
HAL Id: hal-01302003
https://hal.science/hal-01302003v1

Preprint submitted on 26 Apr 2016 (v1), last revised 11 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of an in vitro chemotherapy to avoid
resistant tumours

Cécile Carrère

To cite this version:
Cécile Carrère. Optimization of an in vitro chemotherapy to avoid resistant tumours. 2016. �hal-
01302003v1�

https://hal.science/hal-01302003v1
https://hal.archives-ouvertes.fr


Optimization of an in vitro chemotherapy to avoid resistant

tumours

Cécile Carrère∗

April 22, 2016

Abstract

Chemotherapy use against solid tumours often results in the resistance of the cancer
cells to the molecule used. In this paper, we will set up and analyse a simple model for
heterogeneous in vitro tumours, consisting of cells that are sensitive (s) or resistant (r) to a
certain drug:

{

ds

dt
(t) = ρs(t)(1 −

s(t)+mr(t)
K

) − αs(t)C(t)
dr

dt
(t) = ρr(t)(1 −

s(t)+mr(t)
K

) − βs(t)r(t).

We will then use this model to develop different protocols, that aim at reducing the tu-
mour volume while preserving its heterogeneity. These drug administration schedules are
determined through analysis of the system dynamics, and optimal control theory.

Keywords: Chemotherapy; Mathematical model; Optimal control; Metronomics

1 Introduction

Resistance to chemotherapy is a major problem when treating cancer. Diverse factors can be the
cause of such a phenomenon. The resistance might be caused by an overall bad adsorption of the
drug by the organism: it is possible that the chemical agent is directly evacuated, without even
reaching the target cells. This problem is mainly referred as an intrinsic resistance. Another
reason is due to the nature of the cancerous cells themselves. Mutations can create new lineages
of cells less sensitive to the drug, or an epigenetic behaviour might be selected to tackle the
chemical aggression. The way those cells consume nutrients, or divide up, might evolve under
the selection pressure imposed by the drug injection. In that case, either the mutation (or the
epigenetic behaviour) is present in some cells before the beginning of the treatment, and then
selected, or a secondary metabolism way might be chosen to bypass the first one, blocked by the
drug action. Either way, when resistance to the chemotherapy appears, the medical team often
has no choice but to switch to a different therapy, sometimes more harmful than the first one for
the rest of the patient’s organism. To prevent such a scenario, different strategies are studied.
Anti-angiogenic drugs for example, target endothelial cells, which are less likely to mutate and
develop resistance, in order to prevent vascularization of the tumour and maintaining it at a small
size [1]. Another approach is to change the rhythm of drug injections, as low dose treatments or
resting times can have a resensitiving action [11].

In many chemotherapy protocols, the usual procedure is to try to kill as many cancerous
cells as possible and very quickly, so that the patient gets rid of his tumour with a maximum
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probability. Thus a large dose of drug is delivered during very short periods: such a protocol
uses the Maximal Tolerated Dose (MTD), which is considered the highest dose of this drug you
can give to a patient before side effects are too harmful for him. Such a strategy is justified if
the resistance is considered as an acquired trait, and the aim is to destroy the tumour before any
mutation occurs. But if resistant cells exist in the tumour even before the chemotherapy begins,
then killing all sensitive cells would suppress the only natural control we had on them.

In this outlook, lower and more frequent drug doses that maintain a small sensitive population
should be preferred. If a certain amount of them is still present, they might impose a competition
pressure on resistant cells, and prevent them from proliferating. Such low dose protocols are
called metronomic treatments. By using them, cancer is then considered as a chronic disease
that needs maintenance treatments. They are developed today because they are less harmful for
the patient’s immune system, and can have an anti-angiogenic effect. Concerning the resistance
phenomenon, the doses must be finely tuned to be sure sensitive cells never disappear, while
reducing the tumour size to a minimum. This could be done by multiple in vitro experiment,
or more efficiently by theoretical and numerical modelling. Moreover, because their advantages
over MTD protocols are only effective over a long time, models can help predict the efficiency of
such therapies. For both these reasons, mathematical modelling of this competitive environment
and analysis of treatment solutions is now crucial.

Treatment optimization has been studied in applied mathematics under different perspec-
tives. Two main trends appear: numerical optimization for complex systems, or theoretical
optimal control of simple systems. In the first category, several drug effects are often taken into
account [1]: cytotoxicity, anti-angiogenesis, toxicity for the rest of the organism, action on the
immunosystem... Those models might use ODEs to describe a complex system with a lot of
interactions [1]. In that case, numerical methods are used to compute an optimal treatment
to reduce, for example, the volume of the tumour under some conditions. But the complexity
of such models can hide the driving phenomena of the real system, and they are not practical
to predict the general behaviour of the tumour. In the second approach, the model is chosen
extremely simple, with few differential equations, so that it can be analytically studied and the-
oretical optimal control theory can be used. The optimal treatment is determined, or at least
characterized by the method given by the Pontryagin Maximum Principle [17]. One can cite [12]
for an optimal control of a vascularized tumour through two different drugs given in combination,
but also [8, 2] for recent applications of optimal control to chemotherapy. This approach gives
an insightful comprehension of the model dynamics, and a mathematical justification for the
chosen treatment schedule. In order to apply this method to the reduction of a tumour without
selecting the resistant cancerous cells, we will work with a simple compartmented ODE cancer
model.

