
HAL Id: hal-01302023
https://hal.science/hal-01302023v1

Submitted on 13 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Annotated Component-Based Description for
Application Composition

Christian Brel, Philippe Renevier-Gonin, Anne-Marie Déry-Pinna, Michel
Riveill

To cite this version:
Christian Brel, Philippe Renevier-Gonin, Anne-Marie Déry-Pinna, Michel Riveill. Annotated
Component-Based Description for Application Composition. ICSEA 2012, The Seventh Interna-
tional Conference on Software Engineering Advances, Nov 2012, Lisbonne, Portugal. pp.506-511.
�hal-01302023�

https://hal.science/hal-01302023v1
https://hal.archives-ouvertes.fr

Annotated Component-Based Description for Application Composition

Christian Brel, Philippe Renevier-Gonin, Anne-Marie Pinna-Déry, Michel Riveill

Laboratoire I3S - UMR7271 - UNS CNRS

2000, route des Lucioles - Les Algorithmes

BP 121 - 06903 Sophia Antipolis Cedex – France

{christian.brel, philippe.renevier, anne-marie.pinna, michel.riveill}@unice.fr

Abstract – One possible way of developing applications faster is

by composing existing applications. In order to support

developers this way, we propose a composition approach

manipulating both Functionalities and User Interfaces. We

present a model of annotation for describing Component-

Based applications. By tagging the components with their “ui”

and functional concerns, we take into account the UI part of

application at a same level as business part. Thanks to such

annotations, we define a substitution between components in

order to merge controls, inputs or outputs.

Keywords–application composition; ontology; component-

based architecture

I. INTRODUCTION

Nowadays, the trend in software usage is to consume
specialized applications. End-users can use the same
functionality in several situations, i.e., with several
applications. For example, Google Maps is often integrated
for geo-localization. In an idealistic way, developers must be
able to reuse functionalities without (or with minor)
developments. To support developers in their task of
combining features from several component-based
applications, we contribute towards reducing developers’
efforts. We propose an application composition through its
User Interface (UI). Our composition preserves the
functional linking between components of the applications.
Considering a UI as an assembly of components, we explore
the composition via their ports. Using the fact that a port can
be provided by a component or required by it, we add some
annotations about the role the port plays for its attached unit.
The added information lets the different components to be
combined to obtain a running application.

Section II presents a description of related work. Section
III describes the model that an application has to respect in
order to be composed. A case study to illustrate our proposed
model is shown in Section IV. After the presentation of the
composition by substitution in Section V, Section VI details
the substitution between two elements. The paper finished
with a discussion about our work in Section VII and a
conclusion in Section VIII.

II. RELATED WORK

The described problem is naturally related to the state-of-
the-art in software composition and UI composition. For
software composition, “Composition can be defined as any
possible and meaningful interaction between the software

constructs involved” according to [5] where a taxonomy of
composition mechanisms (e.g., orchestration, aspect oriented
programming, etc.) is defined. When the application code is
available, solutions, such as aspect oriented programming,
are meaningful. On the contrary, when the application code
is not available, we can only access to published interfaces
and we have to use connectors [7] to perform the
composition.

For UI composition, we identify two different
approaches. In the first approach, the UI composition is
based on abstract description, like in UsiXML [6], in the
ServFace project [8], Alias [10] and in Transparent Interface
[4]. Those models are defined by XML languages. Final UI
are obtained thanks to transformations of those models. In
the second approach, the UI composition is based on “UI
Components”. These ones are reusable high-level widgets,
available in repositories. “UI components” are reused by
applying design pattern (code level) and detecting pattern of
use (UI level). Compose [3], COTS-UI [1], CRUISe [9],
WinCuts [12], UI façades [11] and on-the-fly mashup
composition [13] illustrate such kind of UI composition.

From the analysis of these works, we note that we can
compose the UI (respectively, the functional parts) of former
applications, but the other side (respectively, the UI) has to
be built again. Moreover, none of these works allows the
reusing of former applications with supporting replacement
of UI parts. Our goal is to compose applications and in
particular their UI, not only by juxtapositions, but also by
substitutions between former components of the UI. To
obtain a functional application, we also want to preserve
former functional links between components of application,
in particular between the UI and the business part.

