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Abstract

Coalitional network games are real-valued functions defined on a set of

players organized into a network and a coalition structure. We adopt a flexible

approach assuming that players organize themselves the best way possible by

forming the efficient coalitional network structure. We propose two allocation

rules that distribute the value of the efficient coalitional network structure: the

atom-based flexible coalitional network allocation rule and the player-based

flexible coalitional network allocation rule.
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1 Introduction

There are many situations where agents are part of a network and belong to groups

or coalitions. Regarding firms’ strategies on R&D, firms can sign bilateral R&D

agreements – that is, a network – and, at the same time firms may group themselves

into R&D joint ventures – that is, coalitions. Individuals are living their social inter-

actions in clubs or communities as well as through friendship networks. Countries

can sign bilateral free trade agreements or multilateral free trade agreements and

may belong to customs unions. Connections among different criminal gangs became

a major feature of the organized crime during the 1990s.

Caulier, Mauleon, Sempere-Monerris and Vannetelbosch (2013) have developed

a theoretical framework that allows to study which bilateral links and coalition

structures are going to emerge at equilibrium. They have proposed the notion

of coalitional network to represent a network and a coalition structure, where the

network specifies the nature of the relationship each individual has with her coalition

members and with individuals outside her coalition.1 They have shown that this

new framework can provide insights that one cannot obtain if coalition formation

and network formation are tackled separately and independently.2

The aim of this paper is to study the allocation of value among players who are

part of a network and belong to coalitions and to assess the strategic position of each

player in a coalitional network. The way the value is allocated matters, not only in

terms of fairness and equity considerations, but also in determining the incentives

players have to form links and coalitions.

One of the central problems tackled by traditional cooperative game theory con-

cerns the way to allocate among players the value generated collectively by the group

of players in a fair way. In cooperative games, it is assumed that players cooperate by

1Caulier, Mauleon, Sempere-Monerris and Vannetelbosch (2013) have used the concepts of

strong stability and of contractual stability to predict the coalitional networks that are going to

emerge at equilibrium. Contractual stability imposes that any change made to the coalitional

network needs the consent of both the deviating players and their original coalition partners.

Requiring the consent of coalition members under the simple majority or unanimity decision rule

may help to reconcile stability and efficiency.
2Caulier, Mauleon and Vannetelbosch (2013) have considered situations where players are also

part of a network and belong to coalitions. However, each player’s payoff only depends on the

network, and so, each player’s coalition only constrains her ability to add or delete links in the

network.
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forming coalitions and the fruit of cooperation, the worth of a coalition, is achieved

independently of the organization of the other players and can be freely distributed

among the coalition members. In this context, the Shapley value proposes a way to

share the worth of the grand coalition taking into account the marginal contribution

of each player to the worth of each possible subcoalition. Myerson (1977) was first

to augment a cooperative game by a network structure specifying which groups of

players can communicate and achieve their worth.3 The feasible groups are the ones

whose members can communicate via the given network. Myerson (1977) has ex-

tended the Shapley value for this class of cooperative games, called communication

games. Myerson (1980) has modeled the communication possibilities of the players

by means of hypergraphs. Each element of an hypergraph is called a conference.

Communication and negotiation between players can only take place within a con-

ference if all players of the conference participate. Since a conference can consist of

several players, an hypergraph is a generalization of a network, which has bilateral

communication channels only. Myerson (1980) has generalized the Myerson value

to this setting.4 Jackson and Wolinsky (1996) have introduced a class of games –

network games – where the value generated by a group of players depends directly

on the network structure. They have extended the Myerson value to network games.

In this paper we extend the Shapley value to coalitional networks. The value

generated by the coalitional network is captured by a real-valued function – called

a coalitional network game. Notice that the coalition structure in a coalitional

network game can vary and generates itself a value, whereas the coalition structure

only restricts the possibilities for forming coalitions or networks in the recent related

literature.5 Following Jackson (2005), we propose an allocation rule for coalitional

3Other approaches with specific communication structures are Amer and Carreras (2005), Au-

mann and Dreze (1974), Bergantinos, Carreras and Garcia-Jurado (1993), and Carreras (1991).
4Algaba, Bilbao, Borm and Lopez (2001) have introduced the Myerson value for union stable

structures (i.e. structures where the union of two intersecting feasible coalitions is also feasible) and

have provided an axiomatization for it. Ui, Kojima and Kajii (2011) have provided an extension

of the Myerson value for complete coalition structures defined as sets of feasible coalitions.
5For instance, Vazquez-Brage, Garcia-Jurado and Carreras (1996) have proposed an allocation

rule for a TU game endowed with independent of each other both a coalition structure and a

communication graph on the set of players. See also Alonso-Meijide, Alvarez-Mozos and Fiestras-

Janeiro (2009) and Kongo (2011). Recently, van den Brink, Khmelnitskaya and van der Laan

(2011) have introduced an Owen-type value for TU games endowed with two-level communication

structures where players are partitioned into a coalition structure such that there exists restricted
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network games that shares the value generated by a given coalitional network taking

into account the contribution of each player not only to the coalitional network that

actually forms but also to every alternative coalitional network that could have

been formed. We adopt Jackson’s (2005) flexible approach because the efficient

coalitional network is not necessarily the one where all players are linked to each

other and belong to the grand coalition; i.e., the complete coalitional network. This

means that we must care about how to allocate value to some coalitional networks

that are not the complete coalitional network. In such cases, the allocation of value

may depend on information about the roles of players that require calculations based

on coalitional networks that are not subcoalitional networks of a given coalitional

network.6

Observe that we develop a specific approach to adapt the Shapley value to our

framework. The Shapley value is originally applied to the boolean lattice of sets

ordered by inclusion where each player is an element of the lattice. As singleton,

each player is an atom (that covers the empty set) in the lattice of sets and the

Shapley value allocates the value of the grand coalition to these lattice elements. In

our setting, players do not appear as elements of the lattice of coalitional networks

partially ordered. In order to circumvent this difficulty, we allocate a value to the

atoms of the lattice under consideration, like the Shapley value for TU games, and

then to the players.