In order to gain a better understanding of cancer dynamics, it is now important to see
tumours not as homogeneous populations of cells, but as a complex ecosystem with a large
variety of phenotypes. When a patient enters a chemotherapy, the medical team chooses to use
drugs that target the most common cells in the tumour: this choice divides the cells into two
different populations, one that is sensitive to the drug, and one resistant to it. In many cases, this
phenotypic difference does not affect the global behaviour of the cells before the chemotherapy.
Biological observations are difficult to produce, since it may be hard to differentiate the two
lineages. In a series of ongoing experiments, M. Carré at the CRO2 uses fluorescent marking to
follow lung cancer cells implantation in Petri wells. A different transmissible marker is implanted
to two lineages of cells, one sensitive to Epothilene, coloured in red, and one resistant to it,
coloured in green. A first observation is that, when little or no treatment is applied, sensitive
cells fill up the well, while resistant cells only survive in a small number, for a large diversity of
initial composition.
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Modelling this heterogeneity now depends on the assumptions that are made on the nature of
resistant cells. The resistant trait can be considered as continuous, leading to partial differential
equations of time and trait [13]. In our case, only two kind of cells are taken into account,
so ordinary differential equations describing each population dynamics will be used. Random
processes occurring in living organisms can be taken into account, like in [14, 7, 10]. But since we
want to model in vitro experiments, and use the model to develop optimal treatments, we chose
a deterministic model. In this line of work, [4, 3] developed simple, linear compartmented models
of competing cancer cells. In these models, the two lineages have the same growth rates, and do
not compete for nutrients nor space. This does not explain the dominance of sensitive cells over
resistant cells in normal conditions, so further complexifications should be taken into account.
[9] introduces a trade-off in growth rate for resistant cells, so that sensitive cells are selected over
them during the experiment, and [15, 16] insist on the role of space and nutrients competition.
But in M.Carré’s experiments, the dominance of sensitive cells is seen very quickly, even if a
first treatment injection has reduced greatly their population at the beginning. Models that do
not consider an actual repressive effect of sensitive cells on resistant cells cannot reproduce this
phenomenon.

This paper is divided into three main parts. The first part will present a mathematical model
for heterogeneous in vitro tumours. Then, after an analysis of the system behaviour under a con-
stant injection of a drug, we investigate how to mathematically enhance the treatment protocol,
by minimizing the tumour size at the experiment end. This first example being unsatisfactory,
the second part studies two other choices of protocols. First, an adaptive stabilization protocol
is designed to control indefinitely the system at a low, stable state. Second, we choose to mini-
mize analytically a new cost taking into account the tumour size during the whole experiment.
Finally, in the third part, we focus on numerical results, to compare our two protocols with a
constant treatment and a cycling MTD protocol.

2 General study of a heterogeneous in vitro tumour model

2.1 Mathematical modelling

We use phenotypical observations of lung cancer cells A549, sensitive to Epothilene, and their
resistant version, A549 Epo40. These lineages are used by M. Carré, researcher at the CRO21 in
experiments on cancerous cells interactions. We also only consider in vitro experiments, where
only the two types of cells are present, and nutrients are distributed in abundance.

The cell population is divided into two compartments: the sensitive cells, denoted s, and the
resistant cells, denoted r. We do not take into account any acquired resistance that might appear
because of the treatment. When cultivated alone, the cells behave as in a logistical model, which
we will use for the rest of the study. This model is expressed for a generic population x as:

dx

dt
(t) = ρx(t)(1 −

x(t)

K
)

where ρ is the initial growth rate of the population, and K the carrying capacity of the envi-
ronment. The term x

K
represents the total space already occupied in the environment. In our

case, the two kinds of cells consume space, so this term should be s+r
K

. But we should take into
account the difference of size between the two lineages: resistant cells are bigger than sensitive
cells in M. Carré’s experimental setting. For that purpose, the term representing the used space
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is s(t)+mr(t)
K

, with m > 1. The growth rates of s and r are denoted, respectively, ρs and ρr.

{

ds
dt

(t) = ρss(1 − s+mr
K

),
dr
dt

(t) = ρrr(1 − s+mr
K

).
(1)

This model is not sufficient to represent the experiment without treatment. Indeed, in (1), the
quantity ρr ln(s(t)) −ρs ln(r(t)) remains constant, while we want to consider the case where sen-
sitive cells really outnumber and repress resistant cells without treatment. We modify our model
by adding a death term for the resistant cells −βsr, proportional to the encounter probability
between two different types cells.

Finally, the concentration C(t) of the drug only acts on the sensitive cells, and its action is
proportional to the number of those cells. We restrict our model to the case 0 ≤ C(t) ≤ Cmax,
where Cmax is the maximal tolerated dose for a patient (MTD). The system is now:

{

ds
dt

(t) = ρss(1 − s+mr
K

) − αsC(t),
dr
dt

(t) = ρrr(1 − s+mr
K

) − βsr.
(2)

The different parameters in Tab.1 are estimated values for A549 (sensitive) and A549 Epo40
(resistant) cells.

Theorem 1. For any bounded Lebesgue measurable function C : [0, T ] → [0, Cmax] with T ≤ ∞,
the triangle T := {s > 0} ∩ {r > 0} ∩ {s+mr < K} is positively invariant under the dynamical
system of equations (2).

