Christian Brel
email: christian.brel@unice.fr

Philippe Renevier-Gonin
email: philippe.renevier@unice.fr

Anne-Marie Pinna-Déry
email: anne-marie.pinna@unice.fr

Michel Riveill
email: michel.riveill@unice.fr

Application and UI composition using a Component-Based Description and Annotations

Keywords: composition, ontology, component-based architecture, I

A possible way to obtain easily new applications is to compose existing applications. In order to support developers in this way, we propose a composition approach manipulating functionalities but also the User Interfaces. We propose a model of applications inspired from Component-Based approaches, describing ports for all Elements of the applications to be composed. We define a substitution between Elements based on those ports.

INTRODUCTION

With the increasing number of specialized applications, the need for developers to produce new applications grows up. End-user can use the same functionality in several situations. For example, Google Maps is often integrated for geo-localization. In an idealistic way, developers must be able to reuse functionalities without (or with minor) developments. To combine features from several applications can be done with composition. To support developers in their task of composition, the Component-Based Software Development (CBSD) is a solution to reuse units of application (components) and reduce production cost. However, this composition takes into account business part of an application and commonly doesn't concern the User Interface (UI) of the application. We propose to go further into reduce of developers' efforts to combine existing application. We propose an application composition through its UI. Considering a UI as an assembly of Elements (components in CBSD approach), we explore the composition via the ports of a component in CBSD. Using the fact that a port can be provided by an Element or required by it, we add some information about the role the port plays for its attached unit. The added information lets to combine the different Elements to obtain a running application.

The paper presents a description of related work, the model that an application has to respect in order to be composed is described, the composition by substitution, the substitution between several ports.

II. RELATED WORK

The described problem leads naturally to a state of the art around software composition and UI composition. For UI composition, we identify two different approaches. In the first approach, the UI composition is based on abstract description, like in UsiXML [START_REF] Lepreux | User Interface Composition with UsiXML[END_REF], in the ServFace project [START_REF] Nestler | Service Composition at the Presentation Layer using Web Service Annotations[END_REF], Alias [START_REF] Pinna-Déry | ALIAS: A Set of Abstract Languages for User Interface Assembly[END_REF] and in Transparent Interface [START_REF] Ginzburg | Transparent Interface Composition in Web Applications[END_REF]. Those models are defined by XML languages. Final UI are obtained thanks to transformations of those models. In the second approach, the UI composition is based on "UI Components". These ones are reusable high-level widgets, available in repositories. "UI components" are reused by applying design pattern (code level) and detecting pattern of use (UI level). Compose [START_REF] Gabillon | Automated planning for userinterface composition[END_REF], COTS-UI [START_REF] Criado | User Interface Composition with COTS-UI and Trading Approaches: Application for Web-Based Environmental Information Systems[END_REF], CRUISe [START_REF] Pietschmann | CRUISe: Composition of Rich User Interface Services[END_REF], WinCuts [START_REF] Tan | WinCuts: Manipulating Arbitrary Window Regions for more Effective Use of Screen Space[END_REF], Composable UIs [START_REF] Leventhal | Composable User Interfaces[END_REF], UI façades [START_REF] Stuerzlinger | User Interface Façades: Towards Fully Adaptable User Interfaces[END_REF] and on-the-fly mashup composition [START_REF] Zhao | A Web-Based Mashup Environment for On-the-Fly Service Composition[END_REF] illustrate such kind of UI composition.

From the analysis of these works, none of these approaches allows both (i) the reusing of former applications with supporting replacement of UI parts and (ii) the built of a runnable application (UI and business parts) based on elements of those former applications. Our goal is to compose applications and in particular their UI, not only by juxtapositions but also by substitutions between former elements of the UI. To obtain a functional application, we also want to preserve former functional links between Elements (unit of application), in particular between Elements of the UI and Elements of business part.

Our proposition is a composition model based on roles of ports of former Elements of the applications. The roles are expressed as annotations on an abstract representation of application. That representation is "CBSD-like", i.e. we represent Elements as components with ports. Elements of the UI are also represented as component. The composition will be performed by transforming the manipulation on the abstract representation to manipulation on elements. The next section describes our model of application.