The paper is structured as follows. Section 2 provides definitions for coalitional

networks and presents the lattice structure of coalitional networks. Section 3 in-

troduces coalitional network games and establishes some properties for this class of

games. Section 4 presents two allocation rules for coalitional network games: the

atom-based flexible coalitional network allocation rule and the player-based flexible

coalitional network allocation rule. Section 5 provides the relationship with existing

allocation rules.

communication between and within the a priori unions of the coalition structure.
6Notice that in traditional cooperative games it is assumed that the grand coalition forms and

the Shapley value decomposes the grand coalition in various ways to evaluate players’ contributions.

Hence, in the decomposition of the grand coalition, the value of every other coalition is taken into

account in the computation of players’ contributions.
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2 Coalitional networks

Let N = {1, ..., n} be the finite set of players who are connected in some network

relationship and who belong to some coalitions. A coalitional network (g, P ) is a

pair that consists of a network g and a coalition structure or partition P .

A network g is a list of (unordered) pairs of players linked to each other and is

represented by an undirected graph. A link between two players i, j ∈ N , i 6= j, is

denoted ij or ji. For notational convenience, when the identities of linked players

are not needed, we use the generic symbol l to designate a link. The set of all

possible networks is denoted G = {g | g ⊆ gN}, where gN denotes the set of all

subsets of N of size 2; i.e. the complete network. Let gS denote the complete

network among players in S ⊆ N . Throughout the paper we use the notation ⊆ for

weak inclusion and ⊂ for strict inclusion. Thus, g∅ is the empty network where all

players are isolated. For any network g, let N(g) = {i | ∃j such that ij ∈ g} be the

set of players who have at least one link in the network g. Let n(g) ≡ |N(g)|. As it is

implicitly stated in the definition of G, a network is considered as a set of links and

the set of all possible networks is partially ordered by inclusion. A network g′ ∈ G
is a subnetwork of a network g ∈ G if the set of links in g′ is weakly included in g,

g′ ⊆ g. The infimum (meet) and supremum (join) of any two networks g, g′ ∈ G

exist and are respectively written g ∩ g′ and g ∪ g′, and (G,⊆) is a lattice with

bottom element g∅ and top element gN . A network g covers a network g′ if g′ ⊂ g

and there is no network g′′ such that g′ ⊂ g′′ ⊂ g. The set of networks that cover

the bottom element g∅, the set of atoms A(G,⊆), are the one-link networks l ⊂ gN .

A maximal decomposition of a network g in terms of atoms is the expression of g

as the supremum of all atoms included in g. Formally,

g =
⋃

l∈A(g)

l with A(g) = {l ∈ A(G,⊆) | l ⊆ g}

where A(g) is the set of atoms (one link networks) included in g.

We say that a lattice L is ranked is there exists a function r : L → N defined

recursively by r(⊥) = 0 with ⊥ ∈ L the bottom element of L and r(x) = r(y) + 1

with x, y ∈ L such that x covers y. We can see that the lattice (G,⊆) is ranked

and each element g ∈ G has rank r(g) = |g|. The rank of a network g is precisely

the number of links in g and corresponds to the number of atoms included in the

network. The degree of an element x of a lattice L is the number of elements that
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x covers in L. Hence, we identify the number of atoms in g with the degree of g.

Observe that if a network g covers a network g′ then there exists a network a ∈ A(g)

such that g′ ∪ a = g and the network g has one more link than g′, r(g) = r(g′) + 1.

For any two networks g, g′ ∈ G, the rank function satisfies the following identity:

r(g)+r(g′) = r(g∪g′)+r(g∩g′). A lattice (L,∨,∧) is distributive if for all x, y, z ∈ L
we have x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Hence

(G,⊆) is a distributive lattice.

A coalition is a subset S ⊆ N and a coalition structure (or partition) is a

collection of nonempty mutually disjoint coalitions whose union is N . We denote a

coalition structure P = {S1, ..., Sm} such that Sk 6= ∅ for k = 1, . . . ,m, Sk∩Sk′ = ∅,
k 6= k′ and

⋃
k S

k = N . A k-partition is a partition P that consists of k coalitions;

i.e., |P | = k. The set of possible coalition structures (or partitions) on N is denoted

P and is partially ordered under the refinement ordering v. Let P, P ′ be partitions

of N . We say that P is a refinement of P ′ or is finer than P ′, denoted P v P ′,

if any coalition of P is a subset of a coalition of P ′. Strict refinement is denoted

<. The dual relation of the refinement is the coarsening relation. The infimum and

supremum between any two partitions P and P ′ exist and are respectively P ∧ P ′

and P ∨P ′. The poset (P ,v) is thus a lattice. The bottom element of the partition

lattice (P ,v) is the finest partition P⊥ = {{1}, . . . , {n}}. The top element, i.e. the

coarsest partition, is the grand coalition P> = {N}. The atoms A(P ,v) are the

elements that cover the finest partition and are partitions whose only non-trivial

coalition is a two-element coalition. That is, Qij ∈ A(P ,v) if there exist i, j ∈ N
such that {i, j} ∈ Qij and all other coalitions of Qij are singletons. The lattice

(P ,v) is ranked and each element P has rank r(P ) = n − |P |. Any partition

P ′ covered by P have the same coalitions as P except one that is divided in two

coalitions in P ′. Hence, for any P, P ′ ∈ P such that P covers P ′, we have that P ′

has one more coalition than P , r(P ′) = r(P ) + 1. For any two partitions P, P ′ ∈ P ,

the rank function satisfies r(P ) + r(P ′) ≥ r(P ∨ P ′) + r(P ∧ P ′), hence (P ,v) is a

semimodular lattice. A lattice (L,∨,∧) is (upper) semimodular if for all x, y ∈ L
we have that x∧ y ≺ x and x∧ y ≺ y imply x ≺ x∨ y and y ≺ x∨ y. A distributive

lattice is semimodular, while the converse is not necessarily true.