Proof. A direct application of theorem 2.1.1. in [6, p. 14] ensures that for any (s0, r0) ∈ T and
measurable control C : [0, T ] → [0, Cmax], the initial value problem (2) with (s, r)(0) = (s0, r0)
has a global unique solution (s, r) : [0, T ] → R

2, which is absolutely continuous on [0, T ] and
depends continuously on the initial condition.

Let {(s, r)(t), t ∈ [0, T ]} be a trajectory of the system (2) for a certain Lebesgue measurable
function C : [0, T ] → [0, Cmax] and such that (s, r)(0) = (s0, r0).

On the set {s = 0} (resp. {r = 0}), the system (2) yields ds
dt

= 0 (resp. dr
dt

= 0). So according
to the uniqueness of the solution (s, r), if there exists a certain t0 such that s(t0) = 0 (resp.
r(t0) = 0), then for all t ∈ [0, T ], s(t) = 0 (resp r(t) = 0). Moreover, the points O = (0, 0) and
Er = (0, K

m
) are fixed points, and at the point K = (K, 0) the derivative on s satisfies ds

dt
≤ 0.

Hence the sets {s = 0, 0 ≤ r ≤ K
m

} and {0 ≤ s ≤ K, r = 0} are both stable under the system (2).
Now suppose a trajectory {(s, r)(t), t ∈ [0, T ]} satisfies (s, r)(0) ∈ T, and there exists t > 0

such that (s, r)(t) /∈ T. Then by continuity there exists a smallest time t0 > 0 such that
(s, r)(t0) ∈ ∂T. The cases were s(t0) = 0 or r(t0) = 0 are ruled out by the stability of the sets
{s = 0} and {r = 0}. Hence the only possibility is s(t0) + mr(t0) = K with s(t0) > 0 and
r(t0) > 0. But then ds

dt
(t0) + mdr

dt
(t0) = −αs(t0)C(t0) − βs(t0)r(t0) < 0, so there exists ǫ > 0

such that s(t0 − ǫ) + mr(t0 − ǫ) > K. This is absurd since t0 was the first exiting time by
definition.

Hence T is positively stable under system (2).

In equations (2), the two growth rates are taken different. For the lineages we consider,
they are quite similar (see Tab.1). Thus in the rest of this article we consider ρs = ρr =
ρ = 0.03cells/hour. This will simplify the computations, but the results remain similar if the
difference is kept. The treatment effect could also be considered as a saturated function, with

αC replaced by αC(t)
E+C(t) , but this does not change much the different results we obtained, so we

decided to keep a simple model.
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Symbol Meaning Value Unit
s0 sensitive cells number initial : 5000 cells
r0 resistant cells number initial : 5000 cells
K Petry dish carrying capacity 4800000 cells
m size ratio between s and r 30 adimensional
ρs sensitive cells growth rate 0.031 cells/hour
ρr resistant cells growth rate 0.026 cells/hour
C drug concentration maximum : 5 nM/hour

α drug effect 0.06 nM−1

β action of sensitive on resistant 6.25 · 10−7 cells−1

T experiments duration 720 h

Table 1: Parameters for the equations and their value used in the simulations

In the end, the system we will study is:











ds
dt

(t) = ρs(1 − s+mr
K

) − αsC(t),
dr
dt

(t) = ρr(1 − s+mr
K

) − βsr

s(0) = s0 , r(0) = r0

(3)

2.2 Phase plan analysis for a constant treatment

In order to understand the system (3) dynamic, we first study its behaviour under a constant
treatment over time C(t) = C

{

ds
dt

(t) = ρs(1 − s+mr
K

) − αsC,
dr
dt

(t) = ρr(1 − s+mr
K

) − βsr.
(4)

Theorem 2. Given an initial condition (s0, r0) ∈ T, the system will evolve to different values
depending on the treatment value. Denoting Cmetro := Kβ

ρ+Kβ
ρ
α

, we have:

• if C = 0 then (s, r)(t) −→
t→∞

(K, 0) ,

• if 0 < C < Cmetro then, depending on (s0, r0), either (s, r)(t) −→
t→∞

(K ρ−αC
ρ

, 0) or (s, r)(t) −→
t→∞

(0, K
m

),

• if C ≥ Cmetro then (s, r)(t) −→
t→∞

(0, K
m

).

Proof. A study of the system (4) fixed points and their stability, depending on the value of C,
shows that three different cases emerge. They are summed up on Fig.1.

• Case 1: No treatment

If no treatment is applied, then the only attractive fixed point of the system is Es(0) :=
(K, 0), where the well is completely filled and with only sensitive cells. All trajectories
starting in T are attracted to it, as illustrated on Fig.1a.
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s

r

Er

Eu

Es(0)Es,lO

(a) No treatment

s

r

Er

Es(C)Es,l

Eu(C)

O

(b) Weak treatment

s

r

Er

Es,lO

(c) Strong treatment

Figure 1: Phase planes for the three different situations, the model is able to reproduce the
results from experiments

• Case 2: Strong treatment

If a strong treatment is injected, namely C ≥ Cmetro := Kβ
ρ+Kβ

ρ
α

, then the only attractive

fixed point is Er := (0, K
m

), where the well is filled with only resistant cells at their maximal
stacking capacity. All trajectories starting inside T are attracted to this point, as illustrated
in Fig.1c.

