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An Adaptive Multipoint Formulation for Robust

Parametric Optimization

François Gallard · Bijan Mohammadi ·

Marc Montagnac · Matthieu Meaux

Abstract The performance of a system designed for given functioning conditions

often seriously degrades, when operated at other conditions. Therefore, a system oper-

ating over a continuous range of conditions should be designed over this range. The

aerodynamic shape optimization of an aircraft at multiple altitudes, angles of attack

and Mach numbers is a typical case in aerospace. This paper links parametric and mul-

tipoint optimizations by the sampling of the operating condition ranges. It is demon-

strated that this discrete set of operating conditions, used to formulate a composite

objective function, must adequately be chosen. An algorithm is proposed to select these

conditions, which ensures a minimal computational cost to the robust optimization.

Wing aerodynamic multipoint optimizations using a lifting line model and Reynolds-

averaged Navier–Stokes equations, derived with a discrete adjoint formulation, are

given as examples.
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1 Introduction

In most practical situations, the cost function of an optimization problem depends

not only on design variables but also on extra parameters. A typical case is when

the performance of a system must be improved over a range of operating conditions,

each operating condition being represented by a set of parameters. This type of prob-

lem is called parametric optimization in the following, and aims at finding the design

variables that give the best user-defined performance over this range. Designers are

in charge of defining the performance of an aircraft. In other words, they must care-

fully specify the optimization problem and the trade-offs between all constraints and

operating conditions as they greatly affect the overall objective, and thus the final

optimum.

During a mission, an aircraft flies under various operating conditions such as the

angle of attack, the altitude, and the Mach number. The aerodynamic shape design must

then take them into account in the optimization process since optimizing at only one

condition is known to lead to poor off-design performance, which has been reported

as drag-creep [1], single-point optimization effect [2], or localized optimization [3].

The single-point optimization effect is also undesirable, since the condition chosen to

perform the optimization may not exactly be the real flight condition.

The term robust has many meanings as mentioned in [4]. Here, it is important to note

that no randomness is involved in the formulation of our problem. Besides, the problem

is different when optimization takes into account manufacturing or design variable

uncertainties. The present methodology addresses the optimization of deterministic

design variables, when the same product needs to perform well in a range of operating

conditions.

Therefore, either the objective function or the constraints must take into account

the operating conditions in the formulation of the optimization problem. This class

of problems is classically tackled with multipoint optimization methods in the litera-

ture [5–10], just to cite a few references from the aerodynamic community.

A set of functions to be minimized, coming from a set of operating conditions,

can be seen as a set of concurrent objectives, and the problem is then in the scope

of multi-objective optimization. Multi-objective algorithms, such as Normal Bound-

ary Intersection [11], Normal Constraint [12], Successive Pareto Optimization [13],

Directed Search Domain [14], and Multiple-Gradient Descent Algorithm [15], aim at

obtaining the Pareto front. Genetic algorithms, handling populations of solutions, can

also provide Pareto fronts. For instance, the Covariance Matrix Adaptation Evolution

Strategy [16] and Non-dominated Sorting Genetic Algorithm-II [17] algorithms have

been used in the aerodynamic community. Marco et al. [18] performed Euler airfoil

optimization using genetic algorithms. Vicini and Quagliarella [19] solved inverse

and direct airfoil design optimization problems using a multi-objective genetic algo-



rithm. Another alternative, combining Nash games and gradient algorithms, was pro-

posed by Tang et al. [20], who achieved two-objective airfoil optimizations in Euler

conditions.

When the preference of the user among multiple solutions is hard to define a priori,

there is a clear interest in obtaining the Pareto front. However, in our case, a designer

delivers a single solution and not a set of solutions, since a single system is built. So

a decision has to be made at some point, based on quantitative criteria. When such a

criterion can be expressed before the optimization, it is advantageous to take it into

account in the problem formulation, since multi-objective algorithms require more

function evaluations than the single-objective ones. This aspect is accentuated when

the objectives, such as solutions of 3D numerical simulations of viscous flows, are

expensive to compute. For instance, the computational cost to obtain the Pareto front

of a 2D airfoil optimization with two objectives was 57 times higher than the cost of a

single-objective optimization using a gradient algorithm in [21]. In another example

of airfoil optimization [20], from 160 to 600 gradient optimizations were required to

obtain the Pareto front, depending on the case, with two objectives. When both the

number of objectives and the CPU cost of the function evaluation increase, the cost of

multi-objective algorithms can become unaffordable. This is the case of the Navier–

Stokes 3D optimization given as illustration at the end of the present paper. It has 6

objectives, and the evaluation of a single-objective function with gradients costs 500

CPU hours, which is more than 10, 000 times higher than the function evaluation on

a 2D Euler airfoil case.

Besides, as shown in [22] and [23], for multipoint aircraft aerodynamic optimiza-

tion cases, there exists a user preference function that aggregates the objectives: the

integrated aircraft fuel consumption on a mission. From the gradient of this function, a

weighted sum of objectives can be expressed. In [23], a moderate cost estimation of the

utopia point is proposed, which also enables to specify an adequate set of weights [24].

Alternatively, Giannessi et al. [25] proposed a weight-free method that aims at mini-

mizing a scalar function, here typically the user preference function, over the Pareto

set, without preliminarily finding it.

Second, the minimum of a weighted sum with positive weights is always Pareto-

optimal [26], which is a key point from the user’s point of view. Some points of

the Pareto front may not be reached by the weighted sum method [27]. However,

multiple studies suggest that the gradient method is able to reach the Pareto front

formed by multipoint aircraft wing and airfoil drag minimization in cruise conditions

[21,28,29].

Therefore, we focus in the sequel on methods with a priori articulations of prefer-

ences, and in particular on the weighted sum method. In most of the studies using a

weighted sum approach, the set of operating conditions is a given input of the opti-

mization problem, and the impact of the choice of these conditions on the design

problem is rarely discussed. In [10], authors proposed an iterative heuristic method

that detects the drag–creep after each optimization, and that updates the set of oper-

ating conditions for the next optimization. We propose a priori method, relying on

theorems, for the optimization problem setup in order to prevent the drag–creep

effect.



It has been shown in [2] that for transonic flows, even considering many operating

conditions, the optimizer can end up with a solution that behaves badly away from

these sampled design points. Indeed, the flow is very sensitive to shape deformations

in transonic conditions. So, the main drawbacks of the multipoint approach remain

the selection of appropriate design points and the choice of the associated weights

[27].