A maximal decomposition of a partition P in terms of atoms is the expression
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of P as the supremum of all atoms finer than P . Formally,

P =
∨

Qij∈A(P )

Qij with A(P ) = {Qij ∈ A(P ,v) | Qij v P} ,

where A(P ) is the set of atoms (partition with only one nontrivial two-element

coalition) finer than P . The class of a partition P ∈ P is defined by the collection of

integers cP =
{
cP1 , . . . , c

P
n

}
such that cPk is the number of coalitions of P consisting

of exactly k players. Thus
∑n

k=1 c
P
k k = n and

∑n
k=1 c

P
k = n− r(P ) = |P |. The size

sP of a partition P ∈ P is the number of atoms finer than P . That is,

sP =
n∑

k=1

cPk

(
k

2

)
= |{{i, j} ∈ A(P )}| . (1)

A coalitional network consists of a pair (g, P ) ∈ G× P . We define the ordering

relation � on (G×P)× (G×P) such that (g, P ) � (g′, P ′) if and only if g ⊆ g′ in G

and P v P ′ in P . Since (G×P ,�) is defined as the Cartesian product of two lattices,

it has also a lattice structure. Moreover, it inherits the semimodularity property of

the partition lattice. The bottom and top elements of the lattice (G × P ,�) are

(g∅, P⊥) and (gN , {N}) respectively. Atom elements in A(G×P ,�) take one of the

following two forms, (l, P⊥) or (g∅, Qij) with l ∈ G being a one-link network and

Qij ∈ A(P ,v). If (ga, Pa) is an atom, i ∈ (ga, Pa) means that player i is either a

node of the one-link network or a member of the sole two-member coalition.

From direct calculations we have

|A(G× P ,�)| = (n(n− 1)/2) +

(
n

2

)
= n(n− 1).

Each element (g, P ), with P = {S1, . . . , Sk} being a k-partition, is covered by
(
k
2

)
+(

|gN | − |g|
)

elements and covers
∑

S∈P 2|S|−1 − |P | + |g| elements. The number of

atoms in a maximal decomposition of any (g, P ) is |A(g, P )| = sP + |g| with sP

defined in (1). Let |A(g, P )| be the degree of the coalitional network (g, P ) and

denote it by d(g, P ). For any player i ∈ N and (g, P ) ∈ G × P , we denote by

di(g, P ) the degree of player i in the coalitional network (g, P ). The degree di(g, P )

is the number of atoms to which i belongs, that is the number of links player i has

in g and the number of two-player coalitions in atoms finer than P to which player

i belongs. Finally, we denote by n(g, P ) the number of players that have at least
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one link in g or that are not singletons in P . That is, n(g, P ) = |N(g, P )| with

N(g, P ) = N(g) ∪ {i ∈ N | {i} /∈ P}.
We now present some properties fulfilled by the lattice of coalitional networks

that are of interest for the sequel.

Proposition 1. The lattice (G×P ,�) is ranked. The rank function r : (G×P)→ N
is such that r(g, P ) = n− |P |+ |g| for all (g, P ) ∈ G× P.

By definition, a ranked lattice (L,∨,∧) is semimodular if and only if its rank

function r : L→ N satisfies r(x) + r(y) ≥ r(x∨ y) + r(x∧ y). The next proposition

shows that the lattice of coalitional networks is semimodular :

Proposition 2. The lattice (G× P ,�) is semimodular.

3 Coalitional network games

Knowing the lattice structure of coalitional networks ordered by �, we can now

study games on coalitional networks that are bottom-normalized real-valued lattice

functions.

Definition 1. A coalitional network game is a function v : G × P → R such that

v(g∅, P⊥) = 0.

A coalitional network game assigns a real value to each possible pair consisting

of a network g and a partition P that represents the total value generated by the set

of players when organized under (g, P ). The set of all possible coalitional network

games is denoted V and can be identified with the vector space R|G|×|P|−1.
A coalitional network game is a richer object than a cooperative network game or

a classical coalitional game because it allows the value generated to depend both on

the network structure and on the organization of players into partitions. Coalitional

network games can be seen as network games with externalities, where the value

generated by a network depends on the organization of the set of players into mutu-

ally disjoint coalitions, and converge to classical network games in case of absence of

externalities (i.e. when the partition organization of players does not influence the

worth). To emphasize the richness of coalitional network games, we can compare

the vector space associated to them to the corresponding space of classical network

games. Classical network games take values only on the set of possible networks G.
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The number of possible networks in N is |G| = 2n(n−1)/2. Network games considered

as real-valued functions on |G| can be identified with R|G|−1. The number of possible

partitions on N is the Bell number Bn.7 Thus, coalitional network games considered

as real-valued functions on G× P can be identified with R|G|×Bn−1.

Definition 2. A coalitional network (g, P ) ∈ G × P is efficient relative to a coali-

tional network game v if v(g, P ) ≥ v(g′, P ′) for all (g′, P ′) ∈ G× P .

The efficient coalitional network may not be unique. Of course, in case of multi-

plicity, they all achieve the same maximum value. The efficient coalitional networks

represent the best way to organize the set of players in terms of networks and groups.

Definition 3. For any coalitional network game v ∈ V , its monotonic cover v̂ is

defined by

v̂(g, P ) = max
(g′,P ′)�(g,P )

v(g′, P ′).

Two different interpretations can be offered to monotonic covers of coalitional

network games. The first one corresponds to the one presented by Jackson (2005).

The idea is that at the time of building a coalitional network, players consider all

the available possibilities, and, if there is still some possibility to modify the coali-

tional network, then it is useful to consider which structure generates the maximum

possible value. This approach is called flexible by Jackson in the context of network

games without externalities. Another interpretation is the following. In classical

coalitional games, it is usually assumed that the game is superadditive so that the

grand coalition generates the maximum value and is thus formed. In the coalitional

network games context, this is a too strong assumption, since it is often the case

that forming or maintaining links induces costs and the grand coalition is not neces-

sarily the one that maximizes the worth. Instead, we assume here that the complete

network and the grand coalition form, but only activate or declare some links and

groups in order to generate the maximum value. The complete network and the

grand coalition have all links and subgroups at their disposal but only use some

of them to cooperate. A set of players with communication links gN can use any

network g ⊆ gN to cooperate. A set of players forming a unique group {N} are

7Bell numbers are defined recursively, using the Stirling numbers of the second kind, and no

close form expression exists to express them.
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free to group themselves into smaller groups to achieve higher values.8 Hence, the

complete network and the grand coalition always get the maximum value under its

monotonic cover.

Definition 4. A coalitional network game v ∈ V is monotonic if

(g, P ) � (g′, P ′)⇒ v(g, P ) ≤ v(g′, P ′).

