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Abstract—Data Mashup is a special class of mashup ap-
plication that combines information on the fly from multiple
data sources to respond to transient business needs. Mashing
up data requires an important programming skill on the side
of mashups’ creators, and involves handling many challenging
privacy and security concerns raised by data providers. This
situation prevents non-expert users from mashing up data at
large. In this paper, we propose a declarative approach for
mashing-up data. The approach allows data mashup creators
to create data mashups without any programming involved,
they just need to specify “declaratively” their data needs.
The approach will then build the mashups automatically while
taking into account the data’s privacy and security concerns.

Keywords-Privacy, Data Mashup, DaaS Web Services.

I. INTRODUCTION

Mashup is a Web application that integrates data, com-
putation and UI elements provided by several applications
to create on-the-fly new applications. HousingMaps.com is
an example of a Web site that “mashes-up” two other
Web sites: CraigsList and Google Maps; it takes housing
information from CraigsList and displays them on Google’s
maps. The ProgramableWeb.com site lists more than /4800/
online mashups created by Web users.

Data mashup is a special class of mashup application that
combines information from several data sources (typically
provided through Web Services; this type of services is
known as DaaS Data-as-a-Service Web services [1], [2])
to meet user requests [3]. Data mashup has become so
popular over the last few years; its applications vary from
addressing transient business needs in modern enterprises [4]
to conducting scientific research in e-science communities
[3]. However, in spite of its popularity, current data mashup
applications are still limited to very primitive information
integration. This is due to many challenges introduced by
data mashup both for mashup users (i.e. mashup’s creators)
and data providers (i.e. data service providers). On the
side of mashup users, mashing-up data involves carrying
out many challenging tasks including: selecting the data
services that are relevant to user’s needs, mapping their
inputs and outputs to each other (and probably adding some
mediation services/functions when inputs/outputs don’t fit
each other) and performing some processing on intermediate

results (e.g. joining the outputs of two services, projecting
some attributes, etc). In addition, data mashup are usually
written in some procedural programming languages such as
JavaScript, and the code rarely separates the user interface
layer (dynamic HTML) from the data integration layer.
These challenging tasks hinder average users from building
data mashup applications at large. On the side of data
providers, mashing-up data raises many concerns related to
data privacy and security [5]. Indeed, data providers are often
reluctant to engage in data mashup scenarios for the fear that
their data may be disseminated to untrusted parties or used
for unintended purposes.

A. Motivating Example

Let us assume the following scenario from the healthcare
domain. Assume the physician Alice would like to study
the effects of a given medication on the cholesterol level
of patients. Assume she has at her disposal the services in
Table-I; these services access and manipulate the electronic
healthcare records (EHRs) of patients and are provided by
different healthcare facilities in a private healthcare collab-
oration environment.

Table I
AVAILABLE DATA WEB SERVICES

Service Semantics
S1($a, ?b) Returns the patients “b” that have been

administered a given medication “a”S2($a, ?b)
S3($a, ?b, ?c) Returns the personal information (name “b”

and address “c”) about a given patient “a”
S4($a, ?b, ?c) Returns the tests (“b” their types, “c” their

value) performed by a given patient “a”
S5($a, ?b) Returns the diseases “b” of a given patient “a”
S6($a, ?b) Returns the diseases “b” against which a given

patient “a” is vaccinated

Assume that the medical and the personal information of
the patient Cathy are accessed by the services from above.
Cathy was prompted at each healthcare facility to enter her
privacy preferences. Cathy has agreed to share the results
of her medical tests and diseases, but not personal informa-
tion such as name and address, with third-party scientific
organizations for research purposes. Mike, another patient,



has agreed to share all his personal and medical information
with scientific organizations for research purposes.

Alice can use the data services in Table-I to meet her
needs as follows: she invokes S1 and S2 with the given
medication; then she invokes S3 with the obtained patients
to retrieve their personal information. Then she invokes S4

to retrieve the tests whose type is Cholesterol Test.