This paper aims at linking parametric and multipoint optimizations together with

a new sampling method of the operating condition space. The focus is made on the

choice of the operating conditions to be incorporated in a scalarized objective, based

on the analysis of the gradients of the objective function with respect to the design

variables computed at these conditions. The general optimization strategy is presented

in Sect. 2, followed by Sect. 3, where two theorems provide the fundamental basis for

practical applications. In Sects. 4 and 5, it is shown how to properly build an optimal

set of operating conditions so that the performance of the system is controlled over

the whole range of these conditions. Applications to wing design on a range of angles

of attack and Mach numbers are finally presented in Sects. 6 and 7.

2 Multipoint Objective Function

Given the parameter α ∈ I ⊆ IR, the typical single-point aerodynamic optimization

problem is to find the vector of design variables x ∈ Oad ⊆ IRn that minimizes the

function J (U, x, α), with J ∈ C1(IRndf × IRn × I, IR), where ndf is the number of

degrees of freedom of the simulation, subject to the equality constraint R(U, x, α) = 0,

with R ∈ C1(IRndf × IRn × I, IRndf). U is a solution of the discretized non-linear

steady-state flow equations. Design variables come from the parameterization of the

aerodynamic shape. The objective function is typically the drag. Fluid dynamics Eq. (1)

are Euler or Reynolds-averaged Navier–Stokes (RANS) equations. U represents the

flow variables. In aerodynamics, the parameter α is a specified operating condition

such as the Mach number, Reynolds number, or angle of attack.

R(U, x, α) = 0. (1)

The objective function can also be written

j (α, x) := J (U, x, α) such that R(U, x, α) = 0. (2)

xL ≤ x ≤ xU , where xL and xU are specified bounds. In practice, j cannot be obtained

explicitly, but its value can be computed numerically, as well as its gradients, using

Lagrange multipliers.

When α is no longer fixed, but varies continuously in the set I, then the optimization

problem can no longer be formulated as previously because j (x, α) is a function of α

for a given x . R is now required to be a C1 function of x , U , and α.

The approach presented in this paper uses the inherent properties of the state

Eq. (1) to adequately sample the set I of operating conditions. Given m parameters,

(α1, . . . , αm) ∈ Im , and the associated weights, (ω1, . . . , ωm) ∈ IRm , the problem is



to find the vector of design variables x ∈ Oad ⊆ IRn that minimizes the function,

J (x) :=

m
∑

k=1

ωk j (x, αk). (3)

This strategy is similar to the proper orthogonal decomposition (POD) method that

has been developed first by Kosambi [30], and then applied to aerodynamics in [31–

33]. POD takes as input a set of solutions of the state equation obtained from various

operating conditions for instance. The basis for this set of solution vectors is computed

using a singular value decomposition. Then, a reduced model is built by selecting the

highest singular values. This projection can be used for the approximation of the states

when the operating conditions vary. In the present case, the aim is not to approximate

the solution of state equations, but to take advantage of the linear dependencies of the

set made of the functional gradients with respect to design variables. In both cases,

the underlying idea is that there exists an appropriate lower dimension approximation

of the system states for the purpose of interpolation or gradient computation.

The choice of the set of conditions is discussed in Sect. 3. Specifying the weights

relies on multi-objective optimization analyses. This question is addressed for instance

by methods, such as Normal Constraint [12], Successive Pareto Optimization [13],

Directed Search Domain [14], and Multiple-Gradient Descent Algorithm [15,20], and

is not treated in the present study. In the final example of application, a method to

approximate the utopia point based on a physical analysis is used to compute the

weights; more details are given in [23].

Composite objective functions (3) show a natural parallelism through the possi-

ble independent resolutions of the state equation R and evaluations of the function

j that represent the major part of the computational effort. This is sketched in algo-

rithm 1, classically used with variants on the minimization step for a given composite

objective gradient [5–10]. The main steps consist in solving the state equations for all

the operating conditions, computing the objectives j (x, αk) and their gradients with

respect to the design variables x , aggregating the function and the gradients, and using

a gradient-based minimization algorithm to update the design variables.

Algorithm 1: Scheme showing the parallel property of the multipoint optimiza-

tion Let {α1, . . . , αm} ∈ Im be a set of operating conditions, (ω1, . . . , ωm) ∈ IRm be a

set of weights, ǫA ∈ IR , ǫA > 0 be a stopping criterion, and x0 ∈ Oad an initial guess

for the design variables.

Step 0. Set the optimization iteration index l = 1.

Step 1. Solve the m state equations R(Uk, xl , αk) = 0.

Step 2. Perform m parallel evaluations of j (xl , αk).

Step 3. Perform m parallel evaluations of ∇x j (xl , αk).

Step 4. Define the descent direction dl := −
∑m

k=1 ωk∇x j (xl , αk).

Step 5. If ‖dl‖ < ǫA, stop; otherwise find ρ
opt
l := argminρ∈IR+

∗
{J (xl + ρd)}

Step 6. Set xl+1 = xl + ρ
opt
l d, l = l + 1 and go to Step 1.

A general background is now defined, and the next sections focus on the specific

issues raised by the parameters (α1, . . . , αm). In particular, a link is made between

these parameters and some properties of the objective function (3).



3 Choice of a Set of Conditions

In this section, the minimization of parametric objective functions that depend on a set

of operating conditions in addition to design variables is formulated with the weighted

sum method (3).

The objective is to control the performance j (x, α) over a range I of operating

conditions, while only a finite number m of conditions are explicitly used in (3). The

underlying idea to achieve this goal is that the state equation of the system (1) links the

different values j (x, α) computed at each operating condition α ∈ I. In the aircraft

design example, the Navier–Stokes equations are solved for each operating condition

α to compute the flow around the same shape defined by x .

Any two conditions can be either cooperative, independent, or concurrent. Mod-

ifying the shape and improving the performance at one of them leads to either an

improvement, a degradation, or no modification of the performance of the other con-

dition. This point can be exploited to generate the minimal set of conditions αk that

gives the shape design with the same performance as if the whole set I was considered.

Reasoning on the set formed by the gradients of the objective function with respect to

the design variables at each sampled condition, Li et al. [3] established that the required

number of conditions m in the multipoint optimization is linked to the dimension of

the design space n. From now on and throughout the rest of the paper, the term gradient

will mean: gradient of the performance function with respect to the design variables.

To summarize [3], a parametric function j (x, α), α ∈ I, is adequately controlled

by a composite objective function J (x) =
∑m

k=1 ωk j (x, αk) over the whole set I of

operating conditions, iff no new descent direction of j (x, α) can be found when α

varies in I compared to the descent directions given by −∇x j (x, α) when α varies in

{α1, . . . , αm}. Because the gradient at each condition is a vector of dimension n, it is

stated in [3] that taking at least m ≥ n is a necessary condition. At convergence of

the gradient-based algorithm to a local minimum, the sum of the weighted gradients

is zero in unconstrained cases, so the gradients are linearly dependent. If operating

conditions are chosen such that the gradients are linearly independent at the initial

guess, this tends to provide poor solutions. As a consequence, at least n +1 conditions

are taken in practice as expressed by

m ≥ n + 1. (4)

Also, an heuristic method with variable weights is proposed in [3] to avoid this costly

dependence to the number of design variables.