III. APPLICATION MODEL BASED ON PORTS AND ROLES

In order to be compliant with our composition method, the existing applications must follow the separation of concern principle: a clear separation between the functionalities (business part) and the UI. An Element, a unit of the application, may belong to the two parts, but the way it is used must be explicit. So each Element is described with its ports that we can tag with an application concern. If a port of an element may be used for a UI concern, the port will be tagged as "UI". Each Element may have required ports (ports required to obtain wished behavior of other Element) and may have provided ports (ports that Element can provide to other Elements to be linked with them). Moreover each port of an Element must be annotated with a "role" representing the involved behavior of the Element. This role can be Trigger, Input or Output. Trigger describes the fact that through its attached port, the Element can call other Element. It can be the button to trigger a particular action or it can be an observable "Element" notifying its observers. Input is used to describe a port to get some data. The Element with an Input port can provide data to other Elements (like an "input text" in UI or any "Getter" facet of an Element). Output is used to describe a port to set some data. The Element can receive data to store or to display (like a "list" or a "label" in UI or any "Setter" facet of an Element). An application to compose must be provided with the annotations of ports of its Elements. Those annotations are about roles (trigger, input, output / provided or required) or kind ("UI" or not, i.e. Business). For the remain of the article, we use "required-trigger" (rt), "provided-trigger" (pt), "required-input" (ri), "provided-input" (pi), "requiredoutput" (ro) or "provided-output" (po) to refer to a port.

IV. COMPOSITION BY SUBSTITUTION

We can now define the composition of applications: app i = {E n } where {E n } is the set of Elements from application app i . We define "Ports", the set of ports of an element, and "UsedPorts", the set of used ports: ∀Ej ∈ appi, Ports(Ej) ={ Pn } is the set of the n ports associated to Ej UsedPorts(E j , app i) = { P k } is the set of used ports of E j in app i

We define the role of the ports and their compatibility: ∀E j ∈ app i ,∀ P m ∈ Ports(E j), Role(P m) ∈ {pi, po, pt, ri, ro, rt} ∀Ej ∈ applii1, ∀Ek ∈ applii2,∀Pm ∈ Ports(Ej), ∀Pn ∈ Ports(Ek), we note rm = Role(Pm) and rn = Role(Pn). isProvided(P)= true ⟺ Role(P)∈{pi,po,pt} isRequired(P)= true ⟺ Role(P)∈{ri,ro,rt} Compatible(P m , P n) = true ⟺(r m = ro and r n = po) or (r n = ro and r m = po) or (r m = ri and r n = pi) or (r n = ri and r m = pi) or (r m = rt and r n = pt) or (r n = rt and r m = pt) We define a link between two elements through two connected ports as a function: Link((E j , P m), (E k , P n), app i) is true is E j and E k are linked in a app i . Such link is possible only if E j ∈ app i , E k ∈ app i, P m ∈ UsedPorts(E j , app i), P n ∈ UsedPorts(E k , app i) and Compatible(P m , P n). For each Element E j , we define the set Links(E j , P m , app i):

Links(E j , P m, app i) = { (E k, P n), E k ∈ app i , P n ∈ UsedPorts(E k , app i) / Link((E j , P m), (E k , P n), app i) }
For all ports, we define a function "isUIPort" indicating if the port has a "UI" concern and a function "isUIPortInApp" for contextual "UI" concern: ∀E j ,∀P m ∈ Ports(E j), isUIPort(P m)= true if isProvided(P m) and P m is annotated "UI" ∀E j ∈app i ,∀P m ∈Ports(E j),isUIPortInApp(P m , app i) is true if (P m ∈ UsedPorts(E j , app i) and isUIPort(P m)) or (isRequired(P m) and ∃(E k ,P n) / isUIPort(P n) and Link((E j , P m),(E k , P n), app i))

Our composition is made through the construction of a new application, app r : app r = ∪ 1 nb app i where nb is the number of applications being composed. ∀E j ∈ app i , when initializing the new app r : E j ∈ app r UsedPorts(E j , app r)= UsedPorts(E j , app i) ∀E k ∈ app i , Link((E j , P m), (E k , P n), app r) = Link((E j , P m), (E k , P n), app i) ∀P m ∈ Ports(E j), isUIPortInApp(P m , app r) = isUIPortInApp(P m , app i)

The new application app r will change with the successive substitutions. A substitution is made between a selection of pairs {(E j , P m)} and a kept pair (E k , P k). We define the "subst" function as following: We note PreLinks k , Links(Ek,Pk,appr) before the substitution. We note card(PreLinks k) the number of Elements in PreLinks k i.e. the number of Elements linked with E k though P k . ∀j, We note PreLinks j =Links(E j, P m, app r) before the substitution. ∀j, we note card(PreLinks j) the number of Elements in PreLinks j i.e. the number of Elements linked with E j though P m .