Notice that if a coalitional network game is monotonic, then v = v̂. A monotonic

coalitional network game attributes to a coalitional network a higher value than the

value it attributes to its subcoalitional networks. This may not be a very natural

property in coalitional network games since the top coalitional network structure is

not always efficient. Nevertheless, we can draw some useful information about how

allocation rules perform on monotonic coalitional network games.

A special family of monotonic coalitional network games consists of the unanim-

ity coalitional network games. For a coalitional network (g, P ) ∈ G×P , let ug,P ∈ V
denote the unanimity coalitional network game satisfying

ug,P (g′, P ′) =

{
1 if (g, P ) � (g′, P ′)

0 otherwise.
(2)

Each coalitional network game ug,P can be seen as a vector in R|G|×Bn−1. The

|G| ×Bn − 1 different ug,P ’s are linearly independent, hence the set{
ug,P | (g, P ) ∈ G× P , (g, P ) 6= (g∅, P⊥)

}
of all unanimity coalitional network games forms a linear basis for R|G|×Bn−1 ≡ V
(see Gilboa and Lehrer, 1991). Each coalitional network game v ∈ V can thus be

written as

v =
∑

(g∅,P⊥)6=(g,P )∈G×P

∆g,P (v)ug,P . (3)

Each coefficient ∆g,P (v) is called the Harsanyi dividend (see Harsanyi, 1959).

The dividend of a given element (g, P ) of the lattice (G × P ,�) represents the

value that is left to (g, P ) once all (g′, P ′) included in (g, P ) have received their

8This is similar to essential superadditivity in coalitional games (see Wooders, 2008).
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corresponding dividends. By combining results from Grabisch (2010) and Caulier

(2010), the numerical value of a coefficient is found by

∆g,P (v) =
∑

(g′,P ′)�(g,P )

v(g′, P ′)(−1)|P
′|−|P |(n1 − 1)! . . . (n|P | − 1)!(−1)|g|−|g

′|.

4 Flexibility and equal treatment

In order to keep track of how the value generated by a coalitional network is allo-

cated to players, we adopt the flexible approach of Jackson (2005).9 Two different

allocation rules are proposed. The atom-based allocation rule focuses on the role

played by the minimal forms of cooperation among players in generating the value.

The player-based allocation rule emphasizes the role of the players in achieving the

value.

Definition 5. An allocation rule for a coalitional network game v ∈ V is a function

ψ : G× P ×V → RN such that
∑

i ψi(g, P, v) = v(g, P ) for all v, g and P .

It is important to note that an allocation rule depends on g, P and v. This

allows an allocation rule to take full account of a player i’s role in the network and

in the coalition structure. This includes not only what the network configuration and

coalition structure are, but also and how the value generated depends on the overall

network and coalition structure. Note that efficiency (
∑

i ψi(g, P, v) = v(g, P )) is

assumed in the definition of an allocation rule.

Definition 6. An allocation rule ψ is a flexible coalitional network rule if ψ (g, P, v) =

ψ
(
gN , {N}, v̂

)
, for all v and efficient coalitional network (g, P ) relative to v.

The allocation rule only depends on the monotonic cover of the coalitional net-

work game and distributes the value taken by the efficient configuration. This is

consistent with the perspective that the coalitional network is being formed and

that it can still be modified, or that the complete network together with the grand

coalition are formed but only use a subnetwork and a partition efficient relative

to v. The idea from the flexible perspective is that inefficient coalitional network

structures should not be reached.

9Navarro (2010) has proposed three modifications of Jackson’s (2005) flexible network axiom

when the structure of externalities across components is known.
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Note in the definition that the equivalence is only required on efficient structures,

as the value that accrues to other coalitional networks might not even be the same

(i.e. v(g, P ) 6= v̂(g, P ) for inefficient (g, P )).

The next property states how the values in two different games are related. The

property states the behavior followed by the players concerning the distribution of

the value generated when confronted to different games.10

Definition 7. An allocation rule ψ is weakly linear if for any monotonic coalitional

network games v and v′, and scalars a ≥ 0 and b ≥ 0,

ψ(gN , {N}, av + bv′) = aψ(gN , {N}, v) + bψ(gN , {N}, v′),

and if av − bv′ is monotonic, then

ψ(gN , {N}, av − bv′) = aψ(gN , {N}, v)− bψ(gN , {N}, v′).

Again, the weakly linearity condition only applies to monotonic coalitional net-

work games, the only relevant information if we consider the coalitional network as

flexible.

As a matter of equity, Jackson (2005) proposes to share the value in a unanimity

game equally between essential players or, for link-based allocation rules, between

essential links, whichever you consider as vital in generating value. In coalitional

network games, basic ingredients are not the players. The mathematical structure

in terms of lattice shows that the minimal aggregation form in a coalitional network

is an atom, which takes the form of either a link between two players together with

the trivial partition or a partition whose unique non-singleton coalition is a pair

of players together with the empty network. In order to assess the contribution to

cooperation of players in this context, we argue that the role played by each atom

must first be assessed. In the network game setting, the contribution of a player

may be computed in terms of the links she controls. In coalitional network games,

the contribution of a player may be computed in terms of the atoms controlled by

the player; that is, either the links controlled by the player in the existing network

or the partitions with only one nontrivial two-element coalition to which the player

belongs that are finer than the existing partition.

Hence we propose the following property:

10Jackson (2005) uses the term additivity instead of linearity. Since the definition imposes both

additivity and homogeneity, we prefer to name it linearity.
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Definition 8. An allocation rule ψ satisfies equal treatment of vital atoms if ug,P ∈
V is a unanimity coalitional network game for some (g, P ), then

ψi(g, P, ug,P ) =


∑

(ga,Pa)∈A(g,P ),
i∈(ga,Pa)

1
2|A(g,P )| if i belongs to at least one atom,

0 otherwise.

