € R3 respectively. The body angular rates
are denoted w € R3.

The camera is observing a target plane which contains
visual features. We define P € R? to be the coordinate
of a visual feature on the target plane expressed in the
camera frame. Its corresponding coordinates projected on
the spherical image plane of the camera are p € S2. The
target plane is defined by its normal 1 € S? expressed in the
inertial frame.

For the derivation of the system equations, we make the
following assumptions:

Assumption 2.1: The spherical camera has unit focal length
and is rigidly fixed to the vehicle.

Assumption 2.2: The intrinsic camera calibration param-
eters, such as the focal length and the principal point are
known. As a consequence, the camera that is used in this
scheme does not necessarily have to be spherical. Using the
calibration parameters, we can map the pixel coordinates of
a regular pinhole-model-like camera to the spherical image
plane, as shown in section III-C.

Assumption 2.3: For the sake of simplicity, we assume
that the camera origin coincides with the body frame origin.

In reality, we can extract the position and orientation of
the camera with respect to the body frame origin using
CAD or an offline estimation procedure. Using this position
and orientation offset we would then have to adapt the
measurement equations, as described in section III-D.

Assumption 2.4: We define the target plane to contain the
origin of the inertial frame. This is a valid assumption since
we do not have any measurements of a globally fixed inertial
position (e.g. provided by GPS). In fact, we will show that
we can only observe the relative orthogonal distance of the
camera w.r.t. the plane. Therefore, we can set the origin of
the plane arbitrarily.

Assumption 2.5: The target plane comprises at least one
visual feature P visible from the camera that can be tracked
over two consecutive frames.

Assumption 2.6: The visual features and the target plane
are considered to be stationary in the inertial frame. There-
fore, the dynamics of the features in the camera frame only
depend on the vehicle dynamics.

Assumption 2.7: We consider the IMU to be fully cali-
brated, meaning that the coordinate frames of gyroscope and
accelerometer coincide and they output SI-units. However,
this does not imply that the IMU sensors cannot be subject
to a drift in zero-offset. We have to take this drift into
consideration during the design of the Kalman Filter.

III. MEASUREMENT MODELS

This section discusses the required sensors and the cor-
responding stochastic measurement models. Throughout the
paper, external disturbances and sensor noises are modeled
as continuous Gaussian noise or as discrete Gaussian noise
processes. This assumption makes it possible to use the
Kalman Filter as an optimal least-square estimator (LSE).

A. Accelerometer Model

The accelerometer measures the acceleration a,, € R? in
the body frame. This acceleration is composed of the gravity
vector g = ges € R? in the inertial frame, the true linear
accelerations a € R3 in the inertial frame, some slowly time-
varying bias b, € R? in the body frame and Gaussian white
noise n, € R3. The bias b, is modeled as a random walk
process governed by the Gaussian white noise n,, € R3. We
can write:

a:CT(am_ba_na)+g (1)
b, = ny, )

The noises n, and ny, are specified by the corresponding
covariance matrices Q, and Qp,, respectively. As discussed
in [11], the covariance matrices can be evaluated by examin-
ing the measured Allan variances. For the sake of simplicity,
we assume that both covariance matrices are diagonal, each
with identical entries.

B. Gyroscope Model

The gyroscopes on the IMU measures the angular velocity
Wy, € R? in the body frame which is composed of the true
angular speed w € R3, some slowly time-varying bias b,, €



R3 in the body frame and some Gaussian white noise n,, €
R3. As in the case of accelerometers, each bias is modeled
as a random walk process. We can write:

W =w,;, — b, — n, 3)
b, =ny, 4)

As in the case of accelerometers, gyro noises are specified
by their corresponding diagonal covariance matrices Q,, and

Qb, -
C. Camera Model

Since we assume that the camera is intrinsically calibrated,
we can map camera pixel coordinates ¢ € R2 to their
corresponding position P € R? in the camera frame up to a
scaling factor A

AP = cam(¢, 9) 5
using some generic camera model cam, and the intrinsic
camera calibration parameter vector 8. For more information
on intrinsic camera calibration, the user is referred to [12].