• Case 3: Weak treatment

In the case where 0 < C < Cmetro, two fixed points are now stable: Er = (0, K
m

) with only

resistant cells, and Es(C) := (K ρ−αC
ρ

, 0), with only sensitive cells, but at a lower level than
if no treatment is used. Depending on the initial number of both sensitive and resistant
cells, trajectories will evolve towards one or the other of the fixed points. The triangle T

is thus divided into two attraction basins, corresponding to Es(C) and Er.

A third fixed point exists, which is always unstable: Eu(C) := (su(C), ru(C)) with su(C) :=
αC
β

and ru(C) = ρ+Kβ
mβρ

( ρKβ
ρ+Kβ

− αC), a mixed population state. Numerically, we can estimate

that the attraction basins delimitation is a convex curve going through O := (0, 0) and Eu(C).
In any case, one sees that if at a certain time t we have s(t) > su(C) and r(t) = ru(C), then
dr
dt

(t) < 0, and if s(t) = su(C) and r(t) < ru(C) then ds
dt

(t) > 0. Hence the plane portion
{s > su(C)} ∩ {r < ru(C)} is positively stable, so it is contained into Es(C) attraction basin.

When C approaches the limit value Cmetro, the point Es(C) approaches its limit value Es,l :=

( Kρ
ρ+Kβ

, 0). It is an interesting value, as no smaller population with only sensitive cells is stable.
Fig.1b represents the situation of a weak treatment.

With values from Tab.1, we find that Cmetro = 0.495nM/h. This corresponds to a coherent
value for metronomic treatments, that use a dose ten times weaker than the MTD in classical
protocols.
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2.3 Optimal control of the tumour size at the end of the experiment

Our model is able to reproduce the phenomena we desired. It now should be used to determine
treatments that achieve medical purposes. Depending on the objectives, the protocol choice will
be treated differently. We present here a first example, to reduce the tumour size at the end of
the experiment.

Optimal Control Problem 1. Given an initial condition (s0, r0) ∈ T, a maximal concentration
of the treatment Cmax and a duration T of experiment, find a Lebesgue measurable function
C : [0, T ] → [0, Cmax] that minimizes the global quantity of cancerous cells:

ψ(s, r) := s(T ) + r(T )

at the final time T .

This is a Mayer problem [17]. The answer of this problem highlights how it is not relevant
for medical purposes:

Theorem 3. The optimal treatment for Problem 1 is “bang-bang”, and up to a certain time
tstart ∈ [0, T ] depending on the parameters, we have C(t) = 0, and from tstart to T the treatment
is maximal C(t) = Cmax.

Proof. We should first state the existence of optimal controls solution to Problem 1. We will
use Theorem 5.1.1. from [6, p. 88]. We denote f : ((s, r), t, C) 7→ (ρs(1 − s+mr

K
) − αsC, ρr(1 −

s+mr
K

) − βsr). First, for any t ∈ [0, T ] and any (s, r) ∈ T, the set of velocities F ((s, r), t) =
{f((s, r), t, C), C ∈ [0, Cmax]} is convex. Second, f is continuous in all variables and differentiable
w.r.t. (s, r). Third, by cut-off far from T, we can make so that for all (s, r), t, C we have
|f((s, r), t, C)| ≤ C̃(1 + |(s, r)|) where C̃ is a constant depending on f and our cut-off choice. All
the assumptions of the theorem are satisfied, thus there exists an optimal solution to Problem 1.

Now we will characterize such an optimal solution. The necessary conditions for the optimality
of the control C : [0, T ] → [0, Cmax] of the Pontryagin Minumum principle state that there exist
a constant p0 ≥ 0 and an absolutely continuous adjoint vector p : [0, T ] → R

2 satisfying the
following conditions. First, for all t ∈ [0, T ] we have (p0, p(t)) 6= 0, that is the condition of
non-triviality. Second, the optimality condition: the optimal control C∗(t) minimizes along the
optimal trajectory (p0, p(t), s

∗(t), r∗(t)) the Hamiltonian:

H(s, r, p1, p2, C) := p1 ·

(

ρs(1 −
s+mr

K
) − αsC

)

+ p2 ·

(

ρr(1 −
s+mr

K
) − βsr

)

,

over the set [0, Cmax]. Third, p satisfies the adjoint equations and transversality condition:



















ṗ(t) = −

(

∂H
∂s
∂H
∂r

)

(t) = −

(

ρ(1 − 2s+mr
K

) − αC −( ρ
K

+ β)r
−ρsm

K
ρ(1 − s+2mr

K
) − βs

)

p(t),

p(T ) = ∇ψ(s(T ), r(T )) = p0

(

1
1

)

.

(5)

(6)

If p0 = 0, then (6) implies that p1(T ) = p2(T ) = 0: this contradicts the non-triviality
condition, so p0 6= 0. Hence we can normalize p0 = 1 without loss of generality.

The hamiltonian H is linear in the control C: the function −αp1s is called the switching
function of the problem. In order to minimize H along the optimal trajectory, we see that:

• if αp∗

1(t)s∗(t) < 0 then C∗(t) = 0,
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p1

p2

×(1,1)

Pleft Ppos

PrightPneg

Figure 2: The phase plane of the adjoint vector p reveals two positively stable zones

• if αp∗

1(t)s∗(t) > 0 then C∗(t) = Cmax,

• if αp∗

1(t)s∗(t) = 0 we need more information.