Our proposition is based on applications made of black-
box components. We propose a composition model based on
roles and ports of those components. The roles are expressed
as annotations. The UI are also represented as component
assemblies. The composition will be performed by
transforming the manipulation on an abstract representation
to manipulation on components.

III. APPLICATION MODEL BASED ON PORTS AND ROLES

In order to be compliant with our composition method, the
existing applications must follow a clear separation between
the functionalities (business part) and the UI (separation of
concerns). A Component may belong to the two parts. Each
Component is described with its ports that we can tag with
one of the application concerns, e.g., a port used for a UI

concern will be tagged as “UI”. Each Component may have
required ports (ports required to obtain desirable behavior of
another Component) and may have provided ports (ports that
Component can provide to other Components). Moreover,
each port of a Component must be annotated with a “role”
representing the involved behavior of the Component. This
role can be Trigger, Input or Output. Trigger describes the
fact that through its attached port, the Component can call
another Component. It can be the button to trigger a
particular action or it can be an observable “Component”
notifying its observers. Input is used to describe a port to
get some data. The Component with an Input port can
provide data to other Components (like an “input text” in UI
or any “Getter” facet of a Component). Output is used to
describe a port to set some data. The Component can receive
data to store or to display (like a “list” or a “label” in UI or
any “Setter” facet of a Component). An application to
compose must be provided with the annotations of ports of
its Components. Those annotations are about roles (trigger,
input, output / provided or required) or kind (“UI” or not,
i.e., Business). In the remainder of the paper, we use the
following acronyms: rt - “required-trigger”, pt - ”provided-
trigger”, ri - “required-input”, pi - ”provided-input”, ro -
“required-output” and po - ”provided-output”.

IV. ILLUSTRATION WITH A CASE STUDY

We consider two applications:
1. “Movie Theaters”, shown in Figure 1, an

application displaying movies played in a cinema.
There are a text field to entering the name of the
cinema (E1), a “get played movies” button (E2)
and a display area to list the played movies (E5).
The list can also be obtained by validation with
“Enter” key in text field (E1).

2. “Cinema Localization”, shown in Figure 2, an
application displaying the location of a cinema on
a map (e.g. using Google Maps). Its UI is also
simple: a text field to entering the name of the
cinema (E6), a “show cinema place” button (E7)
and a map to show the localization of the cinema
(E10).

These two applications could be composed in a different
way, in order to obtain new applications. A possibility is to
have at the same time both the list of the displayed movies
and the localization of the cinema. A result of the
composition’s UI is shown in Figure 3.

V. COMPOSITION BY SUBSTITUTION

An application appi is a set of Components {En}. We
define “Ports”, the set of ports of a component, and
“UsedPorts”, the set of used ports:

Ej appi, Ports(Ej) ={ Pn } is the set of the n ports of Ej
UsedPorts(Ej, appi) = { Pk } is the set of used ports of Ej in appi

First, we define the role of the ports and their
connectivity as the Linkable property, independently of the
application in which components are used:

Ej appi1, Pm Ports(Ej), Role(Pm) {pi, po, pt, ri, ro, rt}
isProvided(Pm)⟺ Role(Pm){pi,po,pt}
isRequired(Pm)⟺ Role(Pm){ri,ro,rt}

Ek appi2,Pm Ports(Ej), Pn Ports(Ek)
We denote rm = Role(Pm) and rn = Role(Pn)

Linkable(Pm, Pn)⟺(rm = ro and rn = po) or (rn = ro and
rm = po) or (rm = ri and rn = pi) or (rn = ri and rm = pi) or

(rm = rt and rn = pt) or (rn = rt and rm = pt)

We define a link between two components through two
connected ports in an application as a property Link:

Link((Ej, Pm), (Ek, Pn), appi) is true if Ej and Ek are linked in a
appi through the ports Pm and Pn.