Here, new necessary and sufficient conditions are given for controlling the shape

performance on I, and they are less restrictive than the condition (4) that appears

consequently to be neither necessary nor sufficient. These theorems provide the basis

for a selection strategy for the condition set Im.

3.1 Geometrical Approach of the Gradient Span

As an example, a lift-to-drag polar as a function of the lift coefficient is plotted in

Fig. 1. The optimization of this polar belongs to the class of problems with multiple



Fig. 1 Polar of lift-to-drag
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operating conditions. If two design parameters are considered, the gradients are then

in the plane IR2. Thus, Fig. 1 also shows the gradient vectors of four conditions named

A, B, C, and D. A basic graphical approach shows that if two gradients are linearly

independent as the ones in A and C, then any other gradient, such as the one of the

condition B, can be linearly decomposed on the previous ones. This is due to the fact

that the set formed by the gradients at conditions A and C is a basis of the plane IR2. So,

using the optimization algorithm with the contribution of the gradient at the condition

B or of its linear decomposition on the other conditions is identical.

In a general context with n design variables, the design space that contains any

gradient is IRn . The point is that it may be impossible to build a basis of IRn from

the gradients computed at all the conditions in I. When the set of gradients from

all the conditions is a basis of IRn , the condition (4) becomes effective, and it is our

worst case. For that reason, we should focus on the vector space spanned by all descent

directions of the objective when the operating conditions vary. In fact, it is sufficient to

select a subset of gradients that is a basis of this vector space to setup the optimization

problem, as this will be demonstrated in the next sections.

3.2 Implicit Additional Operating Conditions

This section states a basic theorem on the equivalence between the addition of a new

operating condition in an initial composite objective function, and the modification of

the weights of this function. To the authors’ knowledge, this theorem is an original

result compared to the state of the art.

Some basic definitions and notations are introduced or recalled first. The func-

tional j : IRn × I → IR is supposed to be once continuously differentiable.

For the sake of simplicity, we consider only one operating condition variable and

I ⊆ IR, but the analysis can be extended to more than one dimension. Let KI,x :=

span{∇x j (x, α), ∀α ∈ I} denote the span of the set {∇x j (x, α)} of gradient vectors

obtained for all α ∈ I, and x ∈ IRn . We define Im := {α1, . . . , αm}, a subset of Im . Let

KIm ,x := span{∇x j (x, α), ∀α ∈ Im} denote the span of the subset of KI,x consisting

of the m gradient vectors obtained from α ∈ Im.



Let Jm+1 and Jm be two composite functionals defined by Jm+1(x) :=
∑m+1

k=1

ωk j (x, αk) and Jm(x) :=
∑m

k=1 ω̄k j (x, αk), with αk ∈ Im+1, (ω1, . . . , ωm+1) ∈

IRm+1 and (ω̄1, . . . , ω̄m) ∈ IRm .

Now, we analyze the relations between the two vector spaces KIm ,x and KI,x , and

in particular, the equivalence between the following conditions.

Condition 3.1 KIm ,x is equal to KI,x .

Condition 3.2 For αm+1 ∈ I, ωm+1 ∈ IR∗, and (ω1, . . . , ωm) ∈ IRm , there exists

(ω̄1, . . . , ω̄m) ∈ IRm such that
∑m+1

k=1 ωk∇x j (x, αk) =
∑m

k=1 ω̄k∇x j (x, αk).

Condition 3.3 For (ω1, . . . , ωm) ∈ IRm , the condition
∑m

k=1 ωk∇x j (x, αk) = 0 implies that, for αm+1 ∈ I, there exists (ω̄1, . . . , ω̄m+1) ∈

(IRm × IR∗) such that, for all D ∈ IRn and t ∈ IR, we have
∑m+1

k=1 ω̄k j (x + t D, αk) =
∑m+1

k=1 ω̄k j (x, αk) + O(t2).

Condition 3.4 For α ∈ I, we have
∂∇x j (x,α)

∂α
∈ KIm ,x .

Theorem 3.1 If j ∈ C1(IRn × I, IR), then Conditions 3.1 and 3.2 are equivalent.

Proof Let us first prove that Condition 3.1⇒Condition 3.2. Asαm+1 ∈ I, by definition

of KI,x , we have ωm+1∇x j (x, αm+1) ∈ KI,x . And, by hypothesis, KIm ,x = KI,x , then

ωm+1∇x j (x, αm+1) ∈ KIm ,x . As a consequence, there exists (ρ1, . . . , ρm) ∈ IRm

such that ωm+1∇x j (x, αm+1) =
∑m

k=1 ρk∇x j (x, αk). Using the latter expression

with the following decomposition,
∑m+1

k=1 ωk∇x j (x, αk) =
∑m

k=1 ωk∇x j (x, αk) +

ωm+1∇x j (x, αm+1), gives
∑m+1

k=1 ωk ∇x j (x, αk) =
∑m

k=1(ωk + ρk) ∇x j (x, αk).

Taking ω̄k = ωk + ρk gives Condition 3.2.

Let us prove now that Condition 3.2 ⇒ Condition 3.1. With the hypothesis of

Condition 3.2,
∑m+1

k=1 ωk∇x j (x, αk) =
∑m

k=1 ω̄k∇x j (x, αk), which is true for any

ωm+1 ∈ IR∗. So, for ωm+1 = 1, and for any ᾱ = αm+1 ∈ I, we can write ∇x j (x, ᾱ) =
∑m

k=1(ω̄k − ωk) ∇x j (x, αk).

By definition of a span, recall that

KI,x := {

p
∑

i=1

λi∇x j (x, ᾱi ) | p ∈ IN, (λ1, . . . , λp) ∈ IRp, (ᾱ1, . . . , ᾱp) ∈ Ip}.

So for all g ∈ KI,x ,

g =
∑p

i=1 λi∇x j (x, ᾱi ) =
∑p

i=1 λi

∑m
k=1(ω̄i,k −ωi,k) ∇x j (x, αk). Then, g is a linear

combination of vectors of KIm ,x , and consequently g ∈ KIm ,x , so KI,x ⊂ KIm ,x . In

addition, we already have KIm ,x ⊆ KI,x by definition, and finally KI,x = KIm ,x . ⊓⊔

Remark 3.1 Theorem 3.1 shows that adding a new operating condition to a composite

objective function does not necessarily provide any further information, but may only

perturb its initial weights.

