
HAL Id: hal-01302144
https://hal.science/hal-01302144v1

Submitted on 14 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composing applications with OntoCompo
Christian Brel, Philippe Renevier-Gonin

To cite this version:
Christian Brel, Philippe Renevier-Gonin. Composing applications with OntoCompo. IHM 2011,
23ème Conférence Francophone Sur l’Interaction Homme Machine, Oct 2011, Biot, France. pp.141-
144, �10.1145/2044354.2044384�. �hal-01302144�

https://hal.science/hal-01302144v1
https://hal.archives-ouvertes.fr

Composing Applications with OntoCompo
Christian Brel, Philippe Renevier-Gonin

I3S Lab (Université Nice-Sophia Antipolis / CNRS)
930 route des Colles, BP 145

06903 Sophia Antipolis Cedex, FRANCE

{brel, renevier}@polytech.unice.fr

RESUME

Nous décrivons dans cet article un système utilisant des

ontologies afin de composer des applications en préservant

l’apparence des applications avant composition. Basé sur un

processus de composition reposant sur la manipulation des

Interfaces Homme-Machine (IHM) et utilisant des ontologies pour

relier les tâches, les IHM et les fonctionnalités, l’outil, appelé

OntoCompo, aide le développeur à composer les applications

grâce à la sélection, l’extraction et le placement des différents

éléments d’interface pour constituer la nouvelle application.

Mots clés

Composition d’application, Ontologie

ABSTRACT
In this paper, we present an ontology-based approach to compose

applications while preserving their former look. Our composition

process relies on the manipulation of User Interfaces (UI) and on

several ontologies describing relationships between tasks, UI and

Functionalities. Our tool, called OntoCompo, supports

compositions realized by the developer thanks to the selection,

extraction and positioning of UI elements to constitute the new

application.

Categories and Subject Descriptors

H5.2 [Information interfaces and presentation]: User Interfaces.

- Prototyping.

General Terms

Design

Keywords

Software Composition, Ontology

1. INTRODUCTION
The advent of web 2.0 and the apparition of a lot of “applications

stores” introduce implicitly new needs for users and developers

faced to this set of applications dis-posed on the web. Mash-up

solutions [2] for example allow them to juxtapose several

applications and use them together. They can have ideas for new

functionalities creating a new application combining existing

ones. Adapting applications to users' requirements may be done

through composition of applications. Tools for composing former

applications (and probably corresponding source code) should

introduce developers' comfort and a reduction of the time-to-

market for new applications by recycling former applications.

In this paper, we present our tool, OntoCompo, dedicated to easily

realize new applications by composition of their User Interface.

Our tool is based on a process in three steps

(Selection/Extraction/Positioning) [3]. To be composed, the

applications have to be separate in two parts: (i) the User

Interface, visible and well-known part of the application and (ii)

the functional core, underground part of the application. Due to

this clear separation, the composition process lets the possibility

to the developer to build the new application selecting, extracting

and positioning UI part of former applications, one after another.

Our tool is based on the UI manipulations. From selected UI

elements, our tool can generate recommendations throughout the

composition process to back the user. At any time, the link

between the UI elements and the functional part elements are

preserved. To keep the consistency of application, the tool uses

Task Models (TM) as links between UI and functional parts,

leading to a three parts representation look like Model-View-

Controller (MVC) pattern. This mapping between tasks,

functionalities and UI elements are implemented as ontologies and

recommendations for extending selections are based on semantic

queries and rules.

In the first section, we describe related works about application

composition, then, a brief case-study, and before to conclude, we

describe our tool OntoCompo.

2. RELATED WORK
As we aim at composing applications by manipulating their UI,

we have to decompose UI, i.e. describe UI in order to deal with

subparts of former UI. The description of an UI both involves:

(1) The description of its structure, i.e. the listing of the different

components used in the interface and the inclusion relationship,

like UIML [1], ALIAS [9], UsiXML [7] or MARIA [10]

(2) The spatial positioning of these components. By analyzing the

different layouts used in the UI toolkits, we identified three ways

to position the components in an interface: the AbsoluteLayout

with X and Y coordinates, the TableLayout to place a component

in a grid and the RelativeLayout to express the positioning of two

UI components relatively to each other.