Such link is possible only if Ej belongs to appi , Ek belongs to
appi, Pm belongs to UsedPorts(Ej, appi), Pn belongs to
UsedPorts(Ek, appi) and Linkable(Pm, Pn). For each
Component Ej, we define the set Links(Ej, Pm, appi):

Links(Ej, Pm, appi) = { (Ek, Pn), Ek appi,
Pn UsedPorts(Ek, appi) / Link((Ej,Pm),(Ek,Pn),appi) }

For all ports, we define a property “isUIPort” indicating
if the port has a “UI” concern and a function
“isUIPortInApp” for contextual “UI” concern:

Ej,Pm Ports(Ej):
 isUIPort(Pm)⟺isProvided(Pm) and Pm is tagged “UI”
 isUIPortInApp(Pm, appi) ⟺ (Pm UsedPorts(Ej, appi)

and isUIPort(Pm)) or (isRequired(Pm) and (Ek,Pn) /
isUIPort(Pn) and Link((Ej, Pm),(Ek, Pn), appi))

Our composition is made through the construction of a
new application, appr, initially defined as the union of all
former applications:

appr = 1nb appi where nb is the number of
applications being composed. Ej appi:

 Ej appr
 UsedPorts(Ej, appr)= UsedPorts(Ej, appi)

 Ek appi, PmPorts(Ej), Pn Ports(Ek), Link((Ej,
Pm), (Ek, Pn), appr) = Link((Ej,Pm),(Ek,Pn), appi)

 Pm Ports(Ej), isUIPortInApp(Pm, appr) =
isUIPortInApp(Pm, appi)

The new application appr will change with the successive
substitutions. A substitution is made between a selection of
pairs {(Ej, Pm)i} and a conserved pair (Ek, Pk). We define a
“subst” function to operate substitution. In a few words, the
substitution creates several connectors [7] in order to replace
previous links involving substituted pairs by the kept one.

We denote PreLinksk the value of Links(Ek,Pk,appr) before the
substitution. We denote card(PreLinksk) the number of Components
in PreLinksk , i.e., the number of Components linked with Ek
through Pk.

For each pair (Ej, Pm)i, we denote PreLinksi the value of
Links(Ej, Pm, appr) before the substitution. We denote
card(PreLinksi) the number of Components in PreLinksi i.e., the

number of Components linked with Ej through Pm. We denote sel
the set of the substituted pairs:

sel = {(Ej, Pm)i, i∈{1…z}}.
(Ej, Pm)i ∈ sel, Pm UsedPorts(Ej, appr) ;

isProvided(Pm)= isProvided(Pk)

We denote nk(i) :

 nk(i) = 0 if the substitution doesn’t impact previous

link with (Ek, Pk) , i.e., the new link and previous

links are independent.

 nk(i) = card(PreLinksk) if the substitution impacts

previous link with (Ek, Pk), i.e., the new link and

previous links are dependent (merged).

Figure 1. Movie Theater, UI and Components of application.

Figure 2. Cinema Localization, UI and Components of application.

If (nk(i) > 0 (Ej, Pm)i) then PreLinksk Links(Ek, Pk,

appr) = , i.e., all connectors also replace the previous links
involving the conserved pair (Ek, Pk) like in Figure 4. For
each Component in sel, UsedPorts, Link and isUIPortInApp
are impacted by substitution.

subst : 𝒫(PAIRS) × PAIRS → 𝒫(PAIRS)
subst(sel,(Ek, Pk))= { (Ecj,a, Pmj,a)i x (Ecj,a,Pnj,a)i x (Ecj,a,Pky)i,

i∈{1...z}, y∈{1...nk(i)}, a∈{1...card(PreLinksi)} }
(Ej, Pm)i∈ sel, Pm UsedPorts(Ej, appr)
(Ej, Pm)i∈ sel, Links(Ej, Pm, appr) =

(Ej, Pm)i∈ sel,a∈{1...card(PreLinksi)}, Ecj,a is a new
Component of appr / {Pmj,a,Pnj,a } Ports(Ecj,a) and

{Pmj,a,Pnj,a} UsedPorts(Ecj,a,appr) and Linkable(Pm,Pmj,a) and
Linkable(Pnj,a, Pk)

Ecj,a, (Ecj,a , Pnj,a) ∈ Links(Ek, Pk, appr)
(Ej, Pm)i, (Ecj,a,Pmj,a) / Links(Ecj,a ,Pmj,a , appr) = PreLinksi

(Ecj,a,Pmj,a), (Ej, Pm)i / Links(Ecj,a ,Pmj,a , appr) = PreLinksi

(Ej, Pm)i, nk(i)>0 => y ∈{1..Card(PreLinksk)}, Ecj,a is a new
Component of appr / {Pky} Ports(Ecj,a) and