B. Challenges

Alice is faced to the following challenges in this example.
First, she needs to delve into the data service space and
understand the semantics of each individual service in order
to identify the services that may contribute to the resolution
of her request. Many services may have the same input’s
and output’s types, but completely different semantics. For
example, the services S5 and S6 have the same input
and output (Patient and a Disease, respectively), the first
returns the patient’s diseases while the second returns the
diseases against which the patient is vaccinated. Second,
Alice needs to select the participant services and build the
data mashup application. She should realize that the services
S1 through S4 are necessary for her needs, figure out their
execution order and construct the mashup’s execution plan.
For example, she should realize that S1 and S2 can be
executed in parallel and write some programming code to
unify their outputs (to eliminate redundant tuples); then she
should map the obtained output to the inputs of the services
S3 and S4 (she should realize that these two services can be
executed in parallel) and write some programming code to
join their outputs. The output of the join will be the output
of the constructed data mashup. Non-expert users like Alice
(a physician) are not able to conduct the previous tasks that
require important technical and programming skills.

In addition to these challenges, data in data mashup
application are often private and sensitive. Its usage is often
subject to privacy and security constraints imposed by data
providers. For example, the lab A (S4’s provider) may
specify that the test information can be accessed “uncon-
ditionally” by some healthcare authority; “conditionally” by
a scientific organization conducting some research (i.e. the
purpose for which the tests are requested). An example of
conditions could be the respect of patients’ preferences as
to the disclosure of their data. It may also specify that the
tests are “forbidden” for an organization needing them for
doing publicity.

C. Contributions

In this paper we propose a declarative and privacy preserv-
ing approach for mashing up DaaS web services. Based on
“declarative” mashup queries over domain ontologies and
a set of privacy and security polices provided by service
providers, our proposed data mashup system generates de-
tailed descriptions of the mashup that fulfills those queries

and preserves data privacy. We summarize bellow our major
contributions in this paper:

First, we propose to model DaaS services as RDF views
over domain ontologies. An RDF view allows capturing the
semantics of the associated DaaS service in a “declarative”
way based on concepts and relationships whose semantics
are formally defined in domain ontologies. Second, we
propose to use query rewriting techniques for mashing-up
data. The use of these techniques to mashup data enables
average users to mashup data as all what they need to do
is just specifying their mashup queries declaratively. Third,
we propose a privacy aware data mashup model. Our model,
given a set of privacy policies defined on domain ontologies,
rewrites received mashup queries to accommodate pertain-
ing privacy conditions (from privacy policies) before their
resolution by the core mashup algorithm.

The remainder of this paper is organized as follows.
In Section II, we compare our approach to related works.
In Section III, we model data mashup queries, data web
services and privacy policies over domain ontologies. In
Section IV, we present our query rewriting based model
to construct data mashups. In Section V, we evaluate the
proposed approach in the healthcare application domain.
Finally, Section VI summarizes and concludes the paper.

II. RELATED WORKS
A. Mashup Systems and Tools

Several mashup editors have been introduced by the
industry with the objective of making the process of mashups
creation as simple and “programmable-free” as possible.
Examples include Yahoo Pipes [6], Google Mashup Editor
[7], Intel Mash Maker [8]. These products allow average
users to create mashups without any programming involved;
the users need just to drag and drop services, operators, feeds
and/or user inputs and to visually connect them. However,
the knowledge required from users is not trivial because
they are still expected to know exactly what the mashup
inputs and outputs are, and to figure out all the interme-
diate steps needed to generate the desired outputs from
the inputs. This includes selecting the needed services/data
sources, mapping their inputs and outputs to each other and
probably adding some mediation services/functions when
inputs/outputs don’t fit each other. Compared to these indus-
trial mashup editors and to other academic mashup systems
[9], [10], [11], users of our system are not required to
select the services manually, connect them to each other
and drop code (in JavaScript) to mediate between incompat-
ible inputs/outputs of involved services. This is completely
carried out by the system in a transparent fashion. That is,
our approach is declarative; users need just to specify the
information they need without specifying how this infor-
mation is obtained. Furthermore, although data privacy and
security are two crucial issues that must be addressed in
data integration applications, these approaches have not, as



far as we are aware, provided mechanisms and solutions to
address data privacy and security concerns, whereas in our
data mashup system data privacy and security are considered
as central issues.