Since
dp∗

1

dt
(t) = −(ρ(1 − 2s∗+mr∗

K
) − αC∗(t))p∗

1(t) + ( ρ
K

+ β)p∗

2(t), we have p∗

1(t) ≡ 0 on a
non empty interval I if and only if p∗

2(t) ≡ 0 on that same interval. But then according to the
Cauchy-Lipschitz theorem I = (0, T ), so p(T ) = 0. This is absurd, so p∗

1 does not vanish on an
interval. Hence the optimal treatment is for every t ∈ [0, T ] either 0 or Cmax.

Let us now study the phase plane for p. If p1(t) = 0 then dp1

dt
(t) = ( ρ

K
+ β)rp2(t) so it has

the same sign as p2(t). Similarly, if p2(t) = 0, then dp2

dt
(t) = ρm

K
sp1(t) so it has the same sign as

p1(t). Hence, the two quadrants Ppos = {p1 > 0, p2 > 0} and Pneg = {p1 < 0, p2 < 0} shown on
Fig.2 are positively stable. We also know from (6) that the optimal trajectory p∗ will end up

on

(

1
1

)

∈ Ppos: hence for t ≤ T the trajectory cannot go through Pneg. As a consequence, we

know the optimal adjoint p∗ either lies entirely in Ppos, or begins in one of the two remaining
quadrants Pleft = {p1 < 0, p2 > 0} or Pright = {p1 > 0, p2 < 0}, and then passes at a certain
time t0 < T in Ppos.

If p∗

1(0) > 0 then p∗

1 > 0 during the whole experiment, so ∀t ∈ [0, T ], C(t) = Cmax, so
tstart = 0. If p∗

1(0) < 0 then ∀t ∈ [0, t0), p∗

1(t) < 0 and ∀t ∈ (t0, T ], p∗

1(t) > 0, so with tstart = t0
we have ∀t ∈ [0, tstart), C(t) = 0, and ∀t ∈ (tstart, T ], C(t) = Cmax.

In other words, we wait for the sensitive cells to invade the dish and kill almost all resistant
cells, then just before the measurement time we release a huge dose of drugs to clear off the
sensitive cells. The treatment starting time tstart can be determined numerically.

This is not an acceptable strategy for clinical research: indeed, it supposes that we only want
a pointwise result, without looking at the intermediate states of the system, nor the long term
consequences of such a protocol. Indeed, it is possible that we let the tumour reach its maximal
capacity K during the experiment, as seen in Fig.3a, which would be really bad in a medical
context. Moreover, according to our model, if after the end of the experiment T one maintains
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(a) Optimal treatment is ap-
plied for the time of the exper-
iment T = 20, killing most sen-
sitive cells at the end
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0
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time

(b) If the treatment continues
after T , resistant cells invade
the well at their maximal level

0 10 20 30 40

0

1

2

3

time

(c) If we end the treatment
after T , sensitive cells regain
strength and resettle the well
after some recovery time

sensitive resistant total treatment

Figure 3: Cells populations evolutions during an optimal treatment when only the final popula-
tion is take into account

the treatment C = Cmax, then the resistant cells will invade the now free space left over by the
sensitive cells as seen on Fig.3b. Otherwise, if one stops the treatment after T , so C = 0, then
the sensitive cells will progressively resettle in the well as seen on Fig.3c. Even worse, such a
large drug dose might have killed, in reality, all the sensitive cells: even if we stop the treatment
after T , we are no longer able to control the tumour. To tackle this problem, new treatment
protocols should take into account the quantity of cells in the well during the whole experiment,
from 0 to T , and have an outlook on future behaviour on the solution.

3 Treatment protocols with different aims

Since the optimal treatment defined in 2.3 is not very well suited for medical protocols, we define
two new problems. The first one based solely on the study of trajectories in 2.2 gives a way to
stabilize the tumour at low, constant state. The second one is a new optimal control problem,
which takes into account the size of the tumour during the whole experiment.

3.1 Adaptive stabilization protocol

A consequence of Theorem 2 is that the total tumour s + r never goes extinct. For medical
reasons, it is interesting to reach a constant state, with mostly sensitive cells, and at the lowest
possible level. It will be a way to control indefinitely the tumour as a chronic disease.

In this outlook, we want to stabilize the system at the fixed point with only sensitive cells
Es(C), with this point as close as possible to O = (0, 0), with the constraint of Es(C) being
stable. The fixed point Es(C) is stable for 0 < C < Cmetro, so our objective is the point
Es,l := ( K

ρ+Kβ
, 0), that is the position of Es(C) for C = Cmetro.

We now propose a strategy to approach this point. We want to define a treatment for our
system such that, at any moment t, the trajectory of the system (s, r) is in the basin of attraction
of Es(C), which position depends on the value of C(t). Thus, one can assure the patient that
his tumour is controlled. We also impose C(t) to be piecewise constant, and its value can only
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(a) Day 1 and 2: the quantity
of resistant cells is still growing,
so no treatment is applied

r

s

Es(C)

Er
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Eu(C)

O

(s, r)(t)

(b) Day 3: the system has
crossed the designated thresh-
old to start the treatment

r

s

Es(C)

Er

Es,l

Eu(C)

O

(s, r)(t)

(c) Day 4: the treatment value
is actualized to bring Es(C)
closer to Es,l

Figure 4: Several steps of the adaptive protocol are represented on the phase plane

be changed each day (which corresponds to an experimental situation). The initial population
is supposed to be a mix of sensitive and resistant cells (s(0) > 0, r(0) > 0). This strategy is an
adaptive, iterative medical protocol.