{Pky} UsedPorts(Ecj,a,appr) and (E,P)∈ PreLinksk /
(Ecj,a, Pky) ∈ Links(E,P,appr)

As a result, Components no longer involved in links left
are removed. The substitution of any pair (Ej, Pm) by a pair
(Ek, Pk) is based on the annotations. The role of a port is used
to define possible substitutions and the way connectors are
used. This is explained in the Section VI. The use of the kind
of ports (“UI” or not) is used as following. If before the
substitution isUIPortInApp(Pm,appr) is different from
isUIPortInApp(Pk,appr), then the substitution changes the

concern implied in the link, i.e., an input field may be
replaced by a data coming from a “Business” Component.
That is possible but in such case we could emit a notification.

VI. SUBSTITUTING TWO PAIRS

We now consider substitution between two pairs: a
replaced pair and a conserved pair. The function “subst” can
replace n pairs, but it is just n substitutions performed in
parallel. We present the compatibility between the two pairs
according to the role of the conserved pair.

In order to perform a substitution between two pairs
(Component, Port with a role), we need to add a connector
between the substituted pair and the conserved one [7].
Connectors may have several uses: (i) adapting formats of
the data or (ii) defining a policy of substitution or (iii) adding
a role when the new role makes the Component the “caller”.
Thanks to the identification of the Connector and its roles,
we can know define the “subst” function for two pairs.
Indeed, in Sections VI.A, VI.B, VI.C and VI.D, we describe
both the definition domain for two pairs and the results.

Figure 3. A Result for composition of “Movie Theater” with “Cinema Localization”.

A. Keeping a Provided Output

When keeping an output, there is no constraining on the
role of substituted ports. By placing a connector before the
Component having port playing the Output role, the
substitution can be performed. This is a case in the “subst”

function where nk(i) > 0 (Ej, Pm)i.
First, the connector may be used to adapt the format of

data to display if the substituted role is also Output (a
Conversion Connector in [7]) or to define a policy of
displaying data if the substituted role is also Output (a mix
between a Conversion Connector and a Data Access
Connector in [7]). Such policy may be displaying all data,
the last received data, etc. Secondly, the connector may also
be used to store displayed data and can restitute them when
asked if the substituted role is an Input (see Figure 4) (a Data
Access Connector in [7]). Thirdly, the connector may also be
used to generate an event when the output is updated if the
substituted role is a Trigger (an Event Connector in [7]).

In Figure 4, the connector C1 can store displayed data
from (E3,ro1) and can restitute them to (E8,ri1) when asked.
With that solution, E5 doesn’t need to have a port playing a
role of Input, but the Connector has both provided port with
Output role for (E3,ro1), required port with Output role for
(E5,po1) and required port with Input role for (E8,ri1).

B. Keeping a Provided Trigger

As “Trigger” is the only one port’s role that makes the
associated Component a “caller”, the role of the port in
substituted pair must be also a “Trigger”. We place a
connector after the kept “Trigger” for two reasons: (i)
adapting the format of the “event” and (ii) defining the
policy of the substitution (a mix between an Event Connector
and a Procedure Call Connector in [7]). The connector can
proceed a sequence between the two triggered actions or put
them in parallel etc. This is a case in the “subst” function

where nk(i) > 0 (Ej, Pm)i.

C. Keeping a Provided Input

An “Input” cannot replace an “Output” because of the
direction of the data. Conversely, an “Input” may replace a
“Trigger” (see Figure 5). The connector placed before the
kept port can provide on demand (a Data Access Connector
in [7]). At the same time, when called, the connector can
generate an event and so it can “call” the requiring port (an
Event Connector in [7]). The “Trigger” is “on access” (i.e.,
when the value is got). Of course, an “Input” can replace
another “Input”. In that case, the connector is used to adapt
the provided data to what is expected (a Conversion
Connector in [7]). Keeping an “Input” is a case where nk(i)
could either be 0 (pi replacing pi) or be greater than 0 (pi
replacing a pt).

Figure 4 : (E5, po1) replacing (E6, pi1), connector C1 before (E5, po1.)