B. Web Service Composition

A considerable body of recent work addresses the problem
of composition (or orchestration) of multiple Web services
to carry out a particular business task, e.g. [12], [13],
[14]. However, these works consider only SaaS Web ser-
vices (Software-as-a-Service Web services) and focus only
on describing workflow-oriented applications, rather than
applications coordinating data obtained from multiple data
sources exported as Web services as addressed in this paper.
In these approaches, the exploited composition algorithms
(which are largely inspired by AI planning techniques)
regard services as actions and therefore assume that the
capability of a Web service (i.e. a SaaS Web service) can
be modeled by representing the service’s inputs, outputs,
preconditions and effects (IOPEs) [15]. This assumption
makes these approaches inapplicable to DaaS Web services
whose capabilities (i.e. semantics) can only be represented
by capturing the semantic relationships between the service’s
inputs and outputs in relation with the schemes of underlying
data sources. In contrast, we model services are RDF views
over domain ontologies to capture the semantic relationships
between their inputs and outputs sets. We exploit these views
to mashup available DaaS Web services on the fly. Our
solution can be applied to both types of Web services (i.e.
SaaS and DaaS services).

III. MODELING ISSUES

A. Data Mashup Queries

In the proposed approach, mashup creators formulate
their data mashup queries against a Domain Ontology Ω.
We consider the class of conjunctive queries with arithmetic
comparisons expressed in SPARQL query language over
RDFS domain ontologies. Formally, a mashup query is
defined as follows:

Definition 1 (Mashup Queries)

Q(X) : − < G(X,Y ), C >

where Q(X) is called the head of the query; it has the
form of a relational predicate. X and Y are called the
head (or distinguished) and existential variables, respec-
tively. G(X,Y ) is called the body of the query; it contains
a set of RDF triples where each triple is of the form
(subject.property.object). C is a set of constraints on the
body variables, each constraint is of the form: x f a where
x is variable, f ∈ {=, >, <, ≤, ≥} and a is a constant. �

Figure1 (Part-A) shows the graphical representation of our
running example query Q1. A query can be seen as a graph

with two types of nodes: class and literal nodes. Class-
nodes refer to classes in Ω (e.g., M , P and T are class-
nodes). They are linked via object properties and represent
existential variables in the query. Literal nodes represent
data-types (e.g., x, w, z). They are linked with class nodes
via data-type properties. Literal nodes may correspond to
both existential and distinguished variables in a query. The
blue ovals in Figure1 (Part-A) represent concepts in Ω (e.g.
Medication, Patient and Test). The variables preceded by
the symbol $ represent the mashup’s inputs (e.g. x) and the
variables preceded by ? represent the mashup’s outputs.

B. Data Web Services

Contrary to SaaS Web services, the semantics of a Data
Web service (a.k.a. DaaS Web service) cannot be captured
based solely on its inputs and outputs, preconditions and
effects, rather this requires capturing the semantics of the
relationship that holds between its inputs and outputs. For
this reason, we model DaaS services as RDF Parameter-
ized Views (RPV s) over domain ontologies Ω. RPVs use
concepts and relations from Ω to capture the semantic rela-
tionships between input and output sets of a DaaS service.

Formally, a DaaS Web service Si is described over a Ω
as a predicate Si($Xi, ?Yi) : − < RPVi(Xi, Yi, Zi), Ci >,
where:

• Xi and Yi are the sets of input and output variables
of Si, respectively. Input and output variables are also
called as distinguished variables. They are prefixed with
the symbols “$”and “?” respectively.

• RPVi(Xi, Yi, Zi) represents the semantic relationship
between input and output variables. Zi is the set of ex-
istential variables relating Xi and Yi. RPVi(Xi, Yi, Zi)
has the form of RDF triples where each triple is of the
form (subject.property.object).

• Ci is a set of data value constraints expressed over the
Xi, Yi or Zi variables.

