
HAL Id: hal-01302169
https://hal.science/hal-01302169

Submitted on 13 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

OntoCompo: A Tool to Enhance Application
Composition

Christian Brel, Anne-Marie Déry-Pinna, Philippe Renevier-Gonin, Michel
Riveill

To cite this version:
Christian Brel, Anne-Marie Déry-Pinna, Philippe Renevier-Gonin, Michel Riveill. OntoCompo: A
Tool to Enhance Application Composition. 13th International Conference on Human-Computer In-
teraction (INTERACT), Sep 2011, Lisbone, Portugal. pp.588-591, �10.1007/978-3-642-23768-3_89�.
�hal-01302169�

https://hal.science/hal-01302169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

OntoCompo: A Tool To Enhance Application

Composition

Christian Brel, Anne-Marie Dery-Pinna, Philippe Renevier-Gonin, Michel Riveill

I3S Laboratory (Université Nice-Sophia Antipolis / CNRS)

930 route des Colles, BP 145

06903 Sophia Antipolis Cedex, FRANCE

{brel,pinna,renevier,riveill}@polytech.unice.fr

Abstract. Mash-ups emerged through the web 2.0 to juxtapose several

applications and use them together. The next step after juxtaposition is the

composition of existing applications to build a new one. A solution of this being

born need is the reuse of parts from formers applications. To perform this

composition and reuse in an easy and comfortable way, we propose a tool based

on several extensions of selection to help the developer during his composition.

Keywords: Application Composition, Semantic Annotation, CBSD, UI, task

model

1 Introduction

The advent of web 2.0 and the apparition of a lot of “applications stores” introduce

implicitly new needs for users and developers faced to this set of applications disposed

on the web. Mash-up solutions for example allow them to juxtapose several

applications and use them together. They can have ideas for new functionalities creating

a new application combining existing ones. Adapting applications to users'

requirements may be done through composition of applications. Tools for composing

former applications (and probably corresponding source codes) should introduce

developers' comfort and a reduction of the time-to-market for new applications by

recycling former applications.

In this paper, we present the tool OntoCompo dedicated to easily realize new

applications by composition of their User Interface. This tool deals with component-

oriented applications respecting a separation in two parts: the User Interface (UI),

visible and well-known part of the application and the functional core (FC),

underground part of the application. Due to this clear separation, the composition

process lets the possibility to the developer to build the new application selecting,

extracting and positioning UI part of former applications, one after another [2]. So we

focus on the connections between UI, FC and tasks. We consider that a composition

driven by a checked selection is a guarantee to preserve the global consistency of the

final application. So we choose to help the developer for broadening selection.

In the next section, we describe related works and we underline our originality. Then

we present the hypothesis of our work and our tool for application composition.

2 Related Works

As we aim at composing applications by manipulating their UI, we have to decompose

UI, i.e. describe UI in order to deal with sub-parts of former UI. The description of an

UI both involves (1) description of its structure (like UIML [1], ALIAS [7], UsiXML

[5] or MARIA [8]) and (2) the spatial positioning of these components (like in different

layouts used in the UI toolkits).

To manipulate applications in order to compose them, there are currently three main

approaches: (i) the composition could be triggered by the functional part as in [7], (ii)

the composition could be triggered by the users' goals (i.e. tasks) as in [8] and (iii) the

composition could be triggered by the UI as in [4].

Each trigger addresses a specific problem of composition: presentation and layout

considerations at the UI level, behavior of the application at the functional level, users’

needs at the task level. These works do not reuse complete architecture of the former

applications. Either they compose and reuse UI as first concern without any

consideration of the links between UI and the functional part either their first concerns

are functionality or task and provide the new application by (re-)generating UI.

Our originalities are (i) to consider links between UI, tasks and functionalities, (ii)

to lead the developer by suggesting him and asking him about elements to keep for

aiming at composition consistency and (iii) to reuse existing UI in order to preserve

former developments, former designs and former practices. Our tool, OntoCompo,

helps the developer of application for reusing existing applications to constitute his new

one. We purpose the developer to select UI elements he wants to keep and suggest him

extensions for his selection in order to obtain a new functional application after

composition.

3 Hypothesis on Former Applications

To be able to reuse elements of the former application, we need a software organization

authorizing selection, extraction and rejigging of such elements. We opt for

applications developed with FRACTAL components [3]. For reusing of former

applications parts, we use: (i) component-based software development to manipulate

functionality assemblies and (ii) component-based UI with Java Swing JComponent

encapsulated in FRACTAL component in order to manipulate concrete UI parts.