The beginning of the ith day is denoted ti, and the value of C during the ith day is denoted
Ci. We use a coefficient λi ∈ (0, 1) that is also modified each day. Measures of (s, r)(ti) define
the treatment value each day:

• Initialization (s, r)(0) cells are implanted, λ0 = 1/2

• Loop for i = 1 to end of experiment

1. If r(ti) <
K
m

(1 − s(ti)
K

), let the system evolve with no treatment, Ci = 0, and
λi = 1

2 for reinitialization.

2. If r(ti) ≥ K
m

(1 − s(ti)
K

), set Ci = λiCmetro(1 − m
K
r(ti)) and λi+1 = 1+λi

2 .

• End of experiment

This protocol is illustrated by Fig.4, during four days: Fig.4a shows the action of a first
step of the protocol, without treatment, while Fig.4b and 4c represent two days with treatment.
During the loop, theoretically, phase 1 can only be encountered for a few days at the experiment
beginning, and when phase 2 begins it lasts until the end of our protocol. However, biological
variations could occur and bring us back to phase 1.

We have presented the general idea of an algorithm reaching the plateau (s, r) = Es,l =
( K

ρ+Kβ
, 0). As shown on Fig.5, the sensitive population reaches a maximal level shortly after the

treatment started, then slowly decreases to reach asymptotically the point Es,l. The different
parameters (time delay before starting the treatment, pace of changes in C, λ parameter...) could
be optimized by the choice of λi, depending on the medical constraints (rhythm of the patient
presence at the hospital, toxicity of the treatment) and objectives: reaching the plateau as soon
as possible, using the less treatment point-wise or cumulated...

In the following, this protocol will be referred to as the adaptive protocol. It treats the
tumour as a chronic disease: we do not try to suppress the cancerous cells, but to control them

10
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Figure 5: Adaptive stabilization protocol in the time scale: the treatment is increased each day,
and the cells population approaches the desired level

for an indefinite time.

3.2 Optimal control of the tumour size during the whole experiment

The adaptive protocol is designed through qualitative considerations on the system behaviour.
We now want to determine another type of protocol, that will have a quantitative objective.

A natural way to take into account the treatment effects for an entire period is to use an

integral cost: Lint(T ) =
∫ T

0
(As(t) + Br(t))dt. For medical reasons, it is also important that

during the experiment, the tumour remains small. To ensure that, we will use a cost that

penalizes high values of s(t) and r(t), i.e a L2-norm:
∫ T

0
(As2(t) + Br2(t))dt. Our new problem

is the following:

Optimal Control Problem 2. Given an initial condition (s0, r0) ∈ T, a maximal concentration
of the treatment Cmax and a time T of experiment, find a piecewise continuous function C :
[0, T ] → [0, Cmax] that minimizes the following cost:

L2(T ) := ψ̃(s(T ), r(T )) +

∫ T

0

L0(s(t), r(t))dt,

with ψ̃ the Mayer part of the cost, and L0 the Lagrange part of it:

ψ̃(s, r) := s2 + r2, L0(s, r) := As2 +Br2.

We find that the optimal treatment for this problem is of a particular form:

Theorem 4. The optimal treatment for Problem 2 is a continuous by arcs function C, with three
possible values at each time point. Either:

11



• the control is maximal C = Cmax,

• the control is minimal C = 0,

• the control is singular C = 1
αs

(

B
A
r2( ρ

K
+ β) + sρ(1 − s+2mr

K
)
)

.

Moreover, the control is maximal at the end of the experiment: C(T ) = Cmax.

Proof. First, the existence of optimal solutions to Problem 2 is ensured by Theorem 5.2.1 from
[6], on p.94. The assumptions of this theorem are satisfied by our system inside T, so a cut-off
far from it is enough to apply the theorem.

We will once again use the framework of Optimal control theory, and in particular the Pon-
tryagin Minimum Principle. Because the cost functional now has an Lagrangian part, the system
hamiltonian is modified:

H(s, r, p1, p2, C) = As2 +Br2 + p1 ·

(

ρs(1 −
s+mr

K
) − αsC

)

+ p2 ·

(

ρr(1 −
s+mr

K
) − βsr

)

.

(7)

From this we deduce the differential equations on the adjoint vector p =

(

p1

p2

)















dp1

dt
= −

∂H

∂s
= −2As− p1(ρ(1 −

2s+mr

K
) − αC) + p2(

ρ

K
+ β)r,

dp2

dt
= −

∂H

∂r
= −2Br + p1ρ

m

K
s− p2(ρ(1 −

s+ 2mr

K
) − βs).

(8)

(9)

In (7), the treatment C only appears as −αsp1C: the switch function is once again −αsp1.
From the Pontryagin Minimum Principle we know that:

• if αsp1 > 0 then C = Cmax,

• if αsp1 < 0 then C = 0,

• if αsp1 = 0 then C is to be determined.

Let us now investigate the case p1(t) ≡ 0 on I, where I is an interval of non-empty interior. In
optimal control theory, such an interval is called a singular arc. We want to deduce an expression
for C on that interval. First consider (8) on that particular interval:

0 = −2As+ p2(
ρ

K
+ β)r. (10)

Differentiating this expression gives us:

ṗ2(
ρ

K
+ β)r = 2A(ρs(1 −

s+mr

K
) − αsC) − p2(

ρ

K
+ β)(ρr(1 −

s+mr

K
) − βsr)

= 2A(ρs(1 −
s+mr

K
) − αsC) − 2As(ρ(1 −

s+mr

K
) − βs)

= 2A(βs− αC)s.