D. Keeping a Required port

In the “subst” function, if Pk is a required port, all
substituted pairs must be made of ports with the same role as
Pk. Even through a connector, the requirements could not be
changed: a setter requirement (required output) could not
become a getter requirement (required input). So, even if a
connector could have two ports, one “po” and “ri” to be
connected to a “pi”, inside that connector, the setter used by
Ek could not be functionally translated in a getter. The
connector could not appropriately exploit the value coming

from Ek. Such substitutions are cases where nk(i) > 0 (Ej,
Pm)i. All connectors are not only conversion one [7] but they
may: (i) merge all input or trigger if Role(Pk) is ri or rt or (ii)
call of setter on output if Role(Pk) is ro.

E. Towards Automatic Substitution

From this substitution operator, we can define an operator

at a higher level. The objective is to compose two

Components from the new application appr. Based on

substitutions between ports of Components, we can define

the substitution of two Components. Let E1 be the removed

Component and Ek be the kept Component. For each P

belonging to UsedPorts(E1, appr), we define:

CompatiblePorts(P, Ek), the set of all possible port P’ of Ek for a
substitution subst({(E1, P)}, (Ek, P’))

If isRequired(P) or P = po, CompatiblePorts(P, Ek) = { P’
Ports(Ek) / Role(P’) = Role(P) }

If Role(P) = pi, CompatiblePorts(P, Ek) =
{P’ Ports(Ek) / Role(P’){po, pi} }

If Role(P) = pt, CompatiblePorts(P, Ek) =
{ P’ Ports(Ek) / isProvided(P’) }

We denote card(CompatiblePorts(P, Ek)) the number of

ports in CompatiblePorts(P, Ek). We apply the algorithm

PairSelection(P, KeptElements):

Let KeptElements the set of Components used in the
substitution. Initially KeptElements = {Ek}.

Let nb_potential_pairs = card(CompatiblePorts(P, E)),
E KeptElements

If (nb_potential_pairs = 1), (E, P) could be substituted

by only one pair is possible. Let E’ KeptElements / P’

CompatiblePorts(P, E’). The following substitution is

computed: subst({(E, P)}, (E’, P’)}.

If (nb_potential_pairs > 1), one of the ports in

CompatiblePorts(P) must be selected. That selection may be

by the developer operating the composition or by an

external algorithm.

If (nb_potential_pairs = 0), (E, P) could not be

substituted by a pair involving a Components from

KeptElements.

If KeptElements = appr, the algorithm finishes without

substituting (E, P). Else, we extend the substitution by

searching possible ports in Components linked with

Components from KeptElements:

ExtendedSelection = { Ej appr / E’ KeptElements /
 Pm UsedPorts(Ej, appr) and Pn UsedPorts(E’, appr) /

Link((Ej, Pm), (E’, Pn), appr) }.
Then we apply PairSelection(P, ExtendedSelection)

At the end of the process, if UsedPorts(E1, appr) is empty,
E1 is removed from appr.

F. Enforcement Of Substitutions On Case Study

The corresponding operations to obtain the case study
composition shown in Figure 3 are the substitution of
(E7,pt1) - the button of “Cinema Localization” app - by
(E1,pt1) - the text field of “Movie Theater” app - then the
substitution of (E6,pi1) - the text field of “Cinema
Localization” app - by (E1,pi1). There will be only one text
entry left E1 and only one button left E2. As the composition
finalizes, we can delete button E2 cause of its misspelled
action label (see “Discussion” part). So, there is only E1 left
to lunch the research because no port is used in E6 and E7.
When typing the name of the movie theater, the research
could be launched (at each key stroke or only after an
“enter”).

VII. DISCUSSION

The composition by substitution introduced in this paper
needs to be integrated in a larger process as in [1]. This
process can include another step to finalize the composition.
This finalization can add several classic operators as a delete
operator to suppress some links in the final components
assembly, as we need to complete our case study described

in Section VI. We also add a step to let developer rearrange
the various pieces of UI in the new composed UI. We
illustrate this in Figure 3 when we position component E10
on the right of component E5. The scalability of our
approach and its enforcement on large-scale application rely
on the scalability on the ontology engine we use to annotate
components. Our composition approach is described with

small applications. However, we expect our approach to be
appreciated in large-scale applications. The selection of the
different pieces to compose of applications [1] is improved
thanks to the same annotations presented in this paper. With
such help during the whole composition process (selection
and substitution), the developer may be more efficient during
the composition. We plan to test this idea in our future work.

Figure 5 : (E1, pt1) replacing (E7, pt1), connector C1 between (E1, pt1) and (E8,rt1).