Recall that unanimity coalitional network games of (g, P ) are such that all atoms

of (g, P ) are members of the decomposition of (g, P ), and then, the join of all

these atoms is the (only) configuration that generates some value. Formally, for

each (g, P ) ∈ G × P with A(g, P ) ⊆ A(G × P ,�), the set of atoms such that

(ga, Pa) ∈ A(g, P ) ⇒ (ga, Pa) � (g, P ), and (g, P ) =
⋃

(ga,Pa)∈A(g,P ) (ga, Pa). In a

unanimity coalitional network game ug,P , all atoms of (g, P ) are identical, in the

sense that they are vital in the generation of worth, while the other atoms are not

part of the structures generating worth. We thus propose to distribute equally the

value generated among these vital atoms. The 1/2 reflects the fact that the value

of a given vital atom, either a link or the unique nontrivial two-element coalition of

the partition, is controlled by two players.

The properties described above are enough to characterize a unique solution,

that we call the atom-based flexible coalitional network allocation rule.

Theorem 1. An allocation rule for coalitional network games satisfies equal treat-

ment of vital atoms, weak linearity and is a flexible coalitional network rule if and

only if for all v ∈ V and (g, P ) ∈ G× P efficient relative to v, it is the atom-based

flexible coalitional network allocation rule, ψa, defined as follows:

ψa
i (g, P, v) =

∑
(g′,P ′)∈G×P

 ∑
(ga,Pa)∈A(g′,P ′):

i∈(ga,Pa)

∆g′,P ′(v̂)

2|A(g′, P ′)|

 (4)

The idea is first to calculate the dividends for the monotonic cover of the game

under consideration, next, to distribute them equally among the atoms of the coali-

tional networks corresponding to these dividends and, finally, to the players essential

to these atoms. This allocation rule thus stresses the importance of minimal forms

of cooperation among players that can take the form of links or coalitions, before

sharing the global worth to individuals.
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In order to show the independence of the properties used in the characterizing

theorem 1, the next proposition asserts that there exist allocation rules that satisfy

all properties except one.

Proposition 3. None of the properties used in the characterization of the atom-

based flexible coalitional network allocation rule ψa given by (4) in theorem 1 is

superfluous.

Theorem 1 only applies to an efficient coalitional network (g, P ) relative to v. In

order to have a complete definition of an allocation rule, we also need to specify how

to allocate the value of inefficient coalitional networks. Following Jackson (2005),

we propose to use the allocation of efficient coalitional networks as a benchmark and

to allocate the value of an inefficient coalitional network proportionally.

Definition 9. An allocation rule ψ is proportional if for each i and v ∈ V either

ψi(g, P, v) = 0 for all (g, P ), or for any (g, P ) and (g′, P ′) such that v(g′, P ′) 6= 0,

ψi(g, P, v)

ψi(g
′, P ′, v)

=
v(g, P )

v(g′, P ′)
. (5)

Note first that the definition of proportional allocation rule covers the case where

ψi(g
′, P ′, v) = 0 since it thus implies that ψi(g, P, v) = 0 for all (g, P ) 6= (g′, P ′).

When ψi(g
′, P ′, v) 6= 0 condition (5) applies.

When an allocation rule is proportional, it has first to be determined on an

efficient coalitional network and afterwards rescaled for the final inefficient coali-

tional network. When there are several efficient coalitional networks relative to a

value function, a proportional allocation rule gives the same result. Indeed, propor-

tionality for an allocation rule ψ implies that for all efficient coalitional networks

(g, P ) and (g′, P ′) relative to v ∈ V , (g, P ) 6= (g′, P ′), we have by equation (5)

ψi(g, P, v) = ψi(g
′, P ′, v) for all players i since v(g, P ) = v(g′, P ′). Suppose now that

the final coalitional network (g, P ) achieves a value of 0 for v ∈ V : v(g, P ) = 0. Let

(g′, P ′) an efficient coalitional network relative to v ∈ V . Then, by condition (5) we

have ψi(g, P, v) = 0 for all i.

Theorem 2. An allocation rule for coalitional network games satisfies equal treat-

ment of vital atoms, weak linearity and is a flexible and proportional coalitional

network rule if and only if for all v ∈ V and (g, P ) ∈ G × P, it is the atom-based
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flexible and proportional coalitional network allocation rule, ψa, defined as follows:

ψa
i (g, P, v) =

v(g, P )

v̂(gN , {N})
∑

(g′,P ′)∈G×P

 ∑
(ga,Pa)∈A(g′,P ′):

i∈(ga,Pa)

∆g′,P ′(v̂)

2|A(g′, P ′)|

 . (6)

Note that proposition 3 can be used to show that all the properties of theorem

2 are independent.

If on the contrary, we think that the emphasis should be set directly on the

players rather than indirectly, we propose to adapt the equity condition in Definition

8 as follows.

Definition 10. An allocation rule ψ satisfies equal treatment of vital players if

ug,P ∈ V is a unanimity coalitional network game for some (g, P ), then

ψi(g, P, ug,P ) =

{
0 if i is isolated in g and a singleton in P ,
1

n(g,P )
otherwise.

with n(g, P ) the number of players that have at least one link in g or that are not

singletons in P .

In a unanimity coalitional network game, players not isolated in g or in P are

all vital to the functioning of the coalitional network, in the sense that the value is

generated by their cooperation and no other player contribute in any sense. It is not

to say that a stand-alone player is not able to accomplish some valuable worth in

a coalitional network, but our focus is on the worth generated through cooperation

and how to share this value among cooperating players. In this case, players not

isolated are considered as equals and isolated players contribute nothing. Hence, this

equal treatment condition allocates the worth equally among the n(g, P ) players in

N(g, P ).

Before presenting our player-based flexible allocation rule, we need the following

definition :

Definition 11. The modular elements Pmod of the partition lattice (P ,v) over N

are the partitions P ∈ Pmod containing a unique non-trivial coalition as well as P⊥.

The finest partition P⊥ and the coarsest partition {N} are modular elements.

Any other P ∈ Pmod consists in a coalition {S} ∈ 2N \∅ together with the singletons
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{{i}|i ∈ N \ S}. Hence, each P ∈ Pmod can be uniquely characterized by its non-

trivial coalition {S} ∈ 2N \ ∅ and we may thus write with some abuse of notation

the modular partition as {S} ∈ Pmod. Note that the only one modular partition

corresponding to all singleton coalitions
{
{i}|{i} ∈ 2N

}
, is the trivial partition P⊥.

Hence the number of distinct modular partitions on N is |Pmod| = 2n − n, since P⊥

has multiplicity n in Pmod.

We now present the player-based flexible allocation with its characterizing prop-

erties.

