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Abstract—In an autonomous wireless sensor environment, self-
organization of the nodes is essential in order to achieve network
wide characteristics. In wireless autonomous environment, we
believe connectivity in wireless network can be increased and
overall average path length can be reduced using beamforming
and biologically inspired algorithms. “The emergence of system-
wide functionality from simple local interactions between in-
dividual entities” [1] inspires us to achieve our current goal.
Recent researches performed in direction of beamforming in
wireless networks mostly assume knowledge of network with the
heterogeneous [2] or hybrid deployment [3]. We propose that
without the knowledge of the global environment or introduction
of any special features, average path length can be reduced with
the help of inspirations from the nature. As well as the number
of network components can be reduces in a sparsely connected
network. We further support our work with results and show
that average path length and the number of sub-components can
be reduced using very simple local rules and without the full
network knowledge.

Index Terms—Autonomous communication, Scale free net-
work, Beamforming, Bio-Inspired, Lateral Inhibition, Flocking,
Centrality

I. INTRODUCTION

Decades of research and vast implementation of wireless
networks [4] in both industrial and academic research has
led wireless networks grow tremendously with the need of
manageability and scalability. Studies performed on wireless
networks have also brought out performance issues with the
increase in the size of network. Due to manageability, scaling
and need of achieving better performance of network, it is
most important that nodes are autonomous. Researches have
proved that this not only helps in scalability and manage-
ability but also helps in achieving global consensus using
local information and the information available with one-hop
neighbors leading to cost efficient topology deployment and
maintenance. Due to the need of autonomous behavior of the
nodes these models were mostly decentralized and inspirations
from nature was used.

Inspired by the experimental work of Stanley Milgram
[5], over a decade ago, Watts et al [6] proposed that the
average path length of a regular network could be reduced
by introducing few long-range links within the network and
developed the concept of small world networks. They proved
that by rewiring few connections the average path length can
be reduced considerably while the clustering coefficient can

mostly be preserved. Many researches were since involved in
the direction of applying small world concepts to networks in
order to address scaling and performance issues [7], [8], [9].

As discussed, Watts et al’s work was used to reduce the
average path length of the network by introducing shortcuts. In
wireless networks, however, these shortcuts can be introduced
in many ways. Firstly, by using directional antenna with the
power of the beam same as that of omnidirectional beam. Sec-
ondly, by increasing the omnidirectional transmission range of
the node thereby causing early death of the node. Thirdly,
by introducing special nodes with higher omnidirectional
transmission range deterministically causing the network to
be heterogeneous [2]. Fourthly, by introducing few long wired
links making wireless network hybrid [3]. Lastly, by using an-
other antenna for beamforming in addition to omnidirectional
antenna. Nevertheless, rewiring of links in wireless networks
is still a relatively hard task to achieve due to the spatial
nature of network and distance limited property of the link.
Finding beam direction, beam length and determining the new
neighborhood due to change in the beam properties are some
problems associated to it. Previous research on beamforming
antennas has been concentrated on uniform distribution with
high-density, [2], [10], [11], [12], [13] nodes but very few of
them talk about non-uniform distribution of nodes. Most of
these researches consider all nodes beamforming [11], [12],
[13], [14], [15], [16] and address connectivity very well but
have not discussed the impact on average path length and
clustering coefficient.

In this paper, however, we discard the possibility of het-
erogeneous or hybrid wireless network and focus our study
on how small world characteristics can be achieved in ho-
mogenous wireless networks using beamforming and antenna
models [17]. For our current study, we have used the abstract
beamforming model, sector model1 [15]. We have however
tried to use beamforming features for the transmission antenna
only though there are researches performed on the application
of beamforming to reception antenna also [13], [14], [15], [16].

The above mentioned issues motivates us to investigate
beamforming related issues like connectivity, average path
length and clustering coefficient in non-uniformly distributed
wireless networks with the help of bio inspired algorithms

1sector model approximates realistic antenna models



and locally present information with the nodes. We propose
that Lateral Inhibition [18], [19], [20] and Flocking [21]
can provide us insights towards a solution to the above-
mentioned problems in conjunction with centrality concept of
graph theory. Further, our paper is structured in a way such
that it provides brief overview of assumptions in section II
considered for modeling our algorithm in section III followed
by simulation setup scenario and results in section IV. We
finally conclude our work in section V and provide some
insights to some future research directions.