Figure1 (Part-B) shows the graphs corresponding to the
RPVs of the services in the running example. An RPV
requires a particular set of inputs (the parameter values) in
order to retrieve a particular set of outputs; outputs cannot
be retrieved unless inputs are bound. For example, one
cannot invoke the service S1 from above without specifying
a medication for which it is needed to learn the patients
that have been taking it. Therefore, a parameterized view
indicates in its head which parameters are inputs, and which
parameters are outputs.

C. Privacy Policies

In our data mashup model, upon publishing a new DaaS
service to the mashup server, service providers provide also
the privacy policies regulating the usage of their published
services. A privacy policy is a set of rules specifying to
whom the provided data may be disclosed (a.k.a recipients)
and how the data may be used (a.k.a. purposes). A privacy
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Figure 1. Part-A: The Query of the Running Example, Part-B: the RDF Views of Available Data Services

policy may further personalize data disclosures by defining
conditions under which a data item is disclosed. For exam-
ple, the medical test information may be disclosed to given
recipient if patients have opted in to approve the disclosure.

We suppose that privacy policies are defined over domain
ontologies. For each datatype property of a data concept
within a domain ontology, privacy rules specify the recipi-
ents that have access to the value of the property, the purpose
for which the access is granted, and a set of conditions that
must be met.

Formally, a privacy rule is a 4-tuple < R,P, S, PC >,
where: R is the class of recipients for which the authoriza-
tion is specified, P is the purpose for which the data can
be accessed, S is the data class whose data properties will
be accessed, PC is a set of Property-Conditions (Pi, Ci)
couples; the semantics of each couple is that the property
Pi of the concept S can be accessed if the set of conditions
Ci is satisfied.

Each condition Ci is expressed against concepts and
relations in domain ontology using RDF queries (e.g. using
SPARQL query language). The Rule-1 below specifies that
personal data such as name can be released to a Researcher
for the purpose of Conducting Research, provided that the
data subject (i.e. the patient) has consented to this disclosure
(the same condition applies to the property hasAddress).
The condition is specified using the ontological concepts
Patient and PatientPrivacyPrefernces from Ω (the concept
PatientPrivacyPrefernces is defined in the considered do-
main ontology to model the user’s privacy preferences as to
the disclosure of his personal data, e.g. name, address, etc).

Rule-1:

[R :Researcher,
P :Research,
S :Patient,
PC:{<hasName, "?P rdf:type O:Patient,

?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefName ‘yes’">,

<hasAddress, "?P rdf:type O:Patient,
?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefAddress ‘yes’">,

}
]

The Rule-2 below specifies that the property hasValue
of the concept Test may be disclosed to a Researcher for
conducting research provided that the patient has consented
to this disclosure. Note that the patient’s privacy preferences
regarding his medical tests are modeled by the ontological
concept TestPrivacyPrefernces, the object property hasTest-
PrivacyPreferences links the concept Patient to TestPriva-
cyPrefernces in Ω.
Rule-2:

[R :Researcher,
P :Research,
S :Test,
PC:{<hasValue, "?P rdf:type O:Patient,

?P hasTestPrivacyPreferences ?TP,
?TP rdftype O:TestPrivacyPrefernces,
?PP PrefValue ‘yes’">,

}
]

IV. MASHING UP DATA SERVICES

In this section, we describe our privacy-preserving data
mashup model. Our model consists of three steps: (i) rewrit-
ing the mashup query to accommodate pertaining privacy
constraints, (ii) rewriting the modified mashup query in
terms of available data web services, and (iii) constructing
the data mashup plan.