We note sel = ({(E j , P m) j , j∈{1…z}} the set of the substituted pairs. subst : PAIRS z × PAIRS →(PAIRSxPAIRSxPAIRS nk(j)

) q subst(sel,(E k , P k))= { (Ec j-i , Pm j-i) x (Ec j- i ,Pn j-i) x ∪ (Ec j-i ,Pk x), x∈{1…nk(j)}, i ∈ {1…card(PreLinks j)}, j∈{1…z} } where :

Before the substitution, ∀(E j , P m) j , Pm ∈ UsedPorts(E j , app r) : ∀(E j , P m) j , isProvided(P m)= isProvided(P k) q = Σ j card(PreLinks j), i.e. q is the number of replaced links ∀j nk(j) = 0 if the connector Ec j-i doesn't impact previous link with (E k , P k) , i.e. the new link and previous links are independent. ∀j nk(j) = card(PreLinks k) if the connector Ec j-i impacts previous link with (E k , P k), i.e. the new link and previous links are dependent (merged).

After the substitution, ∀j, Pm ∉ UsedPorts (E j , app r) ∀j, Links(E j , P m, app i) = ∅ ∀j, ∀i ∈{1…card(PreLinks j)}, Ec j-i is a new Element of app r / {Pm j-i ,Pn j-i } ⊂ Ports(Ec j-i) and {Pm j-i ,Pn j-i } ⊂ sedPorts(Ec j- i ,app r) and Compatible(P m ,Pm j-i) and Compatible(Pn j-i , P k) ∀Ec j-i , (Ec j-i , Pn j-i) ∈ Links(E k , P k, app i)

∀(E,P)∈PreLinks j, ∃(Ec j-i, Pm j-i) / (Ec j-i , Pm j- i) ∈ Links(E, P , app i) ∀(Ec j-i, Pm j-i), ∃(E,P) ∈PreLinks j / (E , P) ∈ Links(Ec j-i , Pm j-i app r) ∀j, nk(j)>0 => ∀x ∈{1..Card(PreLinks k)}, Ec j-i is a new Element of app r / {Pk x } ⊂ Ports(Ec j-i) and {Pk x } ⊂ UsedPorts(Ec j- i ,app r) and ∃(E,P) ∈ PreLinks k / (Ec j-i , Pk x) ∈ Links(E, P, app r)

In other words, the substitution creates q connectors [6] in order to replace previous links involving substituted pairs by the kept one.

if (nk(j) > 0 ∀j) then PreLinks k ∩ Links(E k, P k, app r) = ∅, i.e. all connectors also replace the previous links involving the kept pair (E k , P k) like in Figure 1.

So for each Element in sel, UsedPorts, Link and isUIPortInApp may be impacted by substitution. Finally, Elements no more involved in links are removed.

The substitution of any pair (E j , P m) by a pair (E k , P k) is based on the annotations. The role of a port is used to define possible substitutions and the way connectors are used. This is explained in the section V. The use of the kind of ports ("UI" or not) is used as following: if before the substitution isUIPortInApp(P m ,app r) ≠ isUIPortInApp(P k ,app r), then the substitution changes the concern implied in the link, i.e. an input field may be replaced by a data coming from a "Business" Element. That is possible, but in such case we could emit a notification of such change.

V. SUBSTITUTING TWO PAIRS

We now consider substitution between two pairs: a replaced pair and a conserved or kept pair. The function "subst" can replace n pairs, but it is just n substitution performed in parallel. We present the compatibility between the two pairs according to the role of port of conserved Element in conserved pair.

A. Keeping a Provided Output

When keeping an output, there is no constraining on the role of substituted port. By placing a connector before the Element having port playing the Output role, the substitution can be performed. This is a case in the "subst" function where nk(j) > 0 ∀j.

First, the connector may be used to adapt the format of data to display if the substituted role is also Output (a Conversion Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]) or to define a policy of displaying data if the substituted role is also Output (a mix between a Conversion Connector and a Data Access Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]). Such policy may be displaying all data, the last received data, etc. Secondly, the connector may also be used to store displayed data and can restitute them when asked if the substituted role is an Input (see Figure 1) (a Data Access Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]). Thirdly, the connector may also be used to generate an event when the output is updated if the substituted role is a Trigger (an Event Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]).

In Figure 1, the connector C1 can store displayed data from (E3,ro1) and can restitute them to (E8,ri1) when asked. With that solution, E5 doesn't need to have a port playing a role of Input, but the Connector has both provided port with Output role for (E3,ro1), required port with Output role for (E5,po1) and required port with Input role for (E8,ri1).

