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Abstract. Subgraph isomorphism is a computationally challenging problem with
important practical applications, for example in computer vision, biochemistry,
and model checking. There are a number of state-of-the-art algorithms for solving
the problem, each of which has its own performance characteristics. As with
many other hard problems, the single best choice of algorithm overall is rarely
the best algorithm on an instance-by-instance. We develop an algorithm selection
approach which leverages novel features to characterise subgraph isomorphism
problems and dynamically decides which algorithm to use on a per-instance basis.
We demonstrate substantial performance improvements on a large set of hard
benchmark problems. In addition, we show how algorithm selection models can be
leveraged to gain new insights into what affects the performance of an algorithm.

1 Introduction

The subgraph isomorphism problem is to find an adjacency-preserving injective mapping
from vertices of a small pattern graph to vertices of a large target graph. This NP-
complete problem has many important practical applications, for example in computer
vision [6, 25], biochemistry [8], and model checking [24]. There exist various exact
algorithms, which have been compared on a large suite of instances by McCreesh and
Prosser [15]. These experiments indicated that the single best algorithm depends on
the CPU time limit considered: for very small time limits, VF2 [5] is the best choice,
whereas the GLASGOW algorithm [15] has better success rates for larger time limits.
They also showed that on an instance by instance basis, other algorithms are often better.

The per-instance algorithm selection problem [21] is to select from an algorithm
portfolio [9, 10] the algorithm expected to perform best on a given problem instance.
Algorithm selection systems usually build machine learning models of the algorithms
or the portfolio which they are contained in to forecast which algorithm to use in a
particular context. Using the predictions, one or more algorithms from the portfolio can
be selected to be run sequentially or in parallel.

In our subgraph isomorphism context, algorithm performance is highly constrained
by memory bandwidth (as pointed out by Sabharwal and Samulowitz [22] for SAT
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solvers). Therefore, we cannot simply run different algorithms in parallel, and we
consider the case where exactly one algorithm is selected for solving the problem. One
of the most prominent and successful systems that employs this approach is SATzilla [28],
which defined the state of the art in SAT solving for a number of years. Other application
areas include constraint solving [19], the travelling salesperson problem [13], and AI
planning [23]. The interested reader is referred to a recent survey [12] for additional
information on algorithm selection.

Overview of the paper. We formally define the subgraph isomorphism problem in
Section 2. In Section 3, we describe the main existing algorithms for solving this
problem, and we also introduce two new algorithms which are derived from Solnon’s
LAD algorithm [26]. In Section 4, we experimentally compare eight state-of-the-art
algorithms. We introduce a large benchmark set composed of 5725 instances grouped
into twelve classes. Ten of these classes were considered in the experimental study
reported by McCreesh and Prosser [15]; two are new. We evaluate the algorithms on this
benchmark set, and show that they have very complementary performance. In particular,
we show that depending on the CPU time limit, different algorithms achieve the best
performance on the entire benchmark set. In Section 5, we discuss the features that
are used to describe instances, and we describe our algorithm selection approach. It
combines a presolving step, which allows us to easy instances very quickly, with an
algorithm selection step that uses LLAMA [11]. In Section 6, we experimentally evaluate
our selection approach and show that it is able to close more than 60% of the gap
between the single best and the virtual best solver. We conclude and give directions for
future work in Section 7.

2 Definitions and Notations

A graph G = (N,E) consists of a node set N and an edge set E ⊆ N × N , where
an edge (u, u′) is a pair of nodes. The number of neighbors of a node u is called the
degree of u, denoted d◦(u) = #{(u, u′) ∈ E}. In this paper, we implicitly consider
non-directed graphs, such that (u, u′) ∈ E ⇔ (u′, u) ∈ E. The extension to directed
graphs is rather straightforward, and all algorithms compared in this paper can handle
directed graphs as well.