To manipulate applications in order to compose them, there are

currently three main approaches: (i) the composition could be

triggered by the functional (i.e. business) part, (ii) the composition

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IHM’11, October 24-27, 2011, Sophia Antipolis, France

Copyright © 2011 ACM 978-1-4503-0822-9/11/10 …$10.00.

could be triggered by the users' goals (i.e. tasks to be performed

by users) and (iii) the composition could be triggered by the UI.

Each trigger addresses a specific problem of composition:

presentation and layout considerations at the UI level ([6]),

behavior of the application at the functional level ([9]), user needs

at the task level ([10]).

These works do not reuse complete architecture of the former

applications. Either they compose and reuse UI as first concern

without any consideration of the links between UI and Functional

part either their first concerns are functionality or task and provide

the new application by generate or re-generate the user interface.

Our originalities are (i) to consider links between UI, tasks and

functionalities, (ii) to lead the developer by suggesting him and

asking him about elements to keep for aiming at composition

consistency and (iii) to reuse existing UI in order to preserve

former developments, former designs and former practices.

3. CASE STUDY
We take the example of a Human Resource Manager in a firm

with two available applications. The first one (on the bottom right

part of Figure 3) is an application to retrieve social insurance

information about an employee from her insurance number like

her first name, last name, birthday, birthplace or family status,

name and birthday of her children etc. The second application (on

the top right part of Figure 3) is an intern application in the firm

to retrieve general employee information from her last name and

first name like her posts and assignments into the firm or her visit

card. The problem for our manager is to retrieve information from

both applications (for example for editing pay slip) without to

have to swap between them (with a potential loose of information

during the swapping). So, to answer to our manager’s needs, we

propose to compose the two applications selecting parts of former

applications she wants to keep in order to obtain a functional

application preserving former designs from existing applications.

4. A USER-CENTERED TOOL FOR

APPLICATION COMPOSITION
The aim of OntoCompo is to give an easy way for the developer

of application to reuse existing applications to constitute her new

one. We consider that a composition driven by a checked

selection is a guarantee to preserve the global consistency of the

final application. So we choose to help the developer for

broadening selection. In terms of context of development, the

developer will be able to choose functionalities, tasks or UI layout

as extension way for her selection and then for extraction.

4.1 Hypothesis on Former Applications
To reuse existing applications, our hypothesis is to let the

developer doing composition through the interfaces of

applications. In the UI research field, there is a strong

recommendation of using a Task Model (TM) during

requirements analysis. So, our approach is to express links

between the description of application (both functionalities and

UI) and the TM of the application to provide a better support to

the developer during the composition by preserving theses links to

aim a functional application at the end. We use semantic

annotations (using OWL Light language [11]) for the description

of applications. The first advantage is the possibility to apply rules

on semantic annotations to deduce some information on the layout

of UI from former applications to preserve the UI elements

proximity during the composition. To keep such of information,

we decide to work with RelativeLayout, well-known layout to

express positioning between two UI elements. We are able to

refine from RelativeLayout positions of a UI component, new

RelativeLayout position. For example, from a left position and top

position of an element towards a second one, we can deduce a

top-left position. And we have another category of rules to deduce

RelativeLayout positions from AbsoluteLayout positions or

TableLayout positions.

The second advantage to use semantic annotations is the

possibility to query these annotations with a specific semantic

engine like CORESE [5] and SPARQL language [12] to obtain

the different links between tasks, UI elements and functionalities

in order to suggest the developer new selection guaranteeing the

consistency of the final application.

To be able to reuse elements of the former application, we need a

software organization authorizing selection, extraction and

rejigging of such elements. We opt for applications based on

component architecture like FRACTAL components [4].