Theorem 3. An allocation rule for coalitional network games satisfies equal treat-

ment of vital players, weak linearity and is a flexible coalitional network rule if and

only if for all v ∈ V and (g, P ) ∈ G×P efficient relative to v, it is the player-based

flexible coalitional network allocation rule ψp, defined by

ψp
i (g, P, v) =

∑
S3i,

{S}∈Pmod,
S⊆N(g,P )

∆gS ,{S}(v̂)

|S|
. (7)

The proof of this theorem is a direct analog of the proof of Theorem 1, which

appears in the appendix. If the end coalitional network is not an efficient one, we

can once again use Definition 9 and adapt formula (7) to hold for any (g, P ), not

necessarily efficient relative to v.

Theorem 4. An allocation rule for coalitional network games satisfies equal treat-

ment of vital players, weak linearity and is a flexible and proportional coalitional

network rule if and only if for all v ∈ V and (g, P ) ∈ G × P, it is the player-based

flexible and proportional coalitional network allocation rule ψp, defined by

ψp
i (g, P, v) =

v(g, P )

v̂(gN , {N})
∑
S3i,

{S}∈Pmod,
S⊆N(g,P )

∆gS ,{S}(v̂)

|S|
. (8)

The allocation rule (7) is close to the classical Shapley value (where Harsanyi

dividends are shared equally among players). However, in this setting, we first deal

with the monotonic cover of the value function as prescribed by our flexible approach

and, second, players are involved in much more complicated structures consisting in

both a network and a partition. To stress the similarities, let us express equation
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(7) in the following equivalent way, closer to the better known expression for the

Shapley value (see Shapley, 1953):

ψp
i (g, P, v) =

∑
{S}∈Pmod,
S⊆N(g,P )

i/∈S

(
v̂
(
gS∪i, {S ∪ i}

)
− v̂

(
gS, {S}

))( |S|!(n− |S| − 1)!

n!

)
. (9)

This amounts to define a TU-game cg,P,v : 2N → R such that, for all S ∈ 2N ,

cg,P,v(S) = v̂(gS, S). Then, the player-based flexible allocation rule (7) can be

rewritten ψp(g, P, v) = Sh(cg,P,v), where Sh stands for the Shapley value.11

Example 1. Take N = {1, 2, 3}. Let v({12}, {12|3}) = 1, v({23}, {1|23}) = 1,

v({12, 23}, {123}) = w ≥ 1 and v(g, P ) = 0 for all other coalitional networks.12

We also define v′(g, P ) = w for all (g, P ) such that g has at least two links and

P = P> and v′(g, P ) = 1 for all (g, P ) such that g has one link and P contains one

two-element coalition. Then, the link- and player-based flexible coalitional network

allocation rules provide different allocations if the coalitional network that realizes

is {{12, 23}, P>}

ψa
(
{{12, 23}, P>}, v

)
=
(w

4
,
w

2
,
w

4

)
ψp
(
{{12, 23}, P>}, v

)
=

(
w

3
− 1

6
,
w

3
+

1

3
,
w

3
− 1

6

)
ψa
(
{{12, 23}, P>}, v′

)
=
(w

3
,
w

3
,
w

3

)
ψp
(
{{12, 23}, P>}, v′

)
=
(w

3
,
w

3
,
w

3

)
Under the game v, both allocation rules reflect correctly the importance of player

2 which is more “central” than players 1 and 3. Player 2 participates to both the

one link networks and in both two-element coalitions in the partitions generating a

value of 1. The presence of player 2 is also necessary in the structure achieving a

value of w. The importance of player 2 is thus reflected under both allocation rules

and the difference between the shares she receives pertains to whether we stress the

role of the atoms to which player 2 belongs (player 2 participates to twice more

important atoms than player 1 or 3, and receives thus twice their shares), or if we

stress directly the role played by player 2 under the player-based allocation rule.

Under the game v′, all players receive the same share which is consistent with the

equity principle fulfilled by the rules.

11We thank an anonymous referee for drawing our attention to this point.
12A partition P = {{a, b}, {c}} is denoted {ab|c} for conveniance.
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Let us explain the two equity properties in definitions 8 and 10. The proposed

properties are not claimed to be logically independent, they are merely a convenient

characterization of the object under study. The resemblance of the proposed alloca-

tion rules with the classical Shapley value stems for other possible characterizations

with different desirable properties (such as fairness in Myerson (1977) or population

solidarity in Calvo and Gutierrez (2010)). The chosen perspective has a twofold mo-

tivation. First, it shows how should the allocation rule behave under the simplest

case of a unanimity game. This approach presents a first trade-off: should we focus

on cooperation among players or on players directly? Second, the setting we use

deals with coalitions and networks. Hence, the adaptation of properties like fairness

in Myerson (1977) is not straightforward as it would require to restate it both in

terms of coalitions and networks. This would have lengthened the list of properties

and these ones would have been less intuitive.

5 Relationship with existing allocation rules

The allocation rules presented in this paper are generalizations of the Jackson (2005)

player-based and link-based flexible allocation rules for network games to coalitional

network games in which players may also form coalitions. The fact that we opt

for a presentation in terms of Möbius transforms is mainly to avoid cumbersome

notation or lengthy expression and should not confuse the reader to remark the strict

equivalence of the Jackson allocation rules and the ones presented in this paper when

coalition structures play no role, i.e. if v(g, P ) = v(g, P ′) for all (g, P ) ∈ G × P ,

(g, P ′) ∈ G × P , P 6= P ′. In this case, partitions don’t affect the value and the

coalitional network game v is equivalent to a value function for network games and

our player-based and atom-based flexible allocation rules for coalitional network

games correspond to the player-based and link-based flexible allocation rules for

network games introduced by Jackson (2005).

We could also relate the player-based flexible coalitional network allocation rule

ψp with the classical Shapley value for cooperative game (with characteristic func-

tion). A cooperative game is a function c : 2N → R that assigns a worth c(S) to each

possible coalition S ∈ 2N . The set of possible cooperative games is denoted C. A

cooperative game c is additive if c(S∪T ) = c(S)+ c(T ) for all non-empty S, T ⊂ N ,

S ∩ T = ∅. The set of additive cooperative games is denoted C◦. A solution (or
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allocation rule) is a map Φ : C → Rn. The Shapley value ΦS is a solution that

satisfies Efficiency, Null Player, Symmetry and Linearity.

