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Motivated by evaluating the limiting distribution of randomly biased random walks on trees, we compute the exact value of a negative moment of the maximal drawdown of the standard Brownian meander.

Introduction

Let (X(t), t ∈ [0, 1]) be a random process. Its maximal drawdown on [0, 1] is defined by

X # (1) := sup s∈[0, 1] [ X(s) -X(s)] ,
where X(s) := sup u∈[0, s] X(u). There has been some recent research interest on the study of drawdowns from probabilistic point of view ( [START_REF] Mijatović | On the drawdown of completely asymmetric Lévy processes[END_REF], [START_REF] Nikeghbali | A class of remarkable submartingales[END_REF]) as well as applications in insurance and finance ( [START_REF] Carraro | On Azéma-Yor processes, their optimal properties and the Bachelier-drawdown equation[END_REF], [START_REF] Cheridito | Processes of class sigma, last passage times, and drawdowns[END_REF], [START_REF] Cherny | Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model[END_REF], [START_REF] Rieder | On optimal terminal wealth problems with random trading times and drawdown constraints[END_REF], [START_REF] Zhang | Drawdowns and the speed of market crash[END_REF]).

We are interested in the maximal drawdown m # (1) of the standard Brownian meander (m(t), t ∈ [0, 1]). Our motivation is the presence of the law of m # (1) in the limiting distribution of randomly biased random walks on supercritical Galton-Watson trees ( [START_REF] Hu | The slow regime of randomly biased walks on trees[END_REF]); in particular, the value of E( 1 m # (1) ) is the normalizing constant in the density function of this limiting distribution. The sole aim of the present note is to compute E( 1 m # (1) ), which turns out to have a nice numerical value.

Let us first recall the definition of the Brownian meander. Let W := (W (t), t ∈ [0, 1]) be a standard Brownian motion, and let g := sup{t ≤ 1 : W (t) = 0} be the last passage time at 0 before time 1. Since g < 1 a.s., we can define

m(s) := |W (g + s(1 -g))| (1 -g) 1/2 , s ∈ [0, 1] .
The law of (m(s), s ∈ [0, 1]) is called the law of the standard Brownian meander. For an account of general properties of the Brownian meander, see Yen and Yor [START_REF] Yen | Local Times and Excursion Theory for Brownian Motion. A Tale of Wiener and Itô Measures[END_REF].

Theorem 1.1. Let (m(s), s ∈ [0, 1]
) be a standard Brownian meander. We have

(1.1) E 1 sup s∈[0, 1] [ m(s) -m(s)] = π 2 1/2
, where m(s)

:= sup u∈[0, s] m(u).
The theorem is proved in Section 2.
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Proof

Let R := (R(t), t ≥ 0) be a three-dimensional Bessel process with R(0) = 0, i.e., the Euclidean modulus of a standard three-dimensional Brownian motion. The proof of Theorem 1.1 relies on an absolute continuity relation between (m(s), s ∈ [0, 1]) and (R(s), s ∈ [0, 1]), recalled as follows.

Fact 2.1. (Imhof [START_REF] Imhof | Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications[END_REF]) Let (m(s), s ∈ [0, 1]) be a standard Brownian meander. Let (R(s), s ∈ [0, 1]) be a three-dimensional Bessel process with R(0) = 0. For any measurable and non-negative functional F , we have

E F (m(s), s ∈ [0, 1]) = π 2 1/2 E 1 R(1) F (R(s), s ∈ [0, 1]) .
We now proceed to the proof of Theorem 1.1. Let

L := E 1 sup s∈[0, 1] [ m(s) -m(s)]
.