Given a pattern graph Gp = (Np, Ep) and a target graph Gt = (Nt, Et), the
subgraph isomorphism problem consists of deciding whether Gp is isomorphic to some
subgraph of Gt. More formally, the goal is to find an injective matching f : Np → Nt,
that associates a different target node to each pattern node, and preserves pattern edges,
i.e. ∀(u, u′) ∈ Ep, (f(u), f(u

′)) ∈ Et. Note that the subgraph is not necessarily induced,
so that two pattern nodes not linked by an edge may be mapped to two target nodes
which are linked by an edge. We define np = #Np, nt = #Nt, ep = #Ep, et = #Et,
and dp and dt to be the maximum degrees of the graphs Gp and Gt.

3 Subgraph Isomorphism Algorithms

Subgraph isomorphism problems may be solved by a systematic exploration of the
search space consisting of all possible injective matchings from Np to Nt: starting



from an empty matching, one incrementally extends a partial matching by matching a
non-matched pattern node to a non-matched target node until either some edges are not
matched by the current matching (so the search must backtrack to a previous choice
point and go on with another extension), or all pattern nodes have been matched (a
solution has been found). To reduce the search space, this exhaustive exploration is
combined with filtering techniques that aim at removing candidate pairs of non-matched
pattern-target nodes (u, v) ∈ Np×Nt. Different filtering techniques may be considered;
some are stronger than others (they remove more candidate pairs), but also have higher
time complexities.

3.1 Filtering for Subgraph Isomorphism

The simplest form of filtering is to propagate difference constraints (which ensure that
the matching is injective) and edge constraints (which ensure that the matching preserves
pattern edges): each time a pattern node u ∈ Np is matched with a target node v ∈ Nt,
one removes every candidate pair (u′, v′) ∈ Np ×Nt such that either v′ = v (difference
constraint) or (u, u′) is a pattern edge but (v, v′) is not a target edge (edge constraint).
This simple filtering (called Forward-Checking) is very fast to achieve: in O(np) for
difference constraints, and in O(dp · nt) for edge constraints. It is used, for example, in
McGregor’s algorithm [17] and in VF2 [5].

Régin [20] introduced a stronger filtering for difference constraints, which ensures
that all pattern nodes can be matched with different target nodes, all together. This
filtering (called All-Different Generalized Arc Consistency) removes more candidate
pairs than when each difference constraint is propagated separately which Forward-
Checking. However, it is also more time consuming as it requires O(n2

p · n2
t ) time.

Various filtering techniques have been tried for edge constraints. Ullman [27] in-
troduced a filtering which ensures that for each pattern edge (u, u′) ∈ Ep and each
candidate pair (u, v) ∈ Np × Nt, there exists a candidate pair (u′, v′) ∈ Np × Nt

such that (v, v′) is a target edge. Candidate pairs (u, v) that do not satisfy this property
are iteratively removed until a fixed point is reached. This filtering (called Arc Consis-
tency) removes more candidate pairs than Forward-Checking, but it is also more time
consuming as it runs in O(ep · n2

t ) when using AC4 [18].
Stronger filtering may be obtained by propagating edge constraints in a more global

way, as proposed by Larrosa and Valiente [14]. The idea is to check for each candidate
pair (u, v) ∈ Np × Nt that the number of pattern nodes adjacent to u is smaller than
or equal to the number of target nodes that are both adjacent to v and that may be
matched with nodes adjacent to u. This is done in O(n2

p · n2
t ). This idea was generalised

by Solnon’s LAD algorithm [26], where, for each candidate pair (u, v) ∈ Np × Nt,
a redundant Local All-Different constraint ensures that each neighbour of u may be
matched with a different neighbour of v. This is done in O(np · nt · d2p · d2t ).

3.2 Propagation of Invariant Properties

Some filtering techniques exploit invariant properties, i.e. properties associated with
nodes such that nodes may be matched only if they have compatible properties. A
classical property is the degree: a pattern node u ∈ Np may be matched with a target



node v ∈ Nt only if d◦(u) ≤ d◦(v). This property is usually used at the beginning of
the search to reduce the set of candidate pairs to {(u, v) ∈ Np ×Nt | d◦(u) ≤ d◦(v)}.
Other examples of invariant properties are the number of cycles of length k passing
through the node, and the number of cliques of size k containing the node, which must
be smaller for a pattern node than for its matched target node. Invariant properties may
also be associated with pairs of nodes. For example, the number of paths of length k
between two pattern nodes is smaller than or equal to the number of paths of length k
between the target nodes with which they may be matched. These invariant properties
are used, for example,