Since we only know P up to scale, we simply normalize
it to obtain the feature vector p € S? on the spherical image
plane with focal length f =1

P
=P (6)
From now on, we consider the camera to be a bearing vector
sensor, i.e. it directly outputs feature vectors p.

D. Optical Flow

Since the camera is fixed to the vehicle and the observed
target point is considered to be stationary, the feature vector
p inherits the dynamics of the vehicle. It can be shown [13]
that the dynamics of the feature vector p can be expressed
as

p

u:—[wJp—wp% @)

where vy is the translational velocity of the camera expressed
in the body frame! and the projection operator is defined as
mp = (I3 — pp?). The vector u is the optical flow corre-
sponding to the feature vector p and can be extracted from
two consecutive images using a wide range of algorithms,
such as Lucas-Kanade [14] or Horn-Schunck [15].

The measured optical flow u,, is perturbed by Gaussian
noise n, € R? specified by the covariance matrix Q,

u=u, — Ny ®)

Since the camera output is not continous, the optical
flow vector uy4; at time tx; is approximated by ug,; ~
H, as depicted in Fig. 2. Since the feature vectors
during both time steps are on the unit sphere, the noise of the
optical flow vector is constrained to the surface of the sphere.
Therefore, we approximate the covariance matrix Qu k41 as
a flat ellipsoid tangent to the unit sphere in direction of the

average feature vector W, as depicted in Fig. 2.

UIf the camera origin were not coinciding with the body frame origin,
we would have to replace v, by the camera velocity v using the relation
Ve = Vv + |w]rf where rf is the baseline from the body frame- to the
camera frame origin.
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Fig. 2. Schematic representation of the optical flow computation as seen
from the body frame {B} The camera, moving with velocity v, observes
a visual feature P whose projection on the spherical image plane is p. The
optical flow uy 1 is calculated from the projected features at 5 and ¢4 1.
Its covariance ellipse is Qu x+1-

E. Target Plane Model

Since we assume that the target plane contains the origin
of the inertial frame, it is sufficient to describe the plane by
its normal vector 1 expressed in the inertial frame. Since
the normal vector is of unit length, it has two degrees of
freedom. We can therefore parameterize the normal vector
using two angles o and 3. We can write

sin («) cos ()

—sin () ©))
cos () cos (B)
For the sake of readability, we replace n(«, 8) by n from

now on. We consider the angles to be slowly time-varying
and model them as a random walk processes

n(a, B) =

(10)
(1)
with noises specified by their corresponding covariance terms

Qa and QB;

IV. UNSCENTED KALMAN FILTER

=Ny

B=ng

Initial experiments with an extended Kalman filter (EKF)
and iterated EKF (IEKF) yielded mostly poor results due to
the highly non-linear nature of the optical flow measurement
equation. Employing the unscented Kalman filter (UKF) for
state estimation improved the results significantly. The reason
for this is that the EKF and IEKF only use a first order
approximation to propagate mean and covariance while the
UKF incorporates higher order moments[16].

For space reasons, we omit the discussion of the actual
UKEF equations and refer the reader to [17] for a detailed
introduction to UKF for inertial navigation. Instead, we
discuss the required building blocks of the UKF in detail:
the minimal state vector representation, the prediction and
measurement equations and the derivation of the process-
and measurement noise covariance matrices.



A. State Dynamics and State Vector Representation

Using the sensor models defined in (1) - (4) and the
dynamics of the plane (10) - (11), the state dynamics can
be written as:

r; =V; (12)
vi=C'(a, —b, —1n,) +g (13)
1
q? = in(wm - bw - nw)q? (14)
b, = ny, (15)
b, =1y, (16)
Q= ng (17)
B=mng (18)

The matrix 2(w) € R*** relates the body angular rates to
the corresponding quaternion rate by

0 —wT]

w —|w] (19)

) - |
As a minimum state vector representation, we define the 18-
element state vector

x = [r;v; ¢ b, b, a f]T. (20)

B. Error Dynamics and Process Noise Covariance Matrix

To derive the process noise covariance matrix, the error
dynamics of the system (12) - (18) have to be derived first.
Special care has to be taken for the error representation of
the quaternion since it is a four-element vector but only has
three degrees of freedom. Therefore its error should also be
represented as a 3-dimensional rotation vector d¢. We follow
the convention in [17] and define the relation between the
true quaternion q with its estimate q and the error rotation
vector d¢ by

2
(22)

q=0q®q
1
dq~[1 §5¢}T

where ® is the quaternion multiplication operator.