Efficiency c(N) =
∑

i∈N ΦS
i (c).

Null Player If for all S ∈ N \ i we have that c(S ∪ i) = c(S), then ΦS
i (c) = 0.

Symmetry ΦS(πc) = πΦS(c) with π a bijection from N to N .

Linearity ΦS(αc+ c′S(c) + Φ(c′), α ∈ R, c, c′ ∈ C.

The Shapley value ΦS is an additive cooperative game, i.e.∑
i∈S∪T

ΦS
i (c) =

∑
i∈S

ΦS
i (c) +

∑
i∈T

ΦS
i (c)

for all c ∈ C, S, T ∈ 2N \ ∅, S ∩ T = ∅. This amounts to write that for all c ∈ C :

ΦS(c) ∈ C◦ and ΦS is thus a projection from C to C◦. For all c ∈ C◦,ΦS(c) = c.13

The set of additive cooperative games appears to be the subspace consisting of

fixed points for solutions. One could apply this property (that a solution for an

additive game should be this game itself) to allocation rules for coalitional network

games and identify the set of fixed point games that are trivially their own solutions.

We can define an allocation rule Ψ : V → V◦, with V◦ the set of additive coalitional

network games. A coalitional network game v is additive if v(g ∪ g′, P ∨ P ′) =

v(g, P ) + v(g′, P ′) for all (g, P ), (g′, P ′) ∈ G × P \ {(g∅, P⊥)} such that g ∩ g′ = ∅
and P ∧ P ′ = P⊥. However, due to the semimodularity of (G × P ,�), an additive

coalitional network game would convey the same value to each and every element

of the lattice.

Proposition 4. If a coalitional network game v is additive, then

v(g, P ) = v(g′, P ′) for all (g, P ), (g′, P ′) ∈ G×P \ {(g∅, P⊥)}, (g, P ) 6= (g′, P ′).

In our setting, additive games are not the set of games whose trivial allocation

rule is the game itself, due to the semimodularity structure of (G × P ,�). The

relationship of our player-based flexible allocation rule to the Shapley value for

coalitional games is direct, provided two different adaptations. The first one relates

to our flexible approach. The complete or top structure being not necessarily the

13This property is also called the inessential game property.
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most efficient one, we have to deal with monotonic covers of games, which are

identical to the original game when this one is monotonic. Hence the relationship

to Shapley value bares on monotonic games. The second adaptation needed is

simply the expression of the Shapley value in terms of Harsanyi dividends : ΦS
i (c) =∑

S:i∈S ∆S(c)/|S| with ∆S(c) the Harsanyi dividend defined recursively by ∆S(c) = 0

if S = ∅ and ∆S(c) = c(S)−
∑

T⊂S ∆T (c), S 6= ∅. Dividends are shared equally across

the members of the coalition, which is exactly the case for our player-based flexible

allocation rule. Hence the correspondence is clear.
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Appendix

Proof of Proposition 1.

We have r(g∅, P⊥) = n− n+ 0 = 0 and for any (g, P ) ∈ A(G×P) : r(g, P ) = 1

since r(l, P⊥) = n− n+ 1 and r(g∅, Qij) = n− (n− 1) + 0.

Assume that the proposition holds for (g, P ) = (gN , {N}), i.e. r(gN , {N}) =

n − 1 + n(n − 1)/2. The elements (g, P ) covered by (gN , {N}) have one of the

following two forms : (gN \ l, {N}) or (gN , {N \ {i, j}, {i, j}}). In the first case,

r(gN \ l, {N}) = n − 1 + n(n − 1)/2 − 1 = r(gN , {N}) − 1 and in the second case

r(gN , {N \ {i, j}, {i, j}}) = n− 2 + n(n− 1)/2 = r(gN , {N})− 1. �

Proof of Proposition 2.

From Proposition 1 we have that (G×P ,�) is ranked by r(g, P ) = n− |P |+ |g|
for all (g, P ) ∈ G× P . Take any (g, P ), (g′, P ′) ∈ (G× P). Then,

r(g, P ) + r(g′, P ′) ≥ r(g ∩ g′, P ∧ P ′) + r(g ∪ g′, P ∨ P ′)

since |g| + |g′| = |g ∩ g′| + |g ∪ g′| and 2n − |P | − |P ′| ≥ 2n − |P ∧ P ′| − |P ∨ P ′|
because of the semimodularity of the partition lattice. �
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Proof of Theorem 1.

First we show that the atom-based flexible coalitional network allocation rule

defined by (4) satisfies all the properties. We have∑
(g,P )

∆g,P (v̂) = v̂(gN , {N}) = max
(g,P )∈G×P

v(g, P )

and thus∑
i∈N

ψa
i (g, P, v) = v̂(gN , {N})

since each atom consists of two players.

The atom-based flexible coalitional network allocation rule satisfies weak-linearity.

Consider any monotonic coalitional network games v and v′ in V , and scalars a ≥ 0

and b ≥ 0. Then av + bv′ is monotonic and coincides with its monotonic cover.

Hence,

ψa
i (g

N , {N}, av + bv′) =
∑

(g,P )∈G×P

∑
(ga,Pa)∈A(g,P )

i∈(ga,Pa)

∆g,P (av̂ + bv̂′)

2 |A(g, P )|

=
∑

(g,P )∈G×P

∑
(ga,Pa)∈A(g,P )

i∈(ga,Pa)

a∆g,P (v̂) + b∆g,P (v̂′)

2 |A(g, P )|

=aψa
i (g

N , {N}, v) + bψa
i (g

N , {N}, v′).

By a similar argument if av−bv′ is monotonic, we have that ψa
i (av−bv′) = aψa

i (v)−
bψa

i (v
′).

Equal treatment of vital atoms is easily checked to hold in (4).

Second, we verify that any allocation rule satisfying equal treatment of atoms,

weak linearity, and flexible coalitional network must coincide with the atom-based

flexible coalitional network allocation rule ψa on efficient coalitional networks. Let

v ∈ V and φ : G×P ×V → RN an allocation rule satisfying the claimed properties.