– by Battiti and Mascia [2], to remove candidate pairs (u, v) ∈ Np ×Nt such that the
number of paths starting from pattern node u is greater than the number of paths
starting from target node v;

– by Audemard et al. [1] to generalise the locally all-different constraint proposed by
Solnon [26] so that it ensures that a subset of pattern nodes can be matched with
all different compatible target nodes, where compatibility is defined with respect to
invariant properties;

– by McCreesh and Prosser [15] to filter the set of candidate pairs before starting
the search, and to generate additional implied adjacency-like constraints which are
processed during search.

Audemard et al. [1] do not limit the length of paths considered, and iteratively increment
the length until no more pairs are removed. Battiti and Mascia [2], and McCreesh and
Prosser [15] parameterise their algorithms by the maximum path length considered when
counting paths: larger values for this parameter remove more candidate pairs, but are
also more time consuming. Battiti and Mascia’s experiments show that the best setting
depends on the instance considered, and that a portfolio running several randomised
versions in time-sharing decreases the total CPU time needed to find a solution for
feasible instances. McCreesh and Prosser simply set the parameter to 3, as this setting
presented the best overall performance in their case.

4 Experimental Comparison of Individual Algorithms

We consider six algorithms from the literature and propose two novel ones.

4.1 Algorithms from the Literature

We selected the following algorithms from the literature, based on their performance.
– VF2 [5] performs weak filtering that is especially fast on trivially satisfiable in-

stances;
– LAD [26] combines two strong but expensive filtering techniques (All-Different

Generalized Arc Consistency and Locally All-Different);
– GLASGOW [15] does expensive preprocessing based on path length invariant prop-

erties to generate additional constraints, followed by weaker filtering (forward-
checking, and a heuristic All-Different propagator which can miss deletions) and
conflict-directed backjumping during search.



We have not considered the algorithm introduced in [29] because it is outperformed
by LAD. Also, we have not considered MIP nor SAT solvers because they are not
competitive with the selected algorithms [16].
The GLASGOW algorithm has a parameter, which controls the lengths of paths used
when reasoning about non-adjacent vertices. In experiments reported by McCreesh and
Prosser [15], the choice of paths of length 3 was used as a reasonable compromise—
longer paths lead to prohibitively expensive preprocessing on larger, denser instances.
This is often not the best choice on an instance by instance basis: sometimes path-based
reasoning gives no benefit at all, sometimes considering only paths of length 2 suffices,
occasionally paths of length 4 are helpful, and even looking at paths of length 3 is
relatively expensive on some graphs. We thus consider all lengths up to 4, naming these
variants GLASGOW1 through GLASGOW4.

4.2 New Algorithms

We introduce two new variants of LAD. The first, called INCOMPLETELAD, does weaker
filtering which is applied once, without performing a backtracking search, and very
quickly detects inconsistencies on many instances: for each pattern node u, we check
if there exists at least one target node v such that for each neighbor u′ of u there exists
a different neighbor v′ of v such that the degree of u′ is smaller than or equal to the
degree of v′. INCOMPLETELAD is an incomplete algorithm that checks a sufficient, but
not necessary, condition for inconsistency: when it does not detect inconsistency, the
instance may still be unsatisfiable. Its main benefit is that it runs very fast: its time
complexity is O(np(nt + et)).

The second variant of LAD is called PATHLAD. It combines the locally all-different
constraints introduced by Solnon [26] with the exploitation of path length properties
proposed by Audemard et al. [1]. The idea is to label each edge (u, v) with the number
of paths of length 2 between u and v, and each node u with the number of cycles of
length 3 passing through u, and to add the constraint that the label of a pattern node
(resp. edge) must be smaller than or equal to the label of its associated target node (resp.
edge).

4.3 Problem Instances

We consider a large benchmark set of 5725 instances, which are available in a simple
text format4. These instances are grouped into 12 classes.