A. Query Rewriting to Accommodate Privacy Constraints

In this step declarative data mashup queries are rewritten
to accommodate pertaining privacy conditions from data
privacy policies. Since privacy constraints have the forms
of RDF queries, they can easily be incorporated in the
posed data mashup queries. For example, SPARQL allows
for the incorporation of such constraints at the datatype
property level by using the OPTIONAL construct. The
semantics of the OPTIONAL construct is as follows: in
a conjunctive RDF query, all query variables must bind
to values in the matched RDF graph in order for the



SELECT ?y,?w,?z,?v

WHERE {

                 ?P  rdf:type  Patient

                 ?P  hasSSN ?y

                 ?P  hasName ?w

                 ?P  hasAddress ?z

                 ?P  takes ?M

                 ?M rdf:type Medication

                 ?M name $x

                 ?P hasTest ?T

                 ?T rdf:type Test

                 ?T type "Cholesterol"

                 ?T hasValue ?v

                 }

SELECT ?w,?z,?v

WHERE {

                 ?P  rdf:type  Patient

                 ?P  hasPrivacyPreferences ?PP

                 ?PP rdf:type PatientPrivacyPreferences

                 ?PP purpose ``Scientific Research" 

                 ?PP recipient ``Researcher" 

                 ?P  hasSSN ?y

                 OPTIONAL {?P  hasName ?w

                                         ?PP hasPrivacyPrefName``yes"} 

                 OPTIONAL {?P  hasAddress ?z

                                         ?PP hasPrivacyPrefAddress``yes"}  

                 ?P  takes ?M

                 ?M rdf:type Medication

                 ?M name $x

                 ?P hasTest ?T

                 ?T rdf:type Test

                 ?T type "Cholesterol"

                 ?P hasTestPrivacyPreferences ?TP

                 ?TP rdf:type TestPrivacyPrefernces

                 OPTIONAL {?T hasValue ?v

                                         ?TP PrefValue``yes"}

                 ?TP purpose ``Scientific Research" 

                 ?TP recipient ``Researcher" 

                 }

SELECT ?w,?z,?v,?w1,?z1,?v1

WHERE {

                 ?P  rdf:type  Patient

                 ?P  hasPrivacyPreferences ?PP

                 ?PP rdf:type PatientPrivacyPreferences

                 ?PP purpose ``Scientific Research" 

                 ?PP recipient ``Researcher" 

                 ?P  hasSSN ?y

                 ?P  hasName ?w

                 ?PP hasPrivacyPrefName ?w1 

                 ?P  hasAddress ?z

                 ?PP hasPrivacyPrefAddress ?z1  

                 ?P  takes ?M

                 ?M rdf:type Medication

                 ?M name $x

                 ?P hasTest ?T

                 ?T rdf:type Test

                 ?T type "Cholesterol"

                 ?P hasTestPrivacyPreferences  ?TP

                 ?TP rdf:type TestPrivacyPrefernces

                 ?T hasValue ?v

                 ?TP PrefValue ?v1

                 ?TP purpose ``Scientific Research" 

                 ?TP recipient ``Researcher" 

                 }A B C

Figure 2. Part-A shows the original query (Q1), Part-B shows the modified query with the optional constructs, Part-C shows the modified query in the
conjunctive form

query to return results. If a query variable is defined as
optional (i.e. it is defined inside an OPTIONAL block),
then the query may still be resolved if that variable is left
unbound (i.e., when some RDF triples are missing in the
matched graph.). In this case, Null values will be returned for
unbound variables. Privacy can be enforced at the datatype
property level (of each data concept from Ω) by putting
each datatype property that is subject to privacy conditions
along with the conditions that must be met to disclose the
property value inside the same OPTIONAL block. If these
conditions are false, the datatype property will be withheld
independently of other datatype properties requested in the
query. For example, the mashup query Q1 from above can
be rewritten to include the privacy constraints specified in
Rules-1 and Rule-2 as follows (Parts A and B of Figure 2
show Q1 before and after the modification respectively): (i)
the datatype property hasSSN is prohibited for Researchers
and as a result the distinguished variable ?y is deleted
from the SELECT clause, (ii) the property hasName can be
accessed by Researcher for conducting scientific researches
provided the patient’s consent; the property hasName along
with its privacy condition (?PP hasPrivacyPrefName “Yes”)
are put inside an OPTIONAL block. If the property
hasPrivacyPrefName does not bind to the value “yes”, the
variable ?w will be assigned the Null value independently
of the other datatype properties in Q1. The same applies to
the properties hasAddress and hasValue (the latter represents
the medical Test’s value). However note that in data mashup
applications mashup queries are not matched directly against
data, rather they are only accessible through a set of data
services and therefore mashup queries need to be rewritten in