Following the approach in [11] and [18] the error dynam-
ics are now derived using the approximation (21, 22) and
neglecting all higher-order terms:

or; = dv; (23)
ov; = —CT|a,, —b,|d¢p — CTéb, — CTn, (24)
0¢p = —|wm — by 8¢ — b, — n,, (25)
5b, = n, (26)
éb, = n, (27)
S =ng (28)
38 =ng (29)

Using the error dynamics (23) - (29), the distrete process
covariance matrix Qj at time t; is obtained after arduous

calculations:

A B 0; 053 C 0 0
B E 0; 03 F 0 0
0; 035 G H 053 0 0
Qr=103 03 J AtQy, 0;3 0 0
K L 03 03 AtQp, 0 0
0 0 ©0 0 0 AtQ,, 0
|0 0 0 0 0 0 AtQp |
(30)
with

=22Q, + 45 Qb,. G=AtQu + (Tsx +I7,)Qs,

B=2°Q,+24°Qy,, H=-17,Q,
= *%Cnga J=-Qy Iy
= AQ, + 28Q,, K =-2£Q,Cf
F=-4°C1Q, L=-4-Qy,Cf
using
I " tntl . A2
Fn,k = IBAt er me,k*bw,kJer(me,k*bw kJ

C. Prediction Model

Taking the expectation of the system dynamics (12) - (18),
and assuming zero-order hold for the measured quantities a,,
and w,, as well as neglecting higher-order rotation terms, the
equations can be discretized using zeroth-order Euler forward
integration[11]

. . ) At . r .
Pipr1 = Lo + AtV g + T(Ck (@m,k — bak) +£32)

Viks1 = Vig + AUCT (am .k — bak) + 8) (33)
. At . .

Qi1 = <I4 + 5 Uwmk — bw,k)> A’k (34)
E’w,k+1 = Bw,k (35)
ba,k+1 = ba,k (36)

D. Measurement Equation

We now have to express the optical flow equation (7) using
the estimated state vector X. The body angular rates w can
be written as

& =wy, — by, (37
The velocity in the body frame ¥, can be written as
v, = Cv,. (38)

The computation of |15| is a bit more involved. By inspection
of Fig. 1, we express the orthogonal distance of the camera
to the target plane d using the position of the camera in the
inertial frame r; and the normal vector of the plane 7} as

d = [&]7| (39)
Equivalently, since we assume that the observed visual
feature is lying on the plane, we can express d as a function
of the feature coordinate P in the body frame and the plane
normal vector 7) in the world frame

d = [P"(Cn)| (40)



Combining equation (6), (39) and (40), we can eliminate d
and solve for |P|:

(41)

Now, by pluging equation (37), (38) and (41) in the optical
flow equation (7), we obtain

= —|(wn —bu)|p— 7p(C¥;)

p’(Cn
f‘ETA) (42)

Since the body angular rates w are not part of the state
vector &, we cannot not directly use the optical flow as
measurement input to the UKF. Instead, by exploting the
distributive property of the vector product, we define the
derotated optical flow u as a new measurement to the UKF
p’(Ch)

~T ~
I'i’l']

=153

=10 — |p]wm = —|p|bws — 7p(CV;) (43)

The derotated optical flow can now be predicted using only
the state vector X. In case multiple optical flow vectors are
extracted at one timestep, the innovation term u of the UKF
can be written as

(um,l = [p1]wm) — uy

o
I

: (44)
(W, N — [PN]wm) — Un
One potential issue with the measurement equation (43) is
the division by |#77| since the position state can evolve un-
constrained and this term could become 0. The corresponding
physical representation would be that the projection center
of the camera is touching the plane, which is obviously not
possible. However, due to transients in the Kalman filter,
this term can approach 0. Therefore, in the implementation
of the algorithm we replace this term with max (e, #77) with
e 1.