Naturally, the applications can have a component assembly for

their functional part but they have to use components for their UI

too. Due to this component architecture, by browsing the

component assembly and the UI component structure (window,

containers and graphical components), we are able to deduce the

links between functionalities and UI parts. Moreover, this choice

leaves the possibility to recompose an assembly by disconnecting

and reconnecting components. In fact, this would be useful to

obtain a functional application to finalize the composition

process. Consequently, for reusing former applications parts, we

use component-based software development to manipulate

functionality assemblies and component-based UI with Java

Swing JComponent encapsulated in component (FRACTAL

component in the implementation of our prototype) in order to

manipulate real UI parts.

To conclude, applications to compose are expected to (Figure 1):

- Be written as component assembly.

- Have a clear separation between its UI and its

functionalities.

- Have a definition of its Task Model.

- Be provided with semantic annotations description of

links between Task Model, UI and functionalities.

Figure 1 Description of Applications loaded in OntoCompo

4.2 Selection, Extraction and Positioning
After loading the applications, the entry point of our proposed

process is the selection of the different UI elements on the UI.

Selected UI elements are graphically highlighted. That simple

selection is extended for performing complex selections or aiming

at verifying consistency.

Figure 3 (left part) shows the main extra-interface for selection of

UI elements the developer wants to keep for the new UI. We can

find in the first part, annotated "S", different kinds of extensions

the user can apply on current selection.

First, there is the layout extension. With the height toggle buttons

for selected extension directions, the developer has the possibility

to broaden the selection. That extension could be applied to the

first selected component in current selection, to the last selected

component in current selection or to all components in current

selection. To perform this functionality, queries on semantic

annotations are parameterized with the current selection (for

example <BusinessDirSearchInputFC> indicated in Figure 3) and

with each toggled direction (for example <OnTheRightOf>).

Secondly, there is the (container) parent extension. This extension

uses queries on layout of application to obtain the parent

container of last selected UI component in current selection. This

extension allows the developer to be more efficient on her

selection of all elements in a container potentially “hidden” by its

contents.

Thirdly, there is the task extension. Each UI element is linked

with a task described with semantic annotations. From the last

selected component (for example <InsuranceCBirthDFC> in

Figure 3), we use queries to obtain the task linked to it. From each

returned tasks (here « Display Account Info » Task), we query

semantic annotations to obtain all UI elements linked with this

task. Retrieved UI elements are added to the selection (in our

example all elements in <InsuranceCAccountInfoFC>).

Finally, there is the functionality extension. UI elements are

directly linked to functionality but also through tasks. Since a task

may be connected to several functionalities, it is possible to

extend the selection to each part of the application by following

these links. We start with selected UI elements. Thanks to

SPARQL queries, we go back "up" to related tasks and then "up"

to related functionalities. From these functionalities, we go back

"down" to UI elements. Such retrieved UI elements are added to

the current selection.

The developer can activate all theses extensions. She is free of

combination between all proposed extensions. To help her and to

lead her towards to a coherent composition, we develop a help

selection. This help is a guide for the developer during all

selection process. For each UI element, several questions suggest

to the developer different possibilities for extending her selection.

That help is controlled with the second part of the selection tools,

annotated "H" in the Figure 3. The developer can use a help

guided by tasks, by functionalities, by layouts or by a complete

help (tasks, functionalities, layouts) to perform her selection. For

this help, we use queries to retrieve the UI elements open to be

added to selection.

When the developer is satisfied by her current selection, she has

the possibility to extract it to an existing screen or a new screen

(Figure 3, part "E"). For this extraction, for each UI element, we

keep the links between tasks and functionalities in order to obtain

a functional application and a reusable application for a possible

future composition.

Finally, we provide a way to the developer to position UI

elements for each screen. This positioning is based on

RelativeLayout i.e. the elements can be visually position relatively

to another one, by drag and drop. (Figure 2)

Figure 2 Positioning Tool

Figure 3 On the left part: Tools for selection extensions and selection extraction -- On the right part: Case Study Applications' UI

5. CONCLUSION
To conclude, in OntoCompo, we integrate help for the

composition process based on these all selection extensions.