terms of available services. In the next section we propose an
RDF-oriented query rewriting algorithm to rewrite the data
mashup query in term of DaaS Web services. Our RDF query
rewriting algorithm handles conjunctive queries (i.e. all RDF
triples in the query are “implicitly” linked by the AND
operator). The presence of the OPTIONAL constructs
in the modified query makes it a non-conjunctive one. To
keep the mashup query processable by the query rewriting
algorithm, all privacy conditions are added in the conjunctive
form to the mashup query but without enforcing any of the
specific data values that are used in those conditions.

For each datatype property p that is subject to privacy
conditions Cpi

, we conjunctively extend the mashup query
Q with RDF triples representing Cpi without enforcing
specific data value constraints (i.e. equality and order data
value constraints, e.g. x = 10). For example, the datatype
property hasName in Q1 has the following privacy
condition:

<<hasName, "?P rdf:type O:Patient,
?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefName ‘yes’">,} ]

The condition prescribes that the instance of the
class PatientPrivacyPrefernces that is associated
with the patient whose name is requested in the
query must have the value “yes” for its datatype
property hasPrivacyPrefName. Therefore, Q1 is
rewritten to project out the value of the property
hasPrivacyPrefName as follows:



<<hasName, "?P rdf:type O:Patient,
?P hasPrivacyPreferences ?PP,
?PP rdftype O:PatientPrivacyPrefernces,
?PP hasPrivacyPrefName ?w1 ">,} ]

The modified query does not enforce any specific value for
the newly added property hasPrivacyPrefName. It just
binds it to a new distinguished variable w1 (i.e., variable
appearing in the query head). Specific value enforcement,
such as the constraint w1=“yes”, will be carried out in a
later step, e.g. the constraint w1=“yes” will be tested in the
later step to decide whether or not the patient’s name shall
be disclosed to the recipient. The same applies to the rest
of datatype properties that are subject to privacy constraints
in Q1. The modified query at the end of this step is shown
in Figure 2 (Part-C). Q1 then becomes a conjunctive RDF
query that can be rewritten in terms of available services.

B. Mashup Query Rewriting

In a previous work [17] we proposed an efficient RDF
query rewriting algorithm. Given a data mashup query Q and
a set of DaaS services represented by their corresponding
RPV s V = v1, v2, vi, the algorithm rewrites Q as a
composition of DaaS services whose union of RDF graphs
(denoted to by GV ) covers the RDF graph of Q (denoted to
by GQ).

The rewriting algorithm has two phases:
1) Phase-I: Finding Relevant Sub-Graphs: In the first

phase, our data mashup system compares GQ to every RPV
vi in V and determines the class nodes and object properties
in GQ that are covered by vi. The system stores information
about covered class nodes and object properties as a partial
containment mapping in a mapping table. The mapping table
points out the different possibilities of using an RPV to
cover parts of GQ.

Example: Let us illustrate this phase using our running
example. We consider the following candidate services:

• The Services S1 and S2- S1 has a matching object
property takes. The class nodes S1.P and S1.M linked
by this property map to the corresponding class nodes
in Q1 (i.e. to Q1.P and Q1.M ). The functional data-
type properties of the concepts Patient and Medication
are projected by S1 (i.e. they correspond to distin-
guished variables in S1). Therefore S1 is considered
as covering the object property takes. The covered
property takes(Q1.M , Q1.P )is inserted in the mapping
table (Table 2). The same discussion applies to S2.

• Service S3- S3 has a class node S3.P that can be
matched with Q1.P . All the data-type properties of
Q1.P that bound to distinguished variables in Q1 also
bound to distinguished variables in S3. Furthermore,
Q1.P is involved in object properties in Q1. However,
S3 has the functional property hasSSN of Patient bound
to a distinguished variable in its RDF view. Therefore,
S3 can be used to cover Q1.P .