Moreover, injecting (10) in (9):

ṗ2(
ρ

K
+ β)r = −2Br2(

ρ

K
+ β) − 2As(ρ(1 −

s+ 2mr

K
) − βs).
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So that in the end:

(βs− αC)s = −
B

A
r2(

ρ

K
+ β) − s(ρ(1 −

s+ 2mr

K
) − βs).

We now have an expression for C on a singular arc :

C(t) =
1

αs

(

B

A
r2(

ρ

K
+ β) + sρ(1 −

s+ 2mr

K
)

)

(t)

=
1

αs

(

r(
B

A
(
ρ

K
+ β)r − sρ

m

K
) + sρ(1 −

s+mr

K
)

)

(t).

One should note that this can only hold if 0 ≤ C ≤ Cmax.

Moreover, if we denote ψ̃(t) = s2(t) + r2(t), such that ψ(T ) = ψ̃(T ) +
∫ T

0 (As2(t) +Br2(t))dt,
the Pontryagin Minimum Principle states that the adjoint p corresponding to the optimal control
satisfies p(T ) = ∇ψ̃(T ), so p1(T ) = 2s(T ) > 0. Hence we have C(T ) = Cmax.

Theorem 4 only states the possible forms of an optimal treatment. Depending on the pa-
rameters in the equations, the time T and the initial condition, it might happen that the opti-
mal treatment does not provide any singular arc (or minimal). The second order condition of
Legendre-Clebsch [5] is trivially satisfied on any singular arc, so it does not provide further infor-
mation. In the following, treatments that contain such a singular arc will be called biologically
optimal treatments (BOD).

4 Comparison of numerical results

Theorem 4 states the values that an optimal treatment C for cost L2 can take at each time t.
Using this information, we want to numerically answer Problem 2.

To simplify the numerical optimization and get it closer to a medical treatment, some con-
ditions are added. To help the patient recover after a large dose of drug, any period of MTD
treatment (C(t) = Cmax) must be followed by a period without treatment (C(t) = 0), so that the
patient’s organism can have a rest. Also, the treatment is given by cycles, during a period of one
month (30 days), as it is performed in clinical tests. The numerical optimization is performed on
the length of each time arc, using built-in optimization tools from Scilab. We chose B/A = m2

for size coherence.
During some tested treatments, long periods without or with little treatment make the re-

sistant population decrease a lot. Numerical errors might then let r < 0 on such periods. To
prevent this effect, we include a reserve of quiescent resistant cells: a constant amount of resistant
cells q := 10−3 that can produce resistant cells r. The equation on r now becomes:

dr

dt
= ρr(1 −

s+mr

K
) − βsr + q.

The results presented on Fig.6c show how the number of cells is kept at a low level for the
whole experiment. Periods without treatment allow the sensitive population to gain strength,
until they are enough to kill the resistant cells. Then the therapy begins at a low level, maintain-
ing the cells at a certain population number. When resistant cells are almost killed off, massive
therapy begins to swipe the remaining sensitive cells. Then the resting time allows the sensitive
cells population to recover again.
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FTO Adaptive BOD MTD Unit
Initial number of sensitive/resistant cells 5000/500 5000/500 5000/500 5000/500 cells

Total cost L 1.2 2.9 1.5 3.0 cells2

Maximal cells number 90700 86900 97400 228700 cells
Total used drug 380 310 320 300 nM
Cycles number × × 3 5

Total time under C = Cmax 48 0 72 144 h
Total time with less than 5000 cells 24 0 96 144 h

Mean percentage of resistant cells the ten last days 3.98 0.0001 1.25 1.45 %

Table 2: Comparison between FTO, adaptive, BOD and MTD protocols

In order to compare this schedule to others, we determined three different protocols for
the same problem. First, we used a numerical optimization software, AMPL, to solve Problem2.
Time is discretized with steps of 1h. Its results are presented on Fig.6a: we will later refer to this
protocol as the Fixed Time Optimal (FTO). Second, we implemented the stabilization strategy
we defined in 3.1: the results are presented on Fig.6b. Finally, to illustrate the advantage of
metronomic treatments over the ones currently in use in medical protocols, we optimized the
cost L for cycling treatments that only allow C(t) = 0 or C(t) = Cmax. It is represented on
Fig.6d. Several interesting informations on those different protocols are summed up in Tab.2.

The cost L we chose is minimized by the FTO treatment. The BOD protocol, which includes
forced cycles, fares also well under this criterion, while MTD and adaptive protocols present a
strong cost. The four of them use roughly the same amount of drug during the experiment, but
the adaptive protocol is the only one to never use the maximal dosage of 5nM/h. For a clinical
use, the time with small tumoral charge will be important too: the adaptive protocol does not
provide any, while during the two cycling schedules, the Petri dish is regularly ridden of almost all
cancerous cells. In the FTO protocol, at the end of the experiment the resistant population is no
longer under control: thus, contrary to the other strategies, the mean resistant cells proportion
in the tumour at the end is really higher for this situation than the other. Especially, because
the aim of the adaptive strategy is to reach a limit population with no resistant cells, it fares
way better than the other three protocols on this criterion.