– Class 1 contains randomly generated scale-free graphs [29].
– Classes 2 and 3 contain instances built from a database containing various kinds

of graph gathered by Larrosa and Valiente [14]: class 2 contains small instances
generated from the first 50 graphs of the database, and class 3 contains larger
instances with pattern graphs from the first 50 graphs of the database and target
graphs from the next 50 graphs.

4 http://liris.cnrs.fr/csolnon/SIP.html

http://liris.cnrs.fr/csolnon/SIP.html


– Classes 4 to 8 contain randomly generated graphs from a database of graphs com-
monly used for benchmarking subgraph isomorphism algorithms [7]: bounded-
degree graphs for classes 4 and 5, regular meshes for classes 6 and 7, and random
graphs with uniform edge probabilities for class 8. All of these instances are satisfi-
able.

– Classes 9 and 10 contain instances from segmented images [6, 25].
– Class 11 contains instances from meshes modeling 3D objects [6].
– Class 12 contains random graph instances chosen to be close to the satisfiable-

unsatisfiable phase transition—these instances are expected to be particularly chal-
lenging, despite their small size.

Note that Classes 3 and 12 were not considered in the previous experimental study by
McCreesh and Prosser [15]. Our set of instances is much larger than that of Battiti and
Mascia [2], who were the first to propose algorithm portfolios for subgraph isomorphism
problems. Battiti and Mascia only considered a pure parallel portfolio consisting of two
randomised solvers without a selection mechanism. Their problem set consisted entirely
of satisfiable instances.

4.4 Experimental Setup

We measured runtimes on machines with Intel Xeon E5-2640 v2 CPUs and 64GBytes
RAM, running Scientific Linux 6.5. We used the C++ implementation of the GLASGOW
algorithm [15], the C implementation of LAD [26], and the VFLib C++ implementation
of VF2 [5]. Software was compiled using GCC 4.9. Each problem instance was run with
a timeout of 108 milliseconds (≈ 27.8 hours).

4.5 Results

Figure 1 displays the evolution of the cumulative number of instances solved with respect
to CPU time. It shows us that the best solver depends on the time limit considered.
INCOMPLETELAD is able to solve easy unsatisfiable instances very quickly, in a few
milliseconds. For time limits less than 5ms, it is the best solver. However, it is not able
to solve harder unsatisfiable instances, nor can it solve satisfiable instances.

PATHLAD and GLASGOW1 outperform INCOMPLETELAD for longer time limits:
PATHLAD is the best solver for time limits greater than 5ms and less than 40ms, and
GLASGOW1 is the best solver for time limits greater than 40ms and less than 3000ms.

GLASGOW2 becomes the best solver for time limits greater than 3000ms. As we
increase the CPU time limit, the performance of variants of GLASGOW with longer paths
(GLASGOW3 and GLASGOW4) improves. This is what we expect, as more reasoning
is expensive, but increases the potential reduction of the search space. Eventually,
GLASGOW2 and GLASGOW3 become very closely matched, and with runtimes very
close to the limit, GLASGOW4 nearly catches up. This behavior is class-dependent: for
class 2, for example, the behavior is roughly monotone, with GLASGOW1 dominating
for low runtimes, then GLASGOW2, then GLASGOW3, then GLASGOW4 each becoming
best as the runtimes increase.

The figure illustrates the potential for portfolios and algorithm selection we have:
there is clearly no single solver that dominates throughout.
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Fig. 1. Cumulative number of solved instances over CPU time for the eight algorithms we consider
in this paper, and the virtual best solver (VBS) that shows the best solver on an instance by instance
basis.

Class VF2 LAD GLASGOW

INCOMPLETE DEFAULT PATH 1 2 3 4

1 0 20 0 0 80 0 0 0
2 201 92 189 270 520 180 53 15
3 112 1608 617 959 396 195 21 0
4 270 0 0 0 5 0 0 0
5 266 0 1 3 31 0 0 0
6 71 0 0 0 7 14 1 0
7 270 0 0 0 5 0 0 0
8 0 0 0 1 195 69 6 0
9 77 3 0 19 103 1 0 0
10 13 0 2 2 7 0 0 0
11 2 142 71 17 23 0 0 0
12 0 0 1 2 158 6 1 0

Total 1282 1865 881 1273 1530 465 82 15

Table 1. Number of times each algorithm is best, for each class.