E. Measurement Covariance Matrix

The derotated optical flow measurement 4, is perturbed
by the pixel noise of the optical flow algorithm n, as well
as the noise introduced through the derotation term |w|p

Since we assume that w is perturbed by additive noise
and we take the cross product of w with p which is unit
norm, the noise that is introduced by the derotation term is
bounded by n,,. Therefore, following Eq. 8, we can write

(45)

u=u, —nhy +n,.

The covariance matrix of the derotated optical flow measure-
ment is the sum of the gyroscope covariance Q,, and covari-
ance of the optical flow algorithm Q,. If multiple optical
flow vectors are observed at one timestep, the measurement
covariance matrices can be stacked together diagonally as

Qu71 + Qw R 03
Rk — . . . (46)

03 v Qu,N + Qw

F. Outlier Rejection

Before using the optical flow measurements in the update
step of the UKF, we want to robustly detect and reject
outlier measurements. While a continous homography based
rejection approach, as proposed in [25], could be used to this
end, we use a statistical approach that takes into account
the covariance of the predicted optical flow measurement.
We follow the approach in [19] and employ a Mahalanobis-
distance test to detect outlier measurements. We compute the
Mabhalanobis distance as

X2 = (ﬁm -

a)’s 1(a,, —u). 47)
The matrix S is the innovation covariance of the UKF as
defined by eq. (77) in [18] and can be seen as a weighting
term depending on the confidence in the current prediction.
Measurements that exceed a certain threshold x3 are rejected
and are not employed in the update step of the estimation
scheme.

To further increase robustness, a derotated optical flow
vector whose signal-to-noise ratio is too small is rejected
as well. The derotated optical flow vector is rejected if its

weighted norm is below some threshold W3 :
i, (Qu + Qu) ™' < W,

G. Observability Analysis

(48)

The analysis of the observability characteristics of the
nonlinear UKF reveals the theoretical limitations of the
observer. A system is observable if its state at a certain
time can uniquely be determined by a finite sequence of
outputs [20]. Applied to Kalman filtering, this implies that
the measurements of an observable system provide sufficient
information to estimate all of its states.

A tool for the analysis of the observability properties of a
nonlinear Kalman filter is the observability rank condition
based on Lie derivatives [21]. Due to space limitations,
we refer the reader to [22], [23], and [24] for a in-detail
discussion of nonlinear observability analysis for Kalman
filters. Thus, we only discuss the most important outcomes
of the analysis.

To facilitate the analysis, a coordinate transform from the
inertial frame into a new, plane-centric coordinate frame
is introduced. The coordinate transform is described by a
rotation in which the vector e; of the plane coordinate frame
coincides with normal vector of the plane 77, e is in direction
g xmnand e3 =e; X es.

Computing the observability matrix (O using this new
coordinate transform reveals that the position in direction
e; is fully observable while the position in direction of
e, and e3 is not observable. The remaining states, namely
the velocity and attitude with respect to the plane as well
as the accelerometer and gyroscope biases in the body
frame are also observable. However, these states are only
observable under the condition that (1) the system is excited
by accelerations on at least two independent axis and (2)
there is at least one optical flow measurement with its
feature vector p not parallel to the velocity vector in the



body frame. The requirement for the acceleration can be
explained using an intuitive argument: If the system observes
a constant optical flow, the observer cannot distinguish the
ratio between velocity and distance.

However, while the attitude is observable with respect to
the plane frame, this does not imply that it is fully observable
in the inertial frame. In fact, the rotation around the gravity
vector in the inertial frame is not observable. This is due to
the fact that the system has no measurement of an absolute,
inertial yaw angle. Therefore, the yaw angle of the system
in the inertial frame is not observable. The roll- and pitch
angles of the attitude in the inertial frame are observable
since the gravity vector acts as reference. Therefore, if a
virtual measurement of the yaw-angle is introduced as an
additional measurement to the analysis, as suggested in [24],
the unobservable manifold of the attitude in the inertial frame
becomes fully observable. However, the use of an inertial
heading reference vector (e.g. from a magnetometer) is not
necessary if no globally consistent yaw angle is required. For
example, in a wall-following scenario, the observer provides
the relative attitude with respect to the wall, which is enough
information for yaw-stabilization.