II. OUR MODEL

In-order to address some previously mentioned issues we
focus ourselves to homogenous and autonomous deployment
wireless network nodes with limited energy. This type of
deployment helps us in easily applying self-organizing fea-
tures, achieving global consensus with very limited local
information, leader can randomly chosen, highly fault toler-
ant, easy topological maintenance, low deployment cost and
extendibility to incorporate mobility of nodes. As nodes are
homogenous, all nodes incorporate beamforming capabilities
but the decision to use more than one antenna element is
decided using simple local rules. The nodes use beamforming
features only to transmit data but on the other hand use
omnidirectional reception. We have used sector model to
visualize our model and have assumed that transmission of
data is synchronous. As we try to reach to our goal using local
information, it is first very essential to know the information
and the source of the information. We say local information is
the information available with node and its one-hop neighbors.
Determining the one hop neighborhood is thus an essential part
for the correct operation of the algorithm. Many neighborhood
discovery mechanisms have already been proposed and have
been carefully analyzed [22].

Not focusing on to the neighborhood discovery, we limit our
focus to increasing the connectivity in an unconnected network
and reducing the average path length however maintaining
clustering coefficient for the network using beamforming. We
further divide our approach into two parts:
A) Region formation with centroid finding so that there is

less message overhead and nodes can beamform to the
centroid node in-order to achieve reduced average path
length as discussed in section III.

B) Beamforming using simple flocking local rules in-order
to determine nodes that beamform, direction and width
of the beam to address connectivity, average path length
and clustering coefficient as discussed in section III-B.

III. ALGORITHM

A. Region formation and Centroid finding

Closeness centrality [23], [24] allows us to find the im-
portant node in the network through which information can
be propagated to other nodes easily and quickly i.e., can be
reached by other node in the region in least number of hops.
To find the closeness centrality, nodes need to know other
nodes in their region as suggested by the traditional definition.

Storing information about complete component can consume
lot of space as the component may have large number of
nodes. To overcome this problem, logical regions are created
and centroid node are found based on the local information.
As suggested, creation of regions help reducing the message
complexity in the network. This also helps in reducing the
effect on average path length due to failure of a node, the
effect of disease spread is only limited to the region thereby
making the network more manageable, tolerable to the failures
and efficient [25]. Some algorithms in this direction were
centralized where region heads were assigned by base station
based on their current energy level and position, while some of
them were based on transmission power, degree and mobility
of the node example, WACA [26]. On the contrary, other
algorithms proposed were either distributed [27] or probability
based [28].

As our model is distributed in nature where nodes have very
limited information lateral inhibition serves our purpose very
well. We consider nodes to broadcast a message containing
three information, the head ID to which they are associated,
their hop count from the head node and degree of the head
node they are associated. Initially all nodes consider them-
selves as heads and broadcast their own information, i.e.,
their ID, hop count=0, their own degree. If a node receives
information from its neighbor that has higher degree, the node
updates its leader information and broadcasts that information
instead of its own thereby inhibiting itself from being region
head. In case of node receives same node degree from their
neighbors then inhibition decision is based on lower hop count.
In case the hop count is also same, the node then randomly
decides for the head from the set of received information. Each
node, if inhibited, increments the received hop count by one
in-order to know the exact distance from the head and virtually
form a gradient to the region.

Fig. 1. The max degree nodes are not at the center of the region. The
closeness centrality of this node is thus less.

The nodes during this process also keep the track of
information about the distance limited heads it has received
during this association phase but associate themselves to only
one head as described earlier. This leads nodes to know their
head as well as have information about other head within
few hops. Nodes with no neighborhood are tagged as heads
because at the end of this process they remain uninhibited. This
helps in creating size limited regions with head distributed all
across. The current technique of region formation and head
selection is based on local information, but this head might
not be the most important node in the region, (Cf. Fig. 1).
Insights from Watteyne et al’s work [29] can be used to find



centroid node within these logical regions. All the nodes in
the region assign themselves randomly selected virtual coor-
dinates. Nodes using the coordinates of local neighborhood
compute the average of the coordinates and broadcasts it to
their neighbors. The neighbors intern use these coordinates
to compute new average. This process continues until the
nodes in the region have the same average coordinates. This
technique reveals the location of the centroid but not the node
ID. The nodes, in-order to identify the centroid node uses their
initially assigned coordinates and the newly found average
coordinates. Each node checks if the average coordinates is
same as the node’s initial coordinates. If the average is within
error margin, ε, of the average coordinates, the node declare
itself as the centroid. This process might result into multiple
nodes declaring themselves as centroid. To have only one
region centroid, the decision of being centroid is made based
on node degree and egocentric betweenness [30], [31]. Being
local measures both degree and egocentric betweenness2 can
be computed easily using local information. Once the centroid
node is identified for the region, the centroid information
is broadcasted and the nodes update the head ID and the
hops from head node but not the region they are associated
to. Algorithm 1 represents algorithmic description of region
formation and centroid identification.