• Service S4- has a matching object-property hasTest.
The class-nodes linked by hasTest S4.P and S4.T
map to the corresponding classes in Q1 (Q1.P and
Q1.T ). S4 binds the functional properties of Patient
(i.e. hasSSN) to distinguished variables. The properties
type and hasValue of Test are not functional. Therefore,
S4 must also cover the class-node Q1.T , which is
possible. The covered class-node and object-property
are inserted in the partial mapping table.

• Services S8 and S9- S8 in Figure 3 has a match-
ing object-property hasPatientPrivacyPreferences. The
class-nodes linked by this property map to the corre-
sponding class-nodes in Q1. S8 does not bind the func-
tional properties of the concept PatientPrivacyPrefer-
nces to distinguished variables and therefore it has to
cover the class-node Q1.PP as well which is possible.
The same discussion applies to S9 in Figure 3 with
replacing the object property hasPatientPrivacyPrefer-
nces by hasTestPrivacyPreferences and the class-node
Q1.PP by Q1.TP .
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Figure 3. Two Additional DaaS Services

Service Covered classnodes & properties
S1($x, ?y) takes(P,M)

S2($x, ?y) takes(P,M)

S3($y, ?w, ?z) P (y, w, z)

S4($y,‘cholesterol’, ?v) hasTest(P, T )T (′cholesterol′, v)

S8($y,‘Researcher’, hasPatientPrivacyPreferences(P, PP )

‘Research’ ?w1, ?z1) PP (‘Researcher’,‘Research’, w1, z1)

S9($y,‘Researcher’, hasTestPrivacyPreferences(P, TP )

‘Research’ ?v1) TP (‘Researcher’,‘Research’, v1)

Table II
MAPPING TABLE
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Figure 4. The Data Mashup’s Plan

2) Phase-II: Generating DaaS service Compositions:
After the construction of the mapping table in the
previous phase, the mashup system explores the different
combinations from that table. It considers the combination
of disjoint sets of covered object properties and class
nodes. A combination is said to be a valid rewriting of
Q (also a valid composition) if (1) it covers the whole
set of class-nodes and object-properties in Q, and (2) it
is executable. A composition is said to be executable if
all input parameters necessary for the invocation of its
component services are bound or can be made bound by
the invocation of primitive services whose input parameters
are bound.

Example- Continuing with the running example, there
are two possible combinations C1 = {S1, S3, S4, S8, S9}
and C2 {S2, S3, S4, S8, S9 }. Let us now consider the
combination C1; only S1($x, ?y) can be invoked at the
beginning as its input parameter is bound. After the
invocation of S1, the variable y become available; hence,
the services S3, S4, S8, S9 become invokable. Consequently
C1 is executable and is considered as a valid composition.
The same applies to C2.

C. Constructing the Mashup

1) Arranging Services in the Mashup: Component ser-
vices in a composition must be mashed up in a particular
order depending on their access patterns (i.e. the ordering
of their inputs and outputs). If a service Sj has an input x
that is obtained from an output y of Si then Sj must be
preceded by Si in the mashup plan; we say that there is
a dependency between Si and Sj (Sj depends on Si). We
define a dependency graph as a directed acyclic graph G in
which nodes correspond to services and edges correspond
to dependency constraints between component services. The
mashup plan must reflect G. Figure4 shows the mashup plan
for C1 and C2 (they are superposed); there is a dependency
constraint between the service S1 and all of the services S3,
S8, S4 and S9, therefore these later services are preceded
by S1 in the plan (the same applies between S2 and the
services S3, S8, S4 and S9).