Remark 3.2 In a worst-case scenario, the dimension of KI,x is n, which implies that

the cardinality of Im has to be at least n to ensure KIm ,x = KI,x . This depends on the

properties of the functional ∇x j .



3.3 Induced Optimality Condition on Implicit Additional Conditions

The following theorem expresses a relationship between the first-order optimality, at a

point x , of a weighted sum of m well-chosen operating conditions, and the functional

variation of any derived multipoint problems built on m + 1 conditions with specific

weights in the neighborhood of x . It is a direct consequence of Theorem 3.1.

Theorem 3.2 If j ∈ C1(IRn × I, IR), then Conditions 3.1 and 3.2 are equivalent.

Proof Theorem 3.1 shares the Condition 3.1 with Theorem 3.2. The equivalence

between Conditions 3.2 and 3.3 is proved here, which gives the equivalence between

Conditions 3.1 and 3.3.

First, let us introduce two statements. For all weights (ω1, . . . , ωm) ∈ IRm and

operating conditions (α1, . . . , αm) ∈ Im , let us suppose that we have x ∈ IRn such

that

m
∑

k=1

ωk ∇x j (x, αk) = 0. (5)

Next, for all (ω̄1, . . . , ω̄m) ∈ IRm , αm+1 ∈ I, D ∈ IRn and t ∈ IR, using a Taylor

expansion, we have

m+1
∑

k=1

ω̄k j (x + t D, αk) =

m+1
∑

k=1

ω̄k j (x, αk) + t〈D,

m+1
∑

k=1

ω̄k∇x j (x, αk)〉 + O(t2), (6)

where 〈., .〉 is the scalar product.

Let us first prove that Condition 3.2 ⇒ Condition 3.3. Thanks to the hypoth-

esis of Condition 3.2,
∑m+1

k=1 ωk ∇x j (x, αk) =
∑m

k=1 ω̄k ∇x j (x, αk), and next,
∑m

k=1 ωk ∇x j (x, αk) =
∑m

k=1 ω̄k ∇x j (x, αk) − ωm+1∇x j (x, αm+1). Let us choose

ω̄m+1 = −ωm+1, then
∑m

k=1 ωk ∇x j (x, αk) =
∑m+1

k=1 ω̄k ∇x j (x, αk). Using (5),

for all (ω1, . . . , ωm) ∈ IRm , there exists (ω̄1, . . . , ω̄m+1) ∈ IRm × IR∗ such that
∑m+1

k=1 ω̄k ∇x j (x, αk) = 0. Replacing the previous equation in (6), we obtain
∑m+1

k=1 ω̄k j (x + t D, αk) =
∑m+1

k=1 ω̄k j (x, αk) + O(t2).

Let us prove now that Condition 3.3 ⇒ Condition 3.2. Assuming Condition 3.3,

we have
∑m

k=1 ωk ∇x j (x, αk) = 0, and

m+1
∑

k=1

ω̄k j (x + t D, αk) =

m+1
∑

k=1

ω̄k j (x, αk) + O(t2).

So, (6) becomes 0 = t 〈D,
∑m+1

k=1 ω̄k∇x j (x, αk)〉 + O(t2). Due to the unique-

ness of the Taylor expansion, every term of this t polynomial is null, then

0 = 〈D,
∑m+1

k=1 ω̄k ∇x j (x, αk)〉. This equality is true for all D in IRn , so in par-

ticular for D =
∑m+1

k=1 ω̄k ∇x j (x, αk), which gives

∥

∥

∥

∑m+1
k=1 ω̄k ∇x j (x, αk)

∥

∥

∥

2
= 0,

and then
∑m+1

k=1 ω̄k ∇x j (x, αk) = 0.



But, by hypothesis,
∑m

k=1 ωk ∇x j (x, αk) = 0, so finally
∑m+1

k=1 ω̄k ∇x j (x, αk) =
∑m

k=1 ωk ∇x j (x, αk), and this condition is equivalent to Condition 3.2. ⊓⊔

Interpretation In [34], the Pareto stationarity is defined as the existence of a convex

combination of the gradient vectors that is null. When the objective is a smooth function

of the design variables, it is a necessary condition for Pareto optimality. Theorem 3.2

shows that a Pareto stationary point, for a problem with the conditions {αk}k∈{1,...,m} ∈

Im such that KIm ,x = KI,x , is also Pareto stationary for any other problem with

additional conditions taken from I, as long as the weights of this new problem are

positive. In other words, the theorem gives a necessary condition for the choice of

the discrete set Im for Pareto stationarity on the continuous set I. If the weights are

positive, it is also a sufficient condition.

On the sign of ω̄k In Theorems 3.1 and 3.2, it is not ensured that the weights ω̄k are

positive. We have ω̄k = ωk +ρk , and ρk is the component of the m + 1th condition on

the kth vector of the minimal gradient set. Then, a negative ρk means that the m + 1th

condition is concurrent with the kth one. When ω̄k is negative, increasing the objective

on the kth condition will decrease the composite objective function. It means that the

condition is locally concurrent with the objective, and its degradation leads to a better

global performance in the sense defined by the initial problem.

To the authors’ knowledge, this result is new and shows that (4) proposed in [3] is

over restrictive. As a matter of fact, if the two vector spaces KIm ,x and KI,x are equal,

then, when x is a local minimum of Jm(x), there does not exist any perturbation of

x that can improve the performance at first order, at any operating condition, without

degrading it at least at another one. When the dimension of KI,x is lower than the

number of design variables, this means that incorporating more operating conditions

than the number of design variables in the multipoint objective function is not a

necessary condition for this property.

3.4 Second-Order Derivatives

The next theorem gives a more intuitive interpretation for Condition 3.1. It expresses

that, if the derivative of the gradient vector with respect to α is inside the space KIm ,x ,

then this same space contains all gradients for α in I. In addition, the two conditions

are equivalent.We assume now that j is twice continuously differentiable.

Theorem 3.3 If j ∈ C2(IRn × I, IR), then Conditions 3.1 and 3.4 are equivalent.

Proof Let us first prove that Condition 3.1 ⇒ Condition 3.4. By definition of the deriv-

ative, for all α ∈ I and t ∈ IR, such that t + α ∈ I, then limt→0
∇x j (x,α+t)−∇x j (x,α)

t
=

∂∇x j (x,α)
∂α

. We have ∇x j (x, α + t) ∈ KI,x , and ∇x j (x, α) ∈ KI,x . Also, KI,x being a

vector space, it contains any sum of two of its vectors, and
∇x j (x,α+t)−∇x j (x,α)

t
∈ KI,x .