VIII. CONCLUSION

In this paper we presented a new application composition
approach. The challenge is to integrally compose
applications, considering both business part and UI part. Our
approach is based on description of components constituting
the applications. Our model enables substitution of
Components coming from former applications, according to
their known ports roles. Thus, we can merge controls, inputs
or outputs and keeping operational functional links.

Out next challenge is to propose rules for the
representation of elements to compose. Indeed an application
may have several representations such as its component
assembly, its UI or its task model. Our intuition is that to
quickly specify a composition, working on the UI is the most
adapted. But to ensure consistency of the usability, we will
explore the use of task models. And for making complex
merge of application, we probably need to manually
manipulate links between components. So we want to verify
our intuitions and we will study the limits of each approach.

REFERENCES

[1] Brel C., Pinna-Déry A.-M., Renevier P., and Riveill M.
OntoCompo: A Tool To Enhance Application Composition.
In Proceedings of the 13th IFIP TC13 Conference in Human-
Computer Interaction, Lisboa, Portugal, 2011, pp. 588-591.

[2] Criado, J., Padilla, N., Iribarne, and L., and Asensio, J. User
Interface Composition with COTS-UI and Trading
Approaches: Application for Web-Based Environmental
Information Systems. Communications in Computer and
Information Science vol. 111, 2010, pp. 259-266.

[3] Gabillon, Y., Petit, M., Calvary, G., and Fiorino, H.
Automated planning for userinterface composition. In
Proceedings of the 2nd International Workshop. on Semantic
Models for Adaptive Interactive Systems, Palo Alto, CA,
USA, 2011, [retrieved: October, 2012].

[4] Ginzburg, J., Rossi, G., Urbieta, and M., Distante, D.
Transparent Interface Composition in Web Applications. In

Proceedings of the 7th International Conference on Web
Engineering, Como, Italy, 2007, pp. 152-166.

[5] Lau K.-K. and Rana T. A Taxonomy of Software
Composition Mechanisms. In Proceedings of 36th
EUROMICRO Software Engineering and Advanced
Application, Lille, France, 2010, pp. 102–110.

[6] Lepreux S., Vanderdonckt J., and Kolski C. User Interface
Composition with UsiXML. In Proceedings of 1st Int.
Workshop on User Interface Extensible Markup Language,
Berlin, Germany, 2010, pp. 141-151.

[7] Mehta N. R., Medvidovic N., and Phadke S. Towards a
taxonomy of software connectors. In Proceedings of
International Conference on Software Engineering, Limerick,
Ireland, 2000, pp. 178-187.

[8] Nestler T., Feldmann M., Preußner A., and Schill A. Service
Composition at the Presentation Layer using Web Service
Annotations. In Proceedings of the 1st Intl. Workshop on
Lightweight Integration on the Web, San Sebastian, Spain,
2009, pp. 63-68.

[9] Pietschmann S., Voigt M., Rümpel A., and Meissner K.
CRUISe: Composition of Rich User Interface Services. In
Proceedings of International Conference on Web Engineering,
San Sebastian, Spain, 2009, pp. 473-476.

[10] Pinna-Déry A.-M., Joffroy C., Renevier P., Riveill M., and
Vergoni C. ALIAS: A Set of Abstract Languages for User
Interface Assembly. In Proceedings of Software Engineering
and Applications, Orlando, FL, USA, 2008, pp. 77-82.

[11] Stuerzlinger W., Chapuis O., Phillips D., and Roussel N. User
Interface Façades: Towards Fully Adaptable User Interfaces.
In Proceedings of the ACM Symposium on User Interface
Software and Technology, Montreux, Switzerland, 2006, pp.
309-318.

[12] Tan D.S., Meyers B., and Czerwinski M. WinCuts:
Manipulating Arbitrary Window Regions for more Effective
Use of Screen Space. In Proceedings. of ACM Conference on
Human Aspects in Computing Systems, Vienna, Austria,
2004, pp. 1525-1528.

[13] Zhao Q., Huang G., Huang J., Liu X., Mei H., Li Y., and
Chen Y. A Web-Based Mashup Environment for On-the-Fly
Service Composition. In Proceedings. of Symposium on
Service-Oriented System Engineering, Jhongli, Taiwan, 2008,
pp. 32-37.