B. Keeping a Provided Trigger

As "Trigger" is the only one port's role that makes the associated Element a "caller", the role of the port in substituted pair must be also a "Trigger". we place a connector after the kept "Trigger" for two reasons: (i) adapting the format of the "event" and (ii) defining the policy of the substitution (a mix between an Event Connector and a Procedure Call Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]). The connector can proceed a sequence between the two triggered actions or put them in parallel etc. This is a case in the "subst" function where nk(j) > 0 ∀j.

C. Keeping a Provided Input

An "Input" can't replace an "Output" cause of the direction of the data. Inversely, an "Input" may replace a "Trigger". The connector placed before the kept port can provide on demand (a Data Access Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]). In the same time, when called, the connector can generate an event and so it can "call" the requiring port (an Event Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]). The "Trigger" is "on access" (i.e. when the value is got). Of course, an "Input" can replace another "Input". In that case, the connector is used to adapting the provided data to what is expected (a Conversion Connector in [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF]). Keeping a "Input" is a case where nk(j) could either be 0 (pi replacing pi) or be greater than 0 (pi replacing a pt).

D. Keeping a Required port

In the "subst" function, if P k is a required port, all substituted pairs must be made of ports with the same role as P k . Even through connector, requirements could not be change: a setter requirement (required output) could not become a getter requirement (required input). So even if a connector could have two ports, one "po" and "ri" to be connected to a "pi", inside that connector, the setter used by E k could not be functionally translated in a getter. The connector could not appropriately exploit the value coming from E k . Such substitutions are cases where nk(j) > 0 ∀j. All connectors are not only conversion one [START_REF] Mehta | Towards a taxonomy of software connectors[END_REF] but they may:

Figure 1 :

 1 Figure 1 : (E5, po1) replacing (E6, pi1), connector C1 before (E5, po1)

(i)merge all input or trigger if Role(P k) ∈{ri, rt} or (ii) call of setter on output if Role(P k) = ro.

E. Summary of substituting two pairs

In order to perform a substitution between two pairs (Element, Port with a role), we need to add a connector between the substituted pair and the conserved one. Connectors may have several uses: (i) adapting formats of the data or (ii) defining a policy of substitution or (iii) adding a role when the new role makes the Element the "caller". Thanks to the identification of the Connector and its roles, we can know define the "subst" function for two pairs. Indeed, in subsections 5.A, 5.B, 5.C and 5.D, we define both the definition domain for two pairs and the results.

F. Towards Automatic Composition

From this substitution operator, we can define an operator in a higher level. The objective is to compose two Elements from the new application app r . Based on substitutions between ports of Elements, we can define the substitution of two Elements. Let E 1 the removed Element and E k the kept Element. For each P ∈ UsedPorts(E 1 , app r), we define: CompatiblePorts(P, Ek), the set of all possible port P' of Ek for a substitution subst({(E1, P)}, (Ek, P')) If isRequired(P) or P = po,

We note card(CompatiblePorts(P, E k)) the number of ports in CompatiblePorts(P, E k). We apply the "Pair Selection" algorithm PairSelection(P, KeptElements): Let KeptElements the set of Elements used in the substitution. Initially KeptElements = {E k }. Let nb_potential_pairs = Σcard(CompatiblePorts(P, E)), E∈ KeptElements If (nb_potential_pairs == 1), (E, P) could be substituted by only one pair is possible. Let E' ∈ KeptElements / ∃P'∈ CompatiblePorts(P, E'). The following substitution is computed: subst({(E,P)},(E ' ,P')} If (nb_potential_pairs > 1), one of the ports in CompatiblePorts(P) must be selected. That selection may be by the developer operating the composition or by an external algorithm. If (nb_potential_pairs == 0), (E, P) could not be substituted by a pair involving an Elements form KeptElements. If KeptElements = app r , the algorithm finishes without substituting (E, P). Else, we extend the substitution by searching possible ports in Elements linked with Elements from KeptElements: ExtendedSelection = { Ej ∈ appr / ∃E'∈ KeptElements / ∃ Pm∈ UsedPorts(Ej, appr) and ∃ Pn∈ UsedPorts(E', appr) / Link((Ej, Pm), (E', Pn), appr). Then we apply PairSelection(P, ExtendedSelection)

At the end of the process, if UsedPorts(E 1 , app r) == ∅, E 1 is removed from app r .

VI. CONCLUSION

In this paper we present a new application composition approach from the UI composition. This approach is based on description of roles of ports belonging to Elements constituting the applications. Our model enables substitution of Elements coming from former applications, according to their known ports roles. We also propose a solution for substitutions involving several elements. By tagging the port with their "UI" concern, we take into account the UI part of application in a same level as business part.