Assuming Condition 3.1, we have KIm ,x = KI,x , so
∇x j (x,α+t)−∇x j (x,α)

t
∈ KIm ,x .

The limit of a continuous function in a space being in the closure of this space, then

limt→0
∇x j (x,α+t)−∇x j (x,α)

t
∈ KIm ,x , and

∂∇x j (x,α)
∂α

∈ KIm ,x . Because KIm ,x ⊆ IRn ,

it is a finite dimension subspace of the normed vector space IRn , thus KIm ,x is closed,

and KIm ,x = KIm ,x . That finally gives the Condition 3.4.



Let us prove now that Condition 3.4 ⇒ Condition 3.1. Since the derivatives of the

cost functional j are continuous by hypothesis, for all (α, α0) ∈ I2,
∫ α

α0

∂∇x j (x,t)
∂t

dt +

∇x j (x, α0) = ∇x j (x, α). For all k ∈ IN∗, the Riemann sum Sk is defined as Sk :=
α−α0

k

∑k
i=1

∂∇x j
∂α

(x, α0 + i α−α0
k

), and, because j ∈ C2(IRn × I, IR), limk→+∞ Sk =
∫ α

α0

∂∇x j (x,t)
∂t

dt.

Condition 3.4 expresses that for all α,
∂∇x j
∂α

∈ KIm ,x . Because KIm ,x is a vector

space, we also have Sk ∈ KIm ,x . If we take now α0 ∈ Im, ∇x j (x, α0) is in KIm ,x , and

then Sk + ∇x j (x, α0) ∈ KIm ,x . The series Sk + ∇x j (x, α0), with the same argument

as in the first part of the proof, converges in the close finite dimension vector space

KIm ,x , then

lim
k→+∞

Sk + ∇x j (x, α0) =

α
∫

α0

∂∇x j (x, t)

∂t
dt + ∇x j (x, α0) = ∇x j (x, α) ∈ KIm ,x .

⊓⊔

Theorem 3.3 shows that the variations of the function with respect to the operating

conditions link the gradients at each operating condition. Exploiting this relation,

when Condition 3.4 is ensured, gives the necessary and sufficient Condition 3.1 for

Theorems 3.1 and 3.2. That shows how the parametric optimization problem is specific,

compared to a multi-objective problem when the composite objectives come from

different disciplines, with their own state equations, so when the multipoint problem

does not come from one continuous function j : (x, α) �→ j (x, α), but from m

different jk : x �→ jk(x) functions.

4 Gradient Span Analysis Algorithm

To use the previous theorems in practical applications, a minimal set of conditions

Im that verifies the condition KIm ,x = KI,x for the multipoint optimization has to be

built. Thus, the optimization problem will require a minimum amount of expensive

computations of the functions j (x, αk) and their gradients ∇x j (x, αk). The gradient

span analysis (GSA) method described in the algorithm 3 is proposed for building

such a set. This algorithm is used to obtain an orthonormal basis of KIm ,x such that

KIm ,x contains every vector of KIM ,x , where IM is an initial sample of size M in I,

with a maximal relative error of ǫ, and m as small as possible.

The GSA algorithm is based on the repeated use of modified Gram-Schmidt (MGS)

processes shown by the algorithm 2. The MGS process gives an orthonormal basis

{q j , j ∈ {1, . . . , M}} of a vector set, e.g., the gradient set {∇x j (x, αk), αk ∈ IM }.

Algorithm 2: Modified Gram-Schmidt process Let M be a strictly positive integer

and πu(v) :=
〈v,u〉
〈u,u〉

u the projection operator on the singleton u.

Step 0. Set j = 1.

Step 1. If j = M + 1, stop; otherwise, set q1
j := ∇x j (x, α j ), and set i = 1.

Step 2. Update q i+1
j via q i+1

j := q i
j − πqi

(q i
j ), and set i = i + 1.



If i = j , set j = j + 1, and if ‖q i+1
j ‖ �= 0, set q j :=

q i+1
j

‖q i+1
j ‖

go to step 1.

The GSA algorithm relies on two rules which are to take into account more vectors

than the dimension of the gradient space, and to find the minimal subset of the gradient

set that spans KI,x for a given projection error.The algorithm starts by building a fine

sample IM of the condition set I used to estimate KI,x . Then, conditions are chosen and

added to the set Im until KIm ,x = KIM ,x . At each step, the condition that maximizes

the quantification of the intersection KIM ,x ∩KIm ,x given by (7) is taken from available

conditions in IM\Im.

c(Im)=card{α ∈ IM, ||∇x j (x, α)−Proj (∇x j (x, α), KIm ,x )|| < ǫ||∇x j (x, α)||}.

(7)

A potential set Im1 will then be preferred to Im2 if c(Im1) > c(Im2).

Two strategies are possible for the choice of the threshold ǫ. It can be either the

stopping criteria ||∇ J (x)|| < ǫ of the optimization algorithm or the norm of the

objective function gradient times a small constant, ǫ = 10−3||∇x J (x)||.

Algorithm 3: Gradient Span Analysis Algorithm (GSA) Let ǫ ∈ IR, ǫ > 0, and

IM = {α1, . . . , αM } ∈ IM be a set of operating conditions.

Step 0. Initialize the set of available operating conditions: set A = IM.

Initialize the set of selected operating conditions: set Im = {} and j = 1.

Step 1. Initialize the counter: set c̄ = 0. Initialize the set of tested operating condi-

tions at the j-th iteration: Tj = {}.

Step 2. Take a non-tested operating condition α ∈ A\Tj, and update the set of

tested operating conditions Tj = Tj ∪ {α}. Set q1
j = ∇x j (x, α) and i = 1.

Step 4. Apply a MGS iteration on q1
j :

while i < j , set q i+1
j = q i

j − πqi
(q i

j ) and i = i + 1.

Step 5. Set c = 1 and p = 1.

If ‖q
j
j ‖ = 0, go to step 2; otherwise, set q j =

q
j
j

‖q
j
j ‖

.

Step 6. Set v0
j,p = ∇x j (x, αp) and set k = 0.

Step 7. Project ∇x j (x, αp) on span{q1, . . . , q j }:

while k < j , set vk+1
j,p = vk

j,p − πqk
(vk

j,p) and k = k + 1.

Step 8. If ‖v
j
j,i‖ < ǫ‖∇x j (x, αp)‖, set c = c + 1.

Step 9. If p < M , set p = p + 1, and go to step 6.

Step 10. If c > c̄, set c̄ = c, q̄ = q j , and ᾱ = α.