Algorithm 1 Region formation and centroid finding
1: for all node do
2: set nodeStatus = uninhibited
3: set virtualCoordinates = (x, y)
4: broadcast(headID, hopCount, degree)
5: end for
6: repeat
7: recv=receive(headID, hopCount, nodeDegree)
8: if degree<nodeDegree & hopCount<gradientSize then
9: nodeStatus=inhibited & broadcast(recv)

10: end if
11: until converges
12: for all nodes in a region in all regions do
13: newCoordinate=Centroid finding algorithm [29]
14: end for
15: for all nodes where virtualCoordinates − ε <

newCoordinate < virtualCoordinates+ ε do
16: compute sum(degree, egocentricBetweenness)
17: declare the node with max sum as centroid
18: end for

B. Beamforming

As discussed earlier, to achieve small world properties in
wireless networks, we use beamforming. It is essential to find
the beamforming nodes, direction and the width of the beam.
Flocking provides us with valuable insights in determining
the answers to these questions. For identifying beamforming

2egocentric betweenness approximates socio-centric betweenness in the
absence of global knowledge very well [32]

nodes, we use modified alignment rule of flocking. We say
nodes align themselves towards the decision of whether to
create the beam or not. The alignment rule we apply is thus
to identify peripheral nodes of the regions defined in previous
section. The decision of being peripheral is made based on the
hop count of the neighborhood. If the nodes neighbor has a hop
count less than or equal to the node’s hop count then the node
declares itself as a peripheral node and makes the decision of
creating a beam. A single unconnected node is considered as
a peripheral node as it does not have any neighborhood.

Once the decision of creating a beam has been made,
another question of choosing the direction of beam arises.
Taking more insights from flocking we say cohesion rule of
flocking helps us in determining the best direction of the
beam. As the nodes are homogenous, cohesion rule helps
us increase the connectivity of the network also. We apply
modified cohesion technique and say that beams are directed
towards the centroid of other region in order to increase the
connectivity, (Cf. Fig. 2). If no new centroid is found then
the decision whether to connect to self-region centroid is
made. This decision depends on hop count from the self-region
centroid as creating beams towards self-region centroid is only
feasible if the peripheral node is more than one hop away from
the self-region centroid.

Fig. 2. Nodes beamforming towards different region’s centroid. The
maximum gradient value for lateral inhibition is 3.

Considering sector model for now, each sector in the sector
model is of equal width for a given length (max gain = num-
ber of elements). Nodes randomly chose number of antenna
elements and use above rules to beamform. In sector model,
we further assume that each element operates at same energy
level and have same energy consumption rate as when the
node was omnidirectional. The number of sectors formed in
sector model depends on the value of elements used and thus
beam width can easily be computed. However, being said
that, the best direction of the beam is still not determined
and how nodes know whether they have a centroid node
within their one hop is still to be addressed. We address these
problems later in this section. As the nodes are distributed
over a region, unconnected components can be anywhere in
the region. It is thus important for the beamforming node
to find those regions so that large number of nodes can be
connected. The alignment and cohesion rule discussed earlier
does not guarantee this coverage. Flocking’s separation rule
provide us valuable insight towards this problem. We say, in-
order to increase connectivity, nodes create beams in different



direction from their neighbors. To make this decision, if a
peripheral node has decided to create a beam towards a
centroid it informs its neighbors about the chosen direction
before actually creating the beam, the neighbor peripheral node
then tries to find a centroid node in other directions. If no
centroid node is found, the decision of creating a long-range
beam is dropped and peripheral node remains omnidirectional.

We consider nodes determine the direction using path length
and sweeping. Consider one big connected component with
multiple regions as shown in fig. 3a. Let node i in one region
create beam. From fig. 3a, it can be seen that this node
can create beam either towards j or k or towards its own
centroid. As we know that average path length is dependent
on

∑N
i 6=j d(i, j) any reduction in this summation will lead

to reduced path length. In order to have reduced path length
we propose the node to determine the farthest centroid using
locally available information. In fig. 3a, node i is 5 hops away
from k while it is 4 hops away from j. Thus, in order to have
a reduced path length node i decides to create beam towards
k. In the case when the node does not have previously stored
information about the centroid nodes, the node considers hop
count to those centroid nodes as infinite and connects to them,
(Cf. Fig. 3b).

i

k

j

Centroid node
Peripheral node

i

k

j

(a) (b)

Fig. 3. a) One component with three regions when gradient=3. Here node i
can create beam towards centroid j or k, but because its distance to k is more
node i creates beam towards centroid k. b) Three unconnected components
with gradient=3. Here node i can create beam either towards centroid j or
towards k as its distance to j and k is same and is ∞.