Furthermore, the virtual best solver (VBS), which considers the best algorithm for
each instance separately, obtains much better results, showing us that the algorithms have
complementary performance. The difference between VBS and single best is particularly
pronounced for CPU time limits less than 1000ms. In many applications, it is important
to have the fastest possible algorithm even if the absolute differences in CPU time are
small. For example, in pattern recognition [6,25] and chemical [8] applications, we often
have to solve the subgraph isomorphism problem repeatedly for a very large number of
graphs (in order to find a pattern image or molecule in a large database of target images
or compounds, for example), so having an algorithm that is able to solve an instance in
100ms instead of 1000ms makes a big difference. Therefore, it is important to select
the best algorithm for each instance, even if the instance is an easy one. Furthermore,
this selection process should not unduly penalise easy instances, i.e. it should not take
more time than the solution process time for these instances.

Table 1 shows us that we cannot simply select algorithms based on the instance class.
For all classes, there are always at least two algorithms which are the best for at least
one instance of the class. In particular, for classes 2 and 3, each algorithm is the best for
at least one instance (except GLASGOW4 for class 3).

5 Algorithm Selection Approach

Our approach is composed of three steps. First, we run two presolvers in a static way
to quickly solve easy instances. This ensures that we achieve good performance on
instances that can be solved in a small amount of time. Second, we extract features from
instances which are not solved by the first step. Finally, we run algorithm selection to
choose the algorithm to solve the instance with.

5.1 Presolving

Experimental results reported in Section 4.5 show that INCOMPLETELAD is very fast
(7ms on average) and able to solve 1919 instances from our benchmark set very quickly.
Therefore, we first run INCOMPLETELAD: if unsatisfiability is detected, we do not need
to process it further.

VF2 is also able to solve many easy instances very quickly: from the 3806 instances
that are not solved by INCOMPLETELAD, 1470 are solved by VF2 in less than 50
milliseconds. Therefore, after running INCOMPLETELAD, we run the VF2 solver for
50ms. This solves easy instances without the overhead of running algorithm selection
and avoids potentially making incorrect solver choices.

We also include VF2 in the portfolio, as it may solve an instance given more time,
but not INCOMPLETELAD, as it is an incomplete solver that cannot solve satisfiable
instances.

After the presolving step, we are left with 2336 hard instances that we consider for
algorithm selection.



5.2 Feature Extraction

If presolving does not give us a solution, we extract features that characterize the
instances. For both the pattern and the target graph, we consider some basic graph
properties that can be computed very quickly:

– the number of vertices and edges;
– the density—we expect that some kinds of filtering (like those based upon locally

all-different constraints) might be expensive and ineffective on dense graphs;
– how many loops (self-adjacent vertices) the graph contains—as loops must be

mapped to loops, this could have a strong effect on how easy an instance is;
– the mean and maximum degrees, and whether or not every vertex has the same

degree (the degree-based invariants used by LAD and GLASGOW do nothing at the
top of search if every vertex has the same degree);

– whether or not the graph is connected;
– the mean and maximum distances between all pairs of vertices (if nearly all vertices

are close together, path-based reasoning is likely to be ineffective) and the proportion
of vertex pairs which are at least 2, 3 and 4 apart.

Alongside these basic features, we include information computed by INCOMPLETELAD.
To (try to) prove inconsistency, INCOMPLETELAD removes candidate pairs. The number
of successfully removed pairs gives information on the distribution of edges (the fewer
removed pairs, the more uniform the distribution). As well as the number of removed
pairs, we also record the percentage with respect to all possible pairs, and the minimum
and maximum percentages of removed values on a per-variable basis. Finally, we include
the CPU time required to compute these features as features. However, those features
were not more informative than the other ones.

5.3 Selection Model

We use LLAMA [11] to build our algorithm selection model. LLAMA supports the most
common algorithm selection approaches used in the literature. We performed a set of
preliminary experiments to determine the approach that works best here.