2) Enforcing Privacy Constraints: In previous steps, the
datatype properties that participate in validating privacy con-

straints were projected out along with the initial data items
requested in the original mashup query Q. In this step we
augment the mashup plan with privacy filters that take into
account the values of these additional datatype properties
to evaluate the privacy constraints for individual datatype
properties that are subject to privacy constraints in the initial
query. Null values will be returned for datatype properties
whose privacy constraints evaluate to False. Privacy filters
are added on the outputs of services returning some privacy
sensitive data. The semantics of a privacy filter is defined as
follows:

Let t (resp., tp) be a tuple in the output table T (resp.,
Tp) of a service S returning some privacy sensitive data,
t[i] and tp[i] be the projected datatype properties that are
subject to privacy constraints, and constraint(t[i]) be
a boolean function that evaluates the privacy constraints
associated with t[i]. A tuple tp is inserted in Tp as follows:

For each tuple t ∈ T
For i = 1 to n /* n is the number of columns in T */

if const(t[i]) = true Then tp [i] = t[i]
else tp [i] = null

Discard all tuples that are null in all columns in Tp

Continuing with our running example, as Figure 4, two
privacy filters F1 and F2 are added on the outputs of the
services S3 and S4 respectively. The filter F1 computes the
values of w and z as follows:
w = w if w1 = ‘yes’, otherwise w = null
z = z if z1 = ‘yes’, otherwise z = null

The filter F2 computes the values v as follows:
v = v if v1 = ‘yes’, otherwise v = null
The obtained mashup plan after the insertion of privacy

filters represents the data mashup that will be returned to
the user.

V. EVALUATION

To illustrate the viability of our approach to data mashup,
we applied it to the healthcare domain. We were provided
with access to /411/ medical Web services defined on top of
/23/ different medical databases storing medical information
(e.g. diseases, medical tests, allergies, etc) about more than
/30,000/ patients. The usage of these medical data services
was conditioned by a set of /47/ privacy and security rules.
For each patient in these databases, we have randomly gener-
ated data disclosure preferences with regard to /10/ medical
actors (e.g. researcher, physician, nurse, etc) and different
purposes (e.g., scientific research). These preferences are
stored in an independent database and accessed via 10 Web
services, each giving the preferences relative to a particular
type of medical data (e.g., ongoing treatments, Allergies).

We conducted a set of experiments to measure the cost
incurred in privacy preservation. We considered two sets of



mashup queries. The first one included queries about a given
patient, each with a different size: Q1 requests the “Personal
information” of the patient Alice (1 class-node in the query
graph), Q2 requests the “Personal information”, “Allergies”
and “Ongoing Treatments” of Alice (3 class-nodes), and Q3

requests the “Personal information”, “Allergies”, “Ongoing
Treatments”, “Cardiac Conditions” and “Biological Tests” of
Alice. (5 class-nodes). The second set uses the same queries
Q1, Q2 and Q3 but for all of patients living in Lyon. All
queries were posed by the same actor (researcher) and for the
same purpose (medical research). Figure 5 depicts the results
obtained for the queries in sets 1 and 2,(the time shown
includes both the mashup construction time and the mashup
execution time). Set-2 (as opposed to Set-1) amplifies the
cost incurred by set-1 at the mashup “execution phase” by a
factor equals to the number of returned patients. The results
for Set 1 show that privacy handling adds only a slight
increase in the query rewriting time (note that the mashup
execution time is neglected for one patient). This is due to
the fact that the number of services used to retrieve privacy
preferences is limited compared to the number of services
used to retrieve data (10 versus 411 in our experiments). The
results for Set 2 show that the extra time needed to handle
privacy in the added privacy filters is still relatively low if
compared to the time required for answering queries without
addressing privacy concerns.
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Figure 5. The Experimental Results

VI. CONCLUSION
In this paper, we have presented a declarative and privacy

preserving approach to mashup data Web services on the
fly while preserving data privacy. We modeled data Web
services as parameterized RDF views over domain ontolo-
gies; defined views are then used to annotate the service
descriptions files (e.g. WSDLs files). We proposed to use
query rewriting techniques to rewrite data mashup queries
in terms of available data Web service. Specifically, mashup
queries are first modified to accommodate data privacy
constraints from privacy policies; then are rewritten in terms
of available services using an RDF-oriented query rewriting
algorithm. We applied the proposed approach to mashup
/411/ data Web services from the healthcare application
domain; the obtained results are very promising. As a future

work, we intend to test the proposed approach in different
application domains like the e-Government and e-Tourism.
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