Applications are not expected to be provided with sources. Indeed FRACTAL

components are seen like black box and inputs and outputs software interfaces are

available. To reuse existing applications, our hypothesis is to let the developer doing

composition through the interfaces of applications. So, our approach is to enhance links

and to extend connections between UI elements and Functional Core elements. That

strengthening is based on the Task Model (TM). We use semantic annotations (using

OWL Light1 language) for the description of applications. So the OWL Light

description includes the description of the task model (an OWL representation of CTT

1 OWL Web Ontology Language. http://www.w3.org/TR/owl-features/

[6]), the description of the UI elements (an OWL representation of MARIA [8]) and

their layout and the description of functionalities. The OWL Light description also

includes links between tasks and functionalities, links between tasks and UI elements,

links between functionalities and the concrete FRACTAL component, links between

UI elements and the concrete FRACTAL component.

4 Composing thanks to Extensions of Selection

The simple selection of a part of an application is the direct manipulation. By a click

on an UI element, the developer can select it in order to extract it later. Selected UI

elements are graphically highlighted. That simple selection is extended for performing

complex selections or aiming at verifying consistency.

First, there is the layout extension. With the height toggle buttons for selected

extension directions, the developer has the possibility to broaden the selection.

SPARQL2 queries are parameterized with the current selection and with each chosen

directions. Such a query returns the relevant fractal component identifiers.

Secondly, there is the (container) parent extension. It’s also about queries layout of

application to obtain the parent container of last selected UI component in current

selection. This extension allows the developer to be more efficient on his selection of

all elements in a container potentially “hidden” by its contents.

Thirdly, there is the task extension. Each UI element is linked with a task described

with semantic annotations. From the last selected component, we use SPARQL queries

to obtain the task linked to it. From each returned tasks, we query semantic annotations

to obtain all UI elements linked with this task.

Finally, there is the functionality extension. UI elements are directly linked to

functionality but also through tasks. Since a task may be connected to several

functionalities, it is possible to extend the selection to each part of the application by

following these links. We start with selected UI elements. Thanks to SPARQL queries,

we go back "up" to related tasks and then "up" to related functionalities. From these

functionalities, we go back "down" to UI elements.

Each of these extensions can be activated by the developer. He is free of combination

between all proposed extensions. To help him and to lead him towards to a coherent

composition, we develop a help selection. This help is a guide for the developer during

all selection process. For each UI element, several questions suggest to the developer

different possibilities for extending his selection. The developer can partially or fully

use that help (guided by tasks and/or by functionalities and/or by layouts) to perform

his selection.

5 Conclusion

To conclude, with OntoCompo, we provide a solution to compose application from a

manipulation of UI. We help the developer during the composition with all proposed

2 SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/

selection extensions. Those selection extensions based on suggestions to enhance the

reused part of former applications lead to an usable application. The developer being

able to choose his entry point (UI layout, functionalities or tasks) to perform his

extensions, we are now planning developer evaluation to validate the different

extension. Once that evaluation performed, we will work on a new step in the

composition process about merging application elements (UI elements or

functionalities).

References

1. Abrams M., Phanouriou C., Batongbacal A., Williams S., Shuster J. 1999 UIML: An

appliance-independent XML user interface language. In proceedings of the 8th World

Wide Web Conference (WWW), pages 617-630, Elseiver.

2. Brel C., Renevier-Gonin P., Occello A., Pinna-Déry A.-M., Faron-Zucker C., Riveill

M.. "Application Composition Driven By UI Composition" in Proceedings of the

Human Computer Software Engineering 2010 (HCSE 2010), IFIP International

Federation for Information Processing, pages 198--205, LNCS, oct 2010

3. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V. and Stefani, J.-B. (2006), The

FRACTAL component model and its support in Java. Software: Practice and

Experience, 36: 1257–1284. doi: 10.1002/spe.767
4. Fujima J., Lunzer A., Hornbæk K., Tanaka Y., 2004. Clip, Connect, Clone:

Combining Application Elements to Build Custom Interfaces for Information Access,

In Proceedings of UIST 2004, pages 175-184, Santa Fe, NM.

5. Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L., Florins M., and Trevisan D.,

2004. Usixml: A user interface description language for context-sensitive user

interfaces. AVI’2004 Workshop ”Developing User Interfaces with XML: Advances on

User Interface Description Languages” UIXML’04, pages 55–62.

6. Mori G., Paternò F., Santoro C., 2002. Ctte: Support for developing and analyzing task

models for interactive system design. IEEE Transactions on Software Engineering,

pages 797–813.

7. Occello A., Joffroy C., Pinna-Déry A.-M., Renevier-Gonin P. and Riveill M., 2010.

Experiments in Model Driven Composition of User Interfaces. In 10th IFIP

International Conference on Distributed Applications and Interoperable Systems

(DAIS'10), volume LNCS 6115, pages 98-111, Amsterdam, Netherlands. Springer-

Verlag.

8. Paternò F., Santoro C., and Spano L. D., 2009. Maria: A universal, declarative,

multiple abstraction level language for service-oriented applications in

ubiquitous environments. In Computer-Human Interaction (TOCHI), volume

16.