We use 10-fold cross-validation to determine the performance of the LLAMA models.
The entire set of instances was randomly partitioned into 10 subsets of approximately
equal size. Of the 10 subsets, 9 were combined to form the training set for the algorithm
selection models, which were evaluated on the remaining subset. This process was
repeated 10 times for all possible combinations of training and test sets. At the end of
this process, each problem instance in the original set was used exactly once to evaluate
the performance of the algorithm selection models.

LLAMA’s pairwise regression approach with random forest regression gave the best
performance. The idea is very similar to the pairwise classification models used by Xu
et al. [28]. For each pair of algorithms in our portfolio, we train a model that predicts the
performance difference between them. If the first algorithm is better than the second,
the difference is positive, otherwise negative. The algorithm with the highest cumulative
performance difference, i.e. the most positive difference over all other algorithms, is
chosen to be run.



As this approach gives very good performance already, we did not tune the parameters
of the random forest machine learning algorithm. It is possible that overall performance
can be improved by doing so and we make no claims that the particular algorithm
selection approach we use in this paper cannot be improved.

The data we use in this paper is available as ASlib [3] scenario GRAPHS-2015.

6 Experimental Evaluation of Algorithm Selection

Table 2 shows the performance of our algorithm selection approach, compared to two
baselines, on the set of 2336 hard instances. The virtual best solver is the oracle predictor
that, for each instance, chooses the best solver from our portfolio. This is the upper
bound of what an algorithm selection approach can achieve. The single best solver is the
one solver from the portfolio that has the overall best performance across the entire set
of instances, at the CPU time limit of 108 ms, i.e. GLASGOW2. We consider it a lower
bound on the performance of the algorithm selection approach. We are able to solve 30
more instances than the single best solver within the timeout, with only an additional 16
to the virtual best. In terms of average performance, we are able to close 64% of the gap
between the single best and the virtual best solver.

Figure 2 shows the cumulative number of solved instances over time for the individual
solvers, the virtual best solver, and the LLAMA algorithm selection approach. The
algorithm selection model does not perform well for instances that can be solved quickly
because of the overhead incurred through feature computation. As the instances become
more difficult to solve, its performance improves.

Table 2 shows the performance of the selection model on its own. The performance
of the entire algorithm selection system, including the preprocessing, is shown in Table 3.
Our system is able to close more than 60% of the gap between single and virtual best,
similar to the results on the set of hard instances.

Figure 3 shows the cumulative number of solved instances over time for the algorithm
selection system including INCOMPLETELAD and VF2 presolving on the full set of
instances. The performance on small instances is much better than the LLAMA selector
alone (cf. Figure 2) and the region where LLAMA performs worse than the individual
solvers is now limited to approximately 102 to 105 milliseconds.

We train the algorithm selection model specifically for the timeout of 108 millisec-
onds. In particular, we are interested in minimising the performance difference to the
virtual best. Problem instances that take longer to solve contribute more to this difference
than easy instances and therefore carry more weight for the algorithm selection model.
That is, choosing the wrong solver for a hard instances is much worse than choosing the
wrong solver for an easy instance.

Figures 2 and 3 show that for the easy instances from the set of hard instances,
the performance improvement through algorithm selection is negated by the cost of
computing the features. The presolving steps improve performance dramatically over
the full set of instances (cf. Tables 2 and 3).

6.1 Analysis of Features Used by the Model

Analysing the final model, we saw that the most important features were, in order:



model mean MCP solved instances mean performance

virtual best 0 2219 5822809
LLAMA 705097 2203 6529563
GLASGOW2 1960683 2173 7783492

Table 2. Algorithm selection performance on the set of 2336 hard instances. MCP is the misclas-
sification penalty; that is, the additional time required to solve an instance because of choosing
solvers that perform worse than the best. Mean MCP and performance are over all 2336 instances;
when an instance is not solved, its performance is set to the time limit (108 ms).
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model mean MCP solved instances mean performance

virtual best 0 5608 2375913
LLAMA 287704 5592 2664293
GLASGOW2 798660 5562 3174573

Table 3. Algorithm selection system performance on the full set of 5725 instances.
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– the maximum degree of the pattern graph;
– the mean degree of the target graph;
– the proportion of target vertices that are at least distance 3 apart;
– the number of values removed during INCOMPLETELAD presolving.