The case where the normal vector coincides with gravity
requires special consideration. For one, the newly introduced
coordinate transform from body- to plane frame collapses.
But even if the definition of the coordinate frame is changed?,
the yaw component of the attitude of the body frame w.r.t.
the plane frame is not observable anymore. This can be
explained by the well known property from the TRIAD
method [26], which states that two independent reference
vectors are required to fully describe the attitude of a system.
In the case where the gravity vector coincides with the
normal vector, we only have one reference vector and as
a consequence, the yaw angle of the body frame w.r.t. the
plane frame and the yaw bias in the body frame become
unobservable.

V. RESULTS

To evaluate the performance of the proposed estimation
scheme and to validate the findings of the observability
analysis, experiments are conducted in simulation. To gen-
erate the ground truth as well as the sensor readings, we
simulate a UAV flight in our in-house UAV flight simulator,
as depicted in Fig. 3. The simulated flight consists of a
high-dynamic phase where the UAV is tracking a ellipse-
like trajectory at a velocity of up to 2.5 m/s with a maximal
acceleration of 1.5m/s? at a distance between 0.5 — 7.5m
from the observed plane. After 30 seconds of circling, the
UAV position controller is set to hover-mode to examine the
observer performance in low-dynamics flight. In simulation,
the UAV is equipped with an accelerometer and a gyroscope
as well as a front-looking camera that is pointing towards the
plane with a normal vector = [0 1 0]T. The inertial sensor
readings are generated in this simulation at 100 Hz and are
perturbed with realistic noise values present during UAV

2e.g. by swapping e1 and es and changing the sign of e3 of plane frame

IMU-camera trajectory
® Start
End

) yim]

Fig. 3. Trajectory of IMU-camera system.

flight (0, = 3 deg/s, o, = 0.5 N). We use a simulated global
shutter camera with 150° FOV and a resolution of 752 x 480
running at 30 Hz. We use the camera model from [12] with
coefficients of a real calibrated PointGrey Firefly camera.
While a single optical flow feature ensures the observability
of the state, in practice, due to measurement noise, at least
50 features have to be extracted at every timestep to ensure
proper convergence of the observer. For the simulation, we
use 75 optical flow features perturbed by Gaussian noise
with a standard deviation of 1.5 pixels. Additionally, we add
20 outlier optical flow features by generating correct optical
flow vectors and then simply reversing their signs.

The initial conditions of the filter state are perturbed with
offsets described in Table 1.

TABLE I
INITIAL CONDITIONS OF FILTER

[ State [ Initial Value | True Value |
Distance to Plane 2.5 m 0.5 m
Velocity [0.2 0.2 0.2] m/s [0 0 0] m/s
Roll, Pitch, Yaw of q’i3 [5 -5 20] deg [0 0 0] deg
Gyro Bias [0 0 0] rad/s [0.03 0.03 -0.03] rad/s
Accelerometer Bias [000] N [0.1 0.1 0.1] N
Plane Normal Vector [ 0.42 0.89 0.13] [010]

A. Estimation of the UAVs Metric Velocity and Metric Dis-
tance to the Wall

In Fig. 4, the orthogonal distance of the UAV to the
plane with its 1o bounds is depicted. The filter is able to
correct for the initial state offset and converges to the true
distance within 12 seconds. At ¢ = 30s, when the UAV
starts hovering, the distance starts diverging slowly. The
observability analysis explains that the state is only fully
observable if the system is excited with accelerations in at
least two independent axis. Additionally, during hovering,
the derotated optical flow is almost zero. This yields only
the information that the ratio between the velocity and the
distance to the plane is zero. Therefore, no information on
the distance to the plane can be extracted from optical flow
during hovering. The growing covariance bounds correctly
account for this. The covariance bounds also nicely show



the sensitivity of the filter w.r.t. the distance to the plane. As
the distance becomes larger, the signal-to-noise ratio of the
optical flow measurement becomes worse and therefore, the
covariance of the distance estimate grows. The RMS error of
the distance after convergence at ¢ = 12s until the end of the
high-dynamic flight phase at ¢ = 30s is 0.060m and 0.095m
if the preceding low-dynamics flight phase is included as
well.

——Ground Truth
8r —Filter Estimate
10 covariance hull

Distance to plane [m]
w & o o~

N

2
Time [s]

Fig. 4. Evolution of the estimate of the orthogonal distance to the plane
with its corresponding 1o bounds.