Simple selection demonstrated a lack of efficiency and facility for

the developer to build an aimed composition. So we propose a

tool based on suggestions to extend the selection part of

application to reuse. We took the decision to offer the developer a

panel of extension by allowing him to choose her entry point (UI

layout, functionalities or tasks) to perform her extensions. In this

way, we are now planning user (developer) evaluation to validate

the different entry point for this extension of selection. When they

will be validated by user tests where we will observe the cognitive

process of developers, we will be able to keep or give up the

different extensions. Once that evaluation performed, we will

work on a new step in the composition process about merging

application elements (UI elements or functionalities).

6. REFERENCES
[1] Abrams M., Phanouriou C., Batongbacal A., Williams S.,

Shuster J. 1999 UIML: An appliance-independent XML user

interface language. In proceedings of the 8th World Wide

Web Conference (WWW), pages 617-630, Elseiver.

[2] Auinger, A., Ebner, M., Nedbal, D., Holzinger, A. (2009).

Mixing Content and Endless Collaboration - MashUps:

Towards Future Personal Learning Environments. In:

Lecture Notes in Computer Science (LNCS 5616), (pp.14-

23). Berlin, Heidelberg, New York: Springer. (ISBN 978-3-

642-02712-3)

[3] Brel C., Renevier-Gonin P., Occello A., Pinna-Déry A.-M.,

Faron-Zucker C., Riveill M.. (2010) Application

Composition Driven By UI Composition in Proceedings of

the Human Computer Software Engineering 2010 (HCSE

2010), IFIP International Federation for Information

Processing, pages 198--205, LNCS, oct 2010

[4] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V. and

Stefani, J.-B. (2006), The FRACTAL component model and

its support in Java. Software: Practice and Experience, 36:

1257–1284. doi: 10.1002/spe.767

[5] Corby, O., Dieng-Kuntz, R., and Faron-Zucker, C. Querying

the semantic web with the corese search engine. In 16th

European Conference on Artificial Intelligence

(ECAI’2004), IOS Press, Valencia, Spain, 2004.

[6] Fujima J., Lunzer A., Hornbæk K., Tanaka Y., 2004. Clip,

Connect, Clone: Combining Application Elements to Build

Custom Interfaces for Information Access, In Proceedings of

UIST 2004, pages 175-184, Santa Fe, NM.

[7] Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L.,

Florins M., and Trevisan D., 2004. Usixml: A user interface

description language for context-sensitive user interfaces.

AVI’2004 Workshop ”Developing User Interfaces with

XML: Advances on User Interface Description Languages”

UIXML’04, pages 55–62.

[8] Mori G., Paternò F., Santoro C., 2002. Ctte: Support for

developing and analyzing task models for interactive system

design. IEEE Transactions on Software Engineering, pages

797–813.

[9] Occello A., Joffroy C., Pinna-Déry A.-M., Renevier-Gonin

P. and Riveill M., 2010. Experiments in Model Driven

Composition of User Interfaces. In 10th IFIP International

Conference on Distributed Applications and Interoperable

Systems (DAIS'10), volume LNCS 6115, pages 98-111,

Amsterdam, Netherlands. Springer-Verlag.

[10] Paternò F., Santoro C., and Spano L. D., 2009. Maria: A

universal, declarative, multiple abstraction level language

for service-oriented applications in ubiquitous environments.

In Computer-Human Interaction (TOCHI), volume 16.

[11] W3C Working Group. OWL Web Ontology Language

http://www.w3.org/TR/owl-features/, 2004.

[12] W3C Working Group. SPARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query/, 2008.

<OnTheRightOf>

Annotation : <BusinessDirSearchInputFC> Annotation : <BusinessDirSearchButtonFC>

Annotation :

<InsuranceC

BirthDFC>

Annotation :

<InsuranceC

Account-

InfoFC>