We introduced the proportion of target vertices that are at least 3 apart as a feature
expecting it to be helpful in distinguishing between GLASGOW variants—if few vertices
are far apart, longer paths are unlikely to be useful. However, in practice this feature also
gives a rough indication of how sparse the graph is—locally all-different filtering is weak
and expensive on dense graphs, and the feature turned out to be helpful for selecting
between GLASGOW and LAD variants too.

As expected, both the pattern graph and the target graph provide important features.
We conclude that even basic graph properties are predictive of sophisticated algorithms’
performance.

6.2 Analysis of PATHLAD versus GLASGOW2

To gain further insight into the behavior of the algorithms, we investigated what affects
the relative performance of PATHLAD and GLASGOW2. This pair is of particular interest
because they are the best “medium-case” algorithms that use strong and weak filtering
during search, respectively. We used machine learning techniques (JRip [4]) to train a
simple, human-understandable model which is able to distinguish these solvers for the
2336 hard instances and gives performance better than always choosing one of them.
The model uses four rules:
1. If INCOMPLETELAD presolving removes at least 28.01% of the pairs, and at least

94.12% of the values from at least one domain, then pick PATHLAD.
2. If the target has at least 610 vertices, and if the maximum distance between any two

pattern vertices is at most 8, and if the pattern is not regular, and if the time taken to
compute the distance-based features on the target graph is no more than 1277ms,
then pick PATHLAD.

3. If INCOMPLETELAD filtering removed at least 5.90% of possible pairs, and if less
than 84.66% of the pattern vertices are within distance 2 of each other, then pick
PATHLAD.

4. Otherwise, pick GLASGOW2.
The first and third rules intuitively make sense: if INCOMPLETELAD filtering does well,
it is likely that continuing with this kind of filtering during search will be successful.
The third rule also excludes using PATHLAD on very dense pattern graphs, where locally
all-different filtering is expensive and weak. The second rule is less obvious: while
PATHLAD filtering is weak on regular graphs and it makes sense to exclude this case, the
other components appear to exclude large and dense target graphs. The model suggests
that it would be worth exploring dynamically enabling or disabling locally all-different
filtering during search, based upon very simple features which could be recomputed as
search progresses and conditions change.

This provides an interesting insight into the behavior of our algorithms, as well as
giving indications for future work.



7 Conclusion and Future Work

The problem of identifying subgraph isomorphisms is a hard computational problem
that has many applications in diverse areas. In this paper, we presented a portfolio of six
algorithms from the literature and two new variants of the LAD algorithm. We introduced
a set of novel features to characterise subgraph isomorphism problems and leveraged
them to select the most appropriate algorithm from the portfolio for each instance.

We demonstrated that our algorithm selection approach achieves substantial perfor-
mance improvements over the single algorithm that has the best performance on our
benchmark set. We showed that combining an algorithm selection approach with a new
incomplete variant of LAD that is able to detect inconsistencies and a presolver boosts
performance even further. Finally, we showed how insights from machine learning can
guide algorithm development.

Directions for future work include scheduling multiple solvers to run instead of a
single one; in particular the GLASGOW algorithms provide a multi-core parallel imple-
mentation, which can use a configurable number of threads. It would also be interesting
to investigate other variants of the subgraph isomorphism problem.

References

1. Audemard, G., Lecoutre, C., Modeliar, M.S., Goncalves, G., Porumbel, D.: Scoring-based
neighborhood dominance for the subgraph isomorphism problem. In: Principles and Practice
of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, Septem-
ber 8-12, 2014. Proceedings. pp. 125–141 (2014), http://dx.doi.org/10.1007/
978-3-319-10428-7_12

2. Battiti, R., Mascia, F.: An algorithm portfolio for the sub-graph isomorphism problem. In:
Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing
Effective Heuristics, International Workshop, SLS 2007, Brussels, Belgium, September 6-8,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4638, pp. 106–120. Springer
(2007)

3. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M.T., Malitsky, Y., Fréchette, A., Hoos, H.H.,
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