In Fig. 5, the velocity of the system in the body frame
is depicted. The velocity converges to the true value and re-
mains converged even during hover flight. The RMS velocity
error after convergence at t = 12s is [0.031 0.024 0.017] m/s.
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Fig. 5. Evolution of the estimated velocities expressed in the body frame
with their corresponding 1o bounds.
B. Estimation of the Gyroscope Bias

In Fig. 6, the estimates of the gyroscope biases are shown
with their corresponding 1o bounds. After t = 12s, the
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Fig. 6. Evolution of gyroscope biases with 1o covariance hull.

biases have and remain converged even during hover flight.

The covariance bounds of the yaw bias is slightly larger
than the roll- and pitch covariance bounds. This is due to
the fact that the yaw bias uncertainty is correlated to the
estimation of the normal vector of the plane. The evolution
of the accelerometer bias is equivalent to the gyroscope bias
and is omitted for space reasons.

C. Estimation of the Body Frame Attitude with Respect to
Inertial- and Wall Frame

In Fig. 7, the estimation of the roll-, pitch- and yaw-angle
of the UAV with respect to the inertial frame is depicted.
The roll- and pitch angle converge to the ground truth as
the gyroscope and accelerometer biases converge. The RMS
error of the roll- and pitch angle after convergence at ¢t = 12s
is 0.8 and 0.9 degrees respectively. As explained in Section
IV-G, the yaw-angle does not converge since no measurement
of a heading vector in the inertial frame is available.
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Fig. 7. Evolution of the roll- pitch and yaw angles of the attitude of the
UAV in the inertial frame with the corresponding 1o bounds.

However, following the observability analysis, the ob-
server is able to estimate the attitude of the body frame with
respect to the wall frame C;’. The wall frame is defined
in section IV-G. By defining the error rotation matrix é}j’ =
CPCT it can be shown that C" — C if tr(I3—CY) — 0
[10]. In Fig. 8, the evolution of the rotational error term
tr(I3 — ’C) is depicted. As the error converges to zero,
the estimate of the attitude of the body frame w.r.t. the wall
frame converges as well.
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Fig. 8. Evolution of the error of the rotation matrix between wall- and

body frame (blue) and angular error of the estimated plane normal vector
7y expressed in the body frame.

Since the plane normal vector 7 is only observable in
the body frame (see section IV-G), we evaluate the angular
error of the estimated normal vector in the body frame. As



expected from the convergence of C¥, the estimated normal
vector converges too, as depicted in Fig. 8. The RMS angular
error of the planes’ normal vector in the body frame after
convergence at t = 12s is 1.3 degrees.

D. Sensitivity to False Initial Conditions

Monte Carlo experiments showed that the distance to the
plane can be initialized to a false scale up to a factor of 20
(10m instead of 0.5m) without leading to divergence of the
filter. This is quite surprising, since other authors reported
problems with properly initializing the scale of their inertial
navigation filter [4]. However, the filter is more sensitive to
the initialization of the normal vector of the plane. Initial
errors of more than 60 degrees can lead to divergence of
the filter. As a consequence, the normal vector has to be
initialized with a rough estimate for proper convergence. In
the future, heuristics could be used to generate an initial
guess for the normal vector (e.g. homography-based).

VI. CONCLUSIONS

In this paper, a novel state estimation framework has
been presented that allows estimating the attitude, full metric
velocity and the orthogonal metric distance of an IMU-
camera system w.r.t. a plane. The filter relies on optical flow-
as well as gyroscope and accelerometer measurements and
does not require any range- or bearing sensors. The theoret-
ical limitations of the filter have been investigated using a
nonlinear observability analysis. Experiments in simulation
successfully demonstrate the performance of the filter as
well as validate the findings of the observability analysis.
The simulation results successfully show convergence of the
filter in presence of substantial initial state offsets and sensor
noises present during the flight of a UAV.

This generic estimation framework can be used as a vision-
aided navigation system in a wide range of applications, on
a variety of robotic platforms. Due to the minimal sensor
configuration, which is both light-weight and low-cost, this
framework is an appealing choice to be used on weight-
sensitive robotic platforms such as UAVs.
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