When a node creates a beam towards a centroid to which
it was not connected within h hops away the problem of
asymmetric link arises. Due to this asymmetric link, nodes
will not know whether they have connected to the centroid of
other region or not. We solve this issue as when a centroid
node receives information about the node trying to connect to
it, it just for one time, to acknowledge the reception creates
the beam back to the node. This can be easily done after
determining angle of incidence of the beam and works well
for both connected and unconnected components.

IV. SIMULATION SETUP AND RESULTS

In our simulation, the nodes are distributed throughout the
chosen network region of 10x10. Through our simulations we
have tried to explore the effect on connectivity, average path
length (L) and clustering coefficient (CC) based on varying
node densities and varying the gradient size. Further, we

have used MATLAB to simulate our model with a confidence
interval of 95%. All the results have been averaged over 50
topologies with number of nodes varying from 20 to 400.

We first provide results obtained when sector model is
used with gradient size varying between 3 to 10. Fig. 4a
clearly shows the effect of beamforming on L. L obtained
in omnidirectional case is initially less than that obtained in
the directional cases because of lower density of nodes in
the component. When the directional beam is induced, due
to inclusion of nodes of the other component, there is an
increase in L. L for the directional case is less than that of
omnidirectional case when the node density in more than 1.2
due to the fact that though nodes connect to centroid node
of other regions there are some nodes that also connect to
centroid of the region in which they lie. The effect of gradient
can be seen as the lower the gradient size more number of
nodes beamform, (Cf. Fig. 4c), leading to more shortcuts and
intern more reduction in L. CC however does not change much
with the introduction of long-range beams, (Cf. Fig. 4b). For
very low density networks CC for the directional case is higher
than omnidirectional case due to the fact that nodes which
were initially isolated now have neighborhood. For higher
density networks the effect on CC is less for higher gradient
due to less number of peripheral nodes and less number of
unidirectional paths, (Cf. Fig. 4f). Number of components
in the network can define connectivity. It can be seen for
omnidirectional case from fig. 4e that for very low-density
networks, the number of disconnected components is more.
The number of disconnected components increases to a certain
maximum and then decreases as the density increases because
due to omnidirectional range being unity nodes are more
isolated in a low density network. The connectivity is thus
very low for low density networks as there are more number
of disconnected components. When the number of compo-
nents decreases, the connectivity increases. For the directional
case however, as nodes beamform to different components
with the objective of increasing connectivity, the number of
disconnected components is less than that of omnidirectional
case. The number of centroid nodes on the other hand clearly
depends on the size of gradient, (Cf. Fig. 4d). For low-density
network, the gradient size does not matter while as L increases
the effect of gradient size can be clearly seen on the number
of regions. As the gradient increases, more number of nodes
are inhibited. For a low gradient value as the density increases
the effect on number of regions is almost negligible because of
increased clustering coefficient between the nodes. The effect
of gradient size on the number of peripheral nodes (P) that
beamform can also be seen, (Cf. Fig. 4c). For low L and
low gradient size, as there are more regions and more nodes
become P as they have smaller neighborhood for determination
of their alignment. However, when L and gradient size is more,
P is less because there are more nodes in the region and the
nodes have relatively more neighbors to check before making
the decision of beamforming. The number of P is also greatly
tied to the number of unidirectional paths and has an adverse
affect on CC. As the peripheral nodes increases unidirectional
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Fig. 4. Results obtained for different gradient size, 3-10, with omnidirectional average path length and clustering coefficient shown. a) average path length
(L), b) clustering coefficient (CC), c) fraction of nodes beamforming (P), d) fraction of nodes as centroids, e) number of components (number of components
is inversely related to connectivity), f) unidirectional links

paths between the nodes also increases leading to increasing
loss in CC, (Cf. Fig. 4f).

V. CONCLUSION

In this paper, we have presented an algorithm for achieving
small world characteristic using beamforming and bio inspired
techniques in a wireless network. Our algorithm works us-
ing locally available information and does not require the
knowledge of network wide information. However, number of
extensions to our algorithm can be visualized. The optimal
gradient size to choose for the determination of minimal
peripheral set of nodes is clearly one way of extending our
work. As we are dealing node distributions comparisons for the
results with different types of distributions like Thomas point
process, Matérn hard-core process, potential field deployment
algorithm etc. are a clear extension to our current study. We
are currently working on our algorithm extensions to mobility
with asynchronous operation.
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