Step 11. If A\Tj �= {}, go to Step 2; otherwise, set q j := q̄ , and update the condition

sets via A = A\{ᾱ} and Im = Im ∪ {ᾱ}.

Step 12. If cm = M , stop; otherwise, set j = j + 1, and go to Step 1.

Step 10. on the choice of the operating conditions can be replaced by

Step 10’. If c = c̄ and min{‖α − α̃‖, α̃ ∈ Im} > min{‖ᾱ − α̃‖, α̃ ∈ Im}, or c > c̄,

then set c̄ = c, q̄ = q j , and ᾱ = α. This gives the preference to operating conditions

that are more distant to the already selected ones when they lead to identical gradient

spans.



Minimality of the set Im It is not proven that the set of operating conditions Im

given by the GSA algorithm is minimal. Nevertheless, it is guaranteed that the added

condition is optimally chosen at each step. But at the end of the process, another set

of lower dimension that also spans KI,x with the same maximal error could exist. To

ensure this global optimality, all combinations of vectors should be tested, which would

lead to the orthonormalization of
(

M
n

)

sets.This number quickly becomes too high to

use the method. For instance, the analysis of a typical 3D wing optimization problem

with 100 variables and 10 conditions would require 1013 Gram-Schmidt processes.

5 Computation of an Equivalent Problem

In this section, given an arbitrary multipoint problem with a set of M operating con-

ditions, we aim at building the weights of an equivalent problem with a minimal set

of m operating conditions selected by the Algorithm 3. Thanks to the GSA algorithm,

the subset Im := (ᾱ1, . . . , ᾱm) of IM is built such that KIm,x = KIM,x. The gradi-

ent of the initial objective function is defined as ∇x J (x) :=
∑M

k=1 ωk ∇x j (x, αk).

This quantity can be computed from less operating conditions, and with modified

weights. For all αk ∈ I and ωk ∈ IR, there exists (ωk,1, . . . , ωk,m) ∈ IRm such that

ωk∇x j (x, αk) =
∑m

p=1 ωk,p ∇x j (x, ᾱp). A set of M similar linear systems is defined

by (8). For all k ∈ {1, 2, . . . , M},

ωk∇x j (x, αk) =



















∂
∂x1

j (x, ᾱ1) . . . ∂
∂x1

j (x, ᾱm)

. . .
∂

∂xi
j (x, ᾱp)

. . .
∂

∂xn
j (x, ᾱ1) . . . ∂

∂xn
j (x, ᾱm)































ωk,1

. . .

ωk,p

. . .

ωk,m













. (8)

The matrix is not necessarily square (m ≤ n), so a least-square solver is used.

However, the GSA algorithm builds KIm ,x such that KIm ,x = KIM ,x , then for all

αk ∈ I, ∇x j (x, αk) ∈ span{∇x j (x, α1), . . . ,∇x j (x, αm)}, and the problem has at

least one solution. Solving the M linear systems of (8) gives finally ∇x J (x) =
∑M

k=1

∑m
p=1 ωk,p∇x j (x, ᾱp). Because ∇x j (x, ᾱp) does not depend on k, a new

set of weights can be defined as ω̄p =
∑M

k=1 ωk,p. The gradient of the objective

function can be computed as follows, ∇x J (x) =
∑m

p=1(
∑M

k=1 ωk,p)∇x j (x, ᾱp) =
∑m

p=1 ω̄p∇x j (x, ᾱp), and then ∇x J (x) =
∑M

k=1 ωk ∇x j (x, αk). We have m ≤ M ,

as a consequence the method saves M −m costly evaluations of the gradient. It can be

noted again that the case dim(KIM ,x ) = n, which leads to m = M , is the worst one.

6 Application of the Concept

In this section, Theorems 3.1 and 3.2 are applied to a multipoint wing optimization

problem. The objective is to minimize the drag of a wing over a range of lift coeffi-
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Fig. 2 The geometry and variables of the lifting line model

cients using a gradient-based algorithm. A lifting line model estimates the lift and the

drag [35]. The design variables are the twist angles of airfoils, and the gradients are

computed using the discrete adjoint method.

6.1 Continuous Lifting Line Model

The lifting line theory is a linearized fluid model that gives an estimation of wing

performance. More precisely, it enables the computation of the lift and drag induced

by the lift. The flow around the wing is assumed to be potential, so non-viscous and at

low Mach number, and the rotational of the velocity is supposed to be null. Potential

sources are associated with wing sections (i.e., airfoils). Their interferences model

the interactions between airfoils. In the present model, the state variables are the

circulations γ (y) := 1
2

Cl(y, αeff(y)) c(y), where Cl(y, αeff (y)) is the lift coefficient

of the airfoil of chord c(y) at span y and angle of attack αeff(y). The effective angle of

attack given by αeff := α∞ + αtwist − αind is the difference between the geometrical

angle of attack and the angle of attack induced by the lift as shown in Fig. 2a. The

infinite angle of attack is the angle between the airfoil and the infinite air speed. The

effective angle of attack is the angle between the local air speed and the airfoil. The

geometrical angle of attack is the sum of the wing angle of attack and the twist that is

a local rotation of the airfoil around y axis; see Fig. 2b.

Induced angles of attack, due to downwash velocities, are computed by summing

the effects of all airfoil circulations. It is defined as αind(y0) := 1
4π

∫ s

−s
dγ (y)

dy
dy

y−y0
,

where s is the half wingspan and y0 is the current airfoil position. The downwash

velocity V − V∞ is the difference between the air speed of the aircraft and the local

air speed of wing sections, as shown in Fig. 2a.The circulation on each airfoil must

then be computed.

Let us define the residual function

R(γ, y0) := 1
2

Cl

(

y0, α∞ + x(y0) − 1
4π

∫ s

−s
dγ (y)

dy
dy

y−y0

)

c(y0) − γ (y0), where the

local twist αtwist is taken as the design variable x(y0). This residual function is

the difference between a given circulation γ , and the circulation given by the lifts,

under effective angles of attack due to that same circulation. To solve the integro-



differential equation R(γ, y0) = 0, a Newton’s method is used, taking the circulation

as unknowns.We take here the twist angles as design variables because they drive the

lift repartition for a given planform, i.e., fixed chords and airfoil positions. Finding

the optimal twist vector is a typical lift repartition design problem in aerodynamics,

and one of the main lifting line model application.