Given that φ is a flexible coalitional network allocation rule implies that φ(g, P, v) =

φ(gN , {N}, v̂) on efficient (g, P ) relative to v, and so it is enough to show that

φ(gN , {N}, v̂) is uniquely determined on an efficient coalitional network. By equation

(3) we have that

v̂ =
∑

(g,P )∈G×P

∆g,P (v̂)ug,P
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Let G− =
{

(g, P ) | ∆g,P (v̂) < 0
}

and G+ = (G× P) \G−. Hence,

v̂ =
∑

(g,P )∈G+

∆g,P (v̂)ug,P −
∑

(g,P )∈G−

∣∣∆g,P (v̂)
∣∣ ug,P .

By weak linearity, we have that φ
(
gN , {N}, v̂

)
is equal to

φ

gN , {N}, ∑
(g,P )∈G+

∆g,P (v̂)ug,P

− φ
gN , {N}, ∑

(g,P )∈G−

∣∣∆g,P (v̂)
∣∣ug,P


By weak linearity again, we obtain

φ
(
gN , {N}, v̂

)
=

∑
(g,P )∈G×P

∆g,P (v̂)φ(gN , {N}, ug,P ).

Since φ is a flexible coalitional network allocation rule then (gN , {N}) and (g, P )

take both the same value under the monotonic cover of ug,P for each (g, P ) ∈ G×P .

Finally, by equal treatment of vital atoms, the value is uniquely determined and thus,

φ = ψa. �

Proof of proposition 3.

We show that for each property in theorem 1, there is an allocation rule different

than ψa given by (4) that satisfies the remaining other properties.

• Remove Flexibility : for all v ∈ V and (g, P ) ∈ G × P efficient relative to

v, the allocation rule

ψi(g, P, v) =
∑

(g′,P ′)�(g,P )

 ∑
(ga,Pa)∈A(g′,P ′):

i∈(ga,Pa)

∆g′,P ′(v)

2|A(g′, P ′)|

 (10)

satisfies weak linearity, equal treatment of vital atoms but is not a flexible rule

because it does not depend on the monotonic cover of v and is calculated on

sub-coalitional network games (g′, P ′) of (g, P ) only. If v is non-monotonic,

ψi(g, P, v) is different from ψi(g
N , {N}, v̂).

• Remove Equal Treatment of Vital Atoms : for all v ∈ V and (g, P ) ∈
G× P efficient relative to v, the allocation rule

ψi(g, P, v) =
v̂(gN , {N})

n
(11)

is a flexible allocation rule that satisfies weak linearity but violates equal treat-

ment of vital atoms.
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• Remove Weak Linearity : Let v ∈ V and (g, P ) ∈ G × P . An atom

(ga, Pa) ∈ (g, P ) is a null atom for v in (g, P ) if⋃
(g′,P ′)∈A(g,P )\(ga,Pa)

(g′, P ′) ≺ (g, P )

and

v(g, P ) = v

 ⋃
(g′,P ′)∈A(g,P )\(ga,Pa)

(g′, P ′)

 .

For all the other cases, the atoms are non-null. Denote by NA(g, P, v) the set

of atoms (g′, P ′) ∈ A(g, P ) such that (g′, P ′) is non-null for v in (g, P ).

For all v ∈ V and (g, P ) ∈ G× P efficient relative to v, the allocation rule

ψi(g, P, v) =
∑

(g′,P ′)∈G×P

 ∑
(ga,Pa)∈A(g′,P ′):

i∈(ga,Pa)

∆g′,P ′(v̂)

2|NA(g′, P ′)|

 (12)

is a flexible allocation rule that satisfies equal treatment of vital atoms (all

atoms are non-null in unanimity coalitional network games) but violates weak

linearity. Weak linearity is violated when the sum of the relative number of

non-null atoms for the games av and bv′ to which a player i belongs is not

the same as the relative number of non-null atoms for the game av + bv′ (or

av − bv′) to which player i belongs.

�

Proof of Theorem 2.

The uniqueness part mimics the one for theorem 1 with a constant proportional

rescaling at the end. We now check that the allocation rule satisfies all properties.

Let (g, P ) ∈ G × P and v ∈ V and (g′, P ′) ∈ G × P efficient relative to v such

that v(g′, P ′) 6= 0. The allocation rule

ψa
i (g, P, v) =

v(g, P )

v̂(gN , {N})
∑

(g′,P ′)∈G×P

 ∑
(ga,Pa)∈A(g′,P ′):

i∈(ga,Pa)

∆g′,P ′(v̂)

2|A(g′, P ′)|

 (6)

satisfies all the properties stated in the theorem. First, it is a flexible rule as it

depends on the monotonic cover and on the complete structure to be calculated.

Equal treatment of vital atoms is satisfied as the only difference between formula
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(4) and (6) is the multiplicative constant v(g,P )
v̂(gN ,{N}) , hence equal atoms are treated

equally. The multiplicative constant shows that proportionality is also satisfied.

Last, consider any monotonic coalitional network games v and v′ in V , and scalars

a ≥ 0 and b ≥ 0. Then av+bv′ is monotonic and coincides with its monotonic cover.

Hence, (av+bv′)(gN , {N}) = ̂(av + bv′)(gN , {N}) so that the multiplicative constant

in formula (6) is

(av + bv′)(gN , {N})
̂(av + bv′)(gN , {N})

= 1

and weak linearity is proved using precisely the same steps as in the proof of

theorem 1. �

Proof of Proposition 4.

We first show the following lemma that applies to general semimodular lattices.

Lemma 1. Let (L,∨,∧) be a lattice and v : L → R be an additive function such

that v(x) + v(y) = v(x ∧ y) + v(x ∨ y) for all x, y ∈ L. If (L,∨,∧) is semimodular,

then v is constant.

Proof. If L is semimodular with cardinality at least 5, it must contain 5 elements

a, b, c, e, f ∈ L such that

a ∨ b = b ∨ c = e

a ∧ b = b ∧ c = f

a < c.

Then for every t ∈ [a, c], an additive function v has to satisfy

v(t) + v(b) = v(t ∧ b) + v(t ∨ b) = v(f) + v(e).

Hence v(t) is constant on the interval [a, c]

Since the lattice of coalitional networks is semimodular, any additive function

defined on it has to be constant by the previous lemma. �
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