The uses and drawbacks of those different protocols will be discussed in 5.

5 Discussion

We developed a mathematical model to predict the behaviour of competing cancerous cells under
various treatment schedules. A study of the dynamical system gives then an idea of an interesting
schedule of the drug, to stabilize the tumour at a low level, and a further optimization gives an
other interesting schedule.

The Tab.2 compares the numerical results of the FTO, adaptive, BOD and an optimal MTD
protocols. The FTO protocol answers numerically Problem 2, but would not be considered for
a medical trial. Indeed, even if the mathematical cost L is minimal for this protocol among the
four schedules we study, it does not ensure a control on the tumour over a long time. As we see in
Fig.6a, at the end of the experiment, a large dose of drug is released in order to kill a maximum
of sensitive cells. Thus, the resistant cells proportion becomes very important: keeping a control
over this tumour after the 30 days treatment might prove more difficult.
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(c) Biologically optimal dose protocol
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Figure 6: Four different protocols are presented, with the total number of cells in the well coloured
in red, the treatment evolution in black, and the resistant cells proportion in green
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The MTD protocol is widely used in medical applications: because it regularly kills a large
amount of cancer cells, it is expected that in some cases the tumour will be completely eradi-
cated after the treatment. According to our model, although it does provide the patient a long
cumulated time with a reduced tumour charge, it still fares bad on other arguments. First, in
order to maintain the resistant cells at a low level, the protocol forces us to allow the tumour to
reach a large size at each cycle, which can trigger new effects as the vascularization or metastasis
creation, or even kill the patient. Second, as we see on Fig.6d, the resistant cells proportion in
the tumour is almost always high, meaning we might be losing control on the disease. Moreover,
large doses of drug not only harm the cancerous cells but also the immune system, so long periods
under Cmax and short recovery times should be avoided as they are very toxic.

The adaptive protocol we described in 3.1 does not use maximal drug dose delivery: the
maximal dose in this treatment is Cmetro = 0.296nM/h, which is far from the maximal 5nM/h.
This really lessens the treatment toxicity. Its design ensures that the proportion of resistant
cells is really low, and decreasing, so that the tumour evolution is really controlled. Moreover,
our adaptive protocol can be easily processed in vitro, as it even takes into account some of the
variability inherent to real experiments. Further studies of its robustness to the parameters and
its speed to reach the interesting equilibrium Es,l should be performed.

The BOD protocol we defined in 3.2 gives an interesting intermediate to the last two protocols.
Although we chose the cost L quite arbitrarily, the resulting optimal schedule stabilizes the
tumour at a small level, and regularly reduces it to a group of less than 5000 cells. The presence
of resting periods in the schedule is also a good point for medical purposes.

Thus, our study highlighted four treatment protocols, that have diverse advantages and
drawbacks. It would be a task for medical teams to chose between them, or to define new
objectives for us to study if possible.

These results, although encouraging, should be taken into perspective with the model we
used.

By construction, our model does not cover the cancer cells total extinction. A simple approach
to address this problem is to consider that when s or r is less than one cell, then the corresponding
population went extinct. But that is not a satisfactory behaviour for the resistant population,
as we supposed that even when no treatment is applied, resistant cells exist: r should never be
extinct in such model. Even worse, a strong drug dose can in practice kill absolutely all sensitive
cells, without any chance of rebound. Knowing that, a MTD protocol as in Fig.6d would
probably kill all sensitive cells at one of the drug injections, so that we would loose all control
over the resistant population. BOD protocol fares a little better, as periods with maximal dose
are shorter, but it still creates a risk of total extinction. In that outlook, our adaptive protocol
ensures that the tumour is always controlled, for an indefinite time.

This model highly relies on two hypotheses about the phenomenon of resistance. First, that
there exists two genuine populations of cells, one strictly sensitive to the drug and one resistant
to it, rather than a continuous trait of resistance. Second, that a lineage never evolves from one
category to the other. This might not be the case for a different lineage of cancer cells, and
especially not for in vivo experiments. However, this biological model already shows that an
intermediate dose of treatment might be better to prevent the resistance of a tumour to a certain
drug, rather than MTD treatment schedule.

Another limitation of our model is the fact that no spatial terms are taken into account. It
might be interesting to do so, as further experiments by M. Carré performed on tumour spheroids
showed that the initial repartition of the cells can have an impact on the outcome. Indeed, at
the end of experiments where sensitive cells are predominant, remaining resistant cells tend to
be found in clusters. In that case, the Optimal Control Theory will be more complex to use,
so numerical optimization solvers could become a more interesting strategy. Finally, for the
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moment, the toxicity of the drug is not taken into account in the cost L: that may be a further
work to consider.

Nonetheless, since this model was developed from considerations of simple, in vitro experi-
ment, it has several advantages. First, very few parameters are needed to simulate effectively the
behaviour of the system. They have a good biological interpretation, and can easily be measured.
Second, in vitro experiment can be conducted easily compared with experiments involving living
animals. Our hypothesis will thus be easy to check, and new experiments do not cost much.

Now that our model produced some optimal schedules, it will be interesting to test them in
vitro. This will be performed at the CRO2, and the results will be analysed and commented by
both the medical and the mathematical team. Especially, the adaptive strategy is quite easy to
test, and is more likely to be chosen by medical teams.

However, for the moment no in vivo experiment can be considered, as too many other pa-
rameters should be taken into account.
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