6.2 Discrete Model and its Computation

A cartesian discretization of y with a step 
y gives the following discrete

vectors of size p = 2s/
y, the twist angles x used as design variables,

x :=
[

x1, . . . , xi , . . . , x p

]T
:=

[

x(y1), . . . , x(yi ), . . . , x(yp)
]T

, the chords c :=
[

c1, . . . , ci , . . . , cp

]T
:=

[

c(y1), . . . , c(yi ), . . . , c(yp)
]T

, and the circulations Ŵ :=
[

γ1, . . . , γi , . . . , γp

]T
:=

[

γ (y1), . . . , γ (yi ), . . . , γ (yp)
]T

. The induced angles of

attack are then αind,i = 1
4π

∑p
k=0,k �=i

dγk

dy

y

yk−yi
, and residuals become

R(Ŵ, x) =













R1

. . .

Ri

. . .

Rp













=
1

2















Cl 1(α∞ + x1 − 1
4π

∑p
k=0,k �=1

dγk

dy

y

yk−y1
)c1

. . .

Cl i (α∞ + xi − 1
4π

∑p
k=0,k �=i

dγk

dy

y

yk−yi
)ci

. . .

Cl p(α∞ + x p − 1
4π

∑p
k=0,k �=p

dγk

dy

y

yk−yp
)cp















− Ŵ.

The Newton’s method gives the next iterate, using the derivatives of the residual

with respect to the state variables, as follows Ŵn+1 := Ŵn − (1 − β)
[

∂ R
∂Ŵ

(Ŵ, x)
]−1

Ŵ.

The relaxation factor β is used to numerically stabilize the method.

6.3 Discrete Adjoint and Computation of Gradients

In the discrete adjoint formulation, the gradient of the residual with respect to the

state variables is used in order to compute the gradient of the objective function,

J (Ŵ, x), with respect to the design variables x . Geometrical parameters, such as chords,

twist angles, or airfoil positions, can be used as design parameters. The linear adjoint

equation is given by ∂ J (Ŵ,x)
∂Ŵ

+λT
J

∂ R(Ŵ,x)
∂Ŵ

= 0, which solution gives the adjoint vector

λJ . Finally, the gradient is assembled as

∇x J (Ŵ, x) =
∂ J (Ŵ, x)

∂x
+ λT

J

∂ R(Ŵ, x)

∂x
. (9)

The derivatives of the residuals with respect to the circulation are given by the following

equations. For all (i, j) ∈ {1, . . . , p} × {1, . . . , p},

∂ Ri (Ŵ, x)

∂γ j

=
1

2

∂αind,i

∂γ j

dCl i

dα
(α∞ + xi −

1

4π

p
∑

k=0,k �=i

dγk

dy


y

yk − yi

)ci − δi,k .
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Fig. 3 Optimal circulation for a single-point wing design at Cl =0.5

The derivatives of the induced angle of attack with respect to the circulation are given

by
∂αind,i

∂γ j
= 1

4π

∑p
k=0,k �=i

d
dγ j

(
dγk

dy
)

ci

y j −yi
, where the derivative d

dγ j
(

dγk

dy
) depends on

the discretization scheme used for the computation of
dγk

dy
. Here, second-order centered

finite differences are used. The derivatives of the residuals with respect to the design

variables are computed with ∂ Ri (Ŵ,x)
∂x

= 1
2

dCl i

dα
(α∞ + xi −

∑p
k=0,k �=i

dγk

dy

y

yk−yi
)ci ,

where the functions of interest, the lift and the drag, are, respectively, given by

Cl =
2
y

S

p
∑

i=0

γi , (10)

and

Cdind =
2
y

S

p
∑

i=0

γiαind,i . (11)

The source terms of the adjoint equations for lift and drag are ∂Cl

∂γp
=

2
y
S

, and

∂Cdind
∂γp

=
2
y

S
[αind,p +

∑p
i=0 γi

∂αind,i

∂γk
]. The so-called geometrical terms required for

the gradients computation ∂ J (Ŵ,x)
∂x

in (9) are null because the functions (10) and (11)

have no direct dependance to the design variables.

6.4 GSA and Lifting Line Model

The fuel burn rate of an aircraft is proportional to the drag while the lift is imposed

by the aircraft mass. From the lifting line model, a parametric objective func-

tion Cdind(x, α∞), a constraint Cl(x, α∞), and their gradients ∇x Cdind(x, α∞) and

∇x Cl(x, α∞) are obtained. It is possible to apply the GSA approach to this particu-

lar problem, with here 40 design variables. According to the lifting line theory, the

circulation distribution at the optimum of a single-point problem is elliptical. This is

observed in Fig. 3 for the problem minx∈IRn Cdind(x, α∞) subject to Cl(x, α∞) = Cl 0.

With a null sideslip angle, the problem is symmetric, and only a half of the model

may be considered. The whole model is kept in our example.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35

Wingspan

Circulation

Cl=0.3
Cl=0.4

Cl=0.5
Cl=0.6

Cl=0.7
Cl=0.8

Cl=0.9

Fig. 4 Optimal circulation for a multipoint wing design from Cl = 0.3 to Cl = 0.9

Three numerical experiments are conducted with the lifting line model. In the first

one, the GSA algorithm performs an analysis of the problem on a lift range of [0.3, 0.9].

Drag coefficients and their gradients on five hundred samples of the parameter α∞ are

computed. As a result, the gradient span is of dimension 2. Therefore, only 3 operating

conditions are required to formulate the robust optimization problem. Because the

design space is of dimension 40, this approach shows a gain of 38 computations

compared to a composite objective function with a number of operating conditions

under the hypothesis (4), which represents a cost cut of 93 %. Similar calculations

are performed with 80 design variables. The gradient span dimension for the drag is

also 2. In a general case, when the gradient span dimension is close or equal to the

number of design variables, increasing the number of design variables can increase

the gradient span dimension.

In the second experiment, a multipoint design problem is built with 7 operating

conditions and a uniform weighting. The operating conditions are defined by lift con-

straints: Cl = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and the angle of attack at each condition

is adjusted by the optimization algorithm to ensure this minimal lift. This optimization

problem is solved with the sequential least-square quadratic programming (SLSQP)

algorithm [36]. The results are summarized in Fig. 4 for the circulation repartitions,

and in Fig. 5 for the optimal twist vector x . 7 optimization iterations are required,

which means 49 evaluations of the lifting line model.

In the last experiment, GSA is used to analyze the gradient span for each iteration

of the second experiment, and the results are shown in Table 1. Finally, the equivalent

problem given by the weights at convergence of the previous experiment is solved.

This requires 7 optimization iterations, so 21 calls to the wing model. The difference

between the circulations Ŵ of the optimum, given by the initial and equivalent prob-

lems, is of the same order of magnitude as the machine precision (10−14) for the three

conditions 1, 2, and 7. In other words, the optimizer has found the same physical

solution to the two problems.
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Fig. 5 Optimal twist repartition for a multipoint wing design from Cl = 0.3 to Cl = 0.9

Table 1 Original and equivalent multi conditions lifting line optimization problem

Iteration ω1 ω2 ω3 ω4 ω5 ω6 ω7

Baseline 1 1 1 1 1 1 1

Optimum 0.7509 3.2988 0 0 0 0 2.9501

By comparison of the two last experiments, the computational gain brought by the

GSA approach is of 57 %. The comparison is valid as long as the computational cost of

the equivalent weights is negligible compared to the model computational cost. This

is true for high fidelity models and also for our low fidelity lifting line model.

On the other hand, the equivalent weight computation must be performed at the

optimum because the theorems and GSA are applied at a given x . As a consequence,

this requires the resolution of the initial problem, so this last experiment has only a

theoretical and demonstrative interest.

However, it is important to notice that the dimension of the gradient span does not

vary during the optimization. And even more interesting, the three conditions given

by the GSA do not change during the optimization process, except at the first iteration,

even if the equivalent weights are not constant. As a consequence, the analysis of the

problem does not need to be performed for each iteration of the optimization process,

but only after several ones, preserving the computational cost reduction. For the present

problem, the operating conditions generating the gradient span are invariant during

the optimization process.

The first step consists in performing a fine sampling of the operating condition

ranges as in experiment 1. Latin hypercube sampling [37] or other design analysis

of computer experiment [38] methods can be used for an efficient initial sampling.

In the lifting line case, a uniform sampling is used. The initial sampling is followed

by a GSA calculation that selects the required operating conditions to be included in

the optimization problem. After that, a method for adequately choosing the weights

is used. As a reminder, Normal Constraint [12], Successive Pareto Optimization [13],

Directed Search Domain [14], or Multiple-Gradient Descent Algorithm [15] are pos-

sible approaches. Weights usually depend on the optimization iteration, so they are

computed after the choice of the operating conditions. At the end of the optimization

or during it, the gradient span dimension should be checked to be sure that Condition

3.1 is still valid.



7 Aircraft Wing Shape Optimization

The method described in this paper is applied here to a multipoint aircraft aerody-

namic optimization using RANS simulations. This section is a summary of a design

study that can be found in [23], while the present document focuses on mathematical

demonstrations of the approach. The illustration shows that the concept is applicable

to complex engineering systems with a hundred millions of degrees of freedom, and

non-linear partial differential state equations. The XRF-1 glider model from Airbus

is optimized in a space of operating conditions including multiple Mach numbers and

multiple angles of attack. The 7 non-linear partial differential RANS equations that

describe the flow physics are solved to estimate the performance of the configuration

on a mesh with 20 millions of elements. A discrete adjoint strategy is used to efficiently

compute its gradient with respect to the 90 design variables, in a way that is very similar

to the lifting line model in Sect. 6. A computer aided design (CAD) model parame-

trizes the wing shape with engineering variables such as twist angles, thicknesses or

wing section positions. The computational domain mesh and the geometry displayed

in Fig. 6 give an idea of the case complexity. The GSA algorithm is used to select

the operating conditions to be aggregated in an objective function, from the original

operating conditions space; see Fig. 7. It is noteworthy that 6 operating conditions are

Fig. 6 Computational domain mesh of the XRF-1 model
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Fig. 7 Flight conditions selected for the XRF-1 multipoint optimization



Fig. 8 XRF-1 single-point and multipoint optimization Cl/Cd gains compared to the baseline design

required for this non-linear problem with 90 design variables. The limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm handling bound constraints, L-BFGS-

B [39], successfully performed the optimization. Lift-to-drag coefficients, defined by

the ratio between lift and drag coefficients, are a major aerodynamic performance mea-

sure of an aircraft since fuel burn rate is inversely proportional to it. The single-point

and multipoint optimization lift-to-drag performance gains, relative to the original

design, are compared in Fig. 8. It shows that the multipoint optimization provides a

compromise in performance, as opposed to the single operating condition optimization

(Mach 0.83 and Cl 0.53).

The computational cost is 80,000 CPU hours on 400 Intel(R) Xeon(R) X5670 @

2.93GHz processors, accounting for the initial sampling cost for the GSA algorithm,

and the optimization run cost itself. This represents a 90% cost cut compared to an

approach where “number of design variables +1” samples are selected in the operating

condition ranges as in (4).

8 Conclusions

This paper demonstrates that the operating conditions are not just an input for a

parametric optimization, but that the choice of these operating conditions is a part

of the optimization problem formulation. The operating conditions incorporated in

a weighted sum of objectives must be selected after the analysis of the objectives

gradients. Ranges of operating conditions being the inputs, the choice of operating

conditions is a sampling problem. The GSA algorithm is proposed to determine the

required conditions and their number in order to minimize the computational cost of

the optimization.

To summarize the main results, the multipoint optimization problem must combine

m operating conditions, chosen such that the two gradient spanned vector spaces

KI,x and KIm ,x are equal, otherwise one of the two following situations appears. If

m < dim(KI,x ), then, at the optimum, there exists at least one operating condition at

which the objective can be improved without degrading the others, so the performance

of the system can be enhanced. If m > dim(KI,x ), then there exists an equivalent

problem with less operating conditions, and modified weights, that gives the same

solution, so computational resources are wasted. A counter-intuitive outcome is that



when the operating ranges are adequately sampled, i.e., KI,x = KIm ,x , modifying the

operating conditions used in the optimization problem is equivalent to changing the

weights of the composite objective function.

The methodology is validated on wing optimization, represented by a lifting line

model, and using a discrete adjoint formulation. Three numerical experiments have

been successfully conducted. They show the feasibility of the method, and its interest

in terms of computational time savings, compared to state-of-the-art approaches. An

example of modern transport aircraft wing optimization, based on high fidelity RANS

simulations, confirms the range of applications.

Future work will address the impacts of using noisy gradients of the objective func-

tion, both on the GSA algorithm and the robust optimization results. This situation

classically occurs in real-life optimization problems when adjoint calculations are not

fully converged, or programs are not fully linearized, and in the case of finite precision

arithmetics. Besides, the limits of the hypothesis stating that the operating conditions

generating the gradient span are invariant during the optimization process will be

tested. When the hypothesis is false, an iterative process made of an optimization

followed by a GSA analysis can be used. However, the convergence of this algorithm

is an open question. Finally, the weighted sum method being known to have limita-

tions [27], the use of alternatives to solve the multi-objective optimization problem

deserves further research. In particular, Theorems 1 and 2 suppose that a weighted

function is being minimized; if not, generalizations would have to be demonstrated.
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