Write R(t) := sup u∈[0, t] R(u) for t ≥ 0. By Fact 2.1,

L = π 2 1/2 E 1 R(1) 1 sup s∈[0, 1] [ R(s) -R(s)] = π 2 1/2 ∞ 0 E 1 R(1) 1 {sup s∈[0, 1] [ R(s)-R(s)]< 1
a } da , the last equality following from the Fubini-Tonelli theorem. By the scaling property,

E[ 1 R(1) 1 {sup s∈[0, 1] [ R(s)-R(s)]< 1 a } ] = E[ a R(a 2 ) 1 {sup u∈[0, a 2 ] [ R(u)-R(u)]<1}
] for all a > 0. So by means of a change of variables b = a 2 , we obtain:

L = π 8 1/2 ∞ 0 E 1 R(b) 1 {sup u∈[0, b] [ R(u)-R(u)]<1} db .
Define, for any random process X,

τ X 1 := inf{t ≥ 0 : X(t) -X(t) ≥ 1} , with X(t) := sup s∈[0, t] X(s). For any b > 0, the event {sup u∈[0, b] [ R(u) -R(u)] < 1} means {τ R 1 > b}, so L = π 8 1/2 ∞ 0 E 1 R(b) 1 {τ R 1 >b} db = π 8 1/2 E τ R 1 0 1 R(b) db ,
the second identity following from the Fubini-Tonelli theorem. According to a relation between Bessel processes of dimensions three and four (Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], Proposition XI.1.11, applied to the parameters p = q = 2 and ν = 1 2 ),

R(t) = U 1 4 t 0 1 R(b) db , t ≥ 0 ,
where U := (U(s), s ≥ 0) is a four-dimensional squared Bessel process with U(0) = 0; in other words, U is the square of the Euclidean modulus of a standard four-dimensional Brownian motion.

Let us introduce the increasing functional σ(t) :=

1 4 t 0 1 R(b) db, t ≥ 0. We have R = U •σ, and τ R 1 = inf{t ≥ 0 : R(t) -R(t) ≥ 1} = inf{t ≥ 0 : U (σ(t)) -U(σ(t)) ≥ 1} = inf{σ -1 (s) : s ≥ 0 and U (s) -U(s) ≥ 1} which is σ -1 (τ U 1 ). So τ U 1 = σ(τ R 1 ), i.e., τ R 1 0 1 R(b) db = 4τ U 1 ,
which implies that

L = (2π) 1/2 E(τ U 1 )
.

The Laplace transform of τ U 1 is determined by Lehoczky [START_REF] Lehoczky | Formulas for stopped diffusion processes with stopping times based on the maximum[END_REF], from which, however, it does not seem obvious to deduce the value of E(τ U 1 ). Instead of using Lehoczky's result directly, we rather apply his method to compute E(τ U 1 ). By Itô's formula, (U(t) -4t, t ≥ 0) is a continuous martingale, with quadratic variation 4 t 0 U(s) ds; so applying the Dambis-Dubins-Schwarz theorem (Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], Theorem V.1.6) to (U(t) -4t, t ≥ 0) yields the existence of a standard Brownian motion B = (B(t), t ≥ 0) such that

U(t) = 2B( t 0 U(s) ds) + 4t , t ≥ 0 .
Taking t := τ U 1 , we get

U(τ U 1 ) = 2B( τ U 1 0 U(s) ds) + 4τ U 1 .
We claim that (2.1) E B(

τ U 1 0 U(s) ds) = 0 . Then E(τ U 1 ) = 1 4 E[U(τ U 1 )]; hence (2.2) L = (2π) 1/2 E(τ U 1 ) = ( π 8 ) 1/2 E[U(τ U 1 )] .
Let us admit (2.1) for the moment, and prove the theorem by computing E[U(τ U 1 )] using Lehoczky [START_REF] Lehoczky | Formulas for stopped diffusion processes with stopping times based on the maximum[END_REF]'s method; in fact, we determine the law of U(τ U 1 ).

Lemma 2.2. The law of U(τ U 1 ) is given by P{U(τ U 1 ) > a} = (a + 1)e -a , ∀a > 0.

In particular,

E[U(τ U 1 )] = ∞ 0 (a + 1)e -a da = 2. Since L = ( π 8 ) 1/2 E[U(τ U 1 )] (see (2.
2)), this yields L = ( π 2 ) 1/2 as stated in Theorem 1.1.

The rest of the note is devoted to the proof of Lemma 2.2 and (2.1).

Proof of Lemma 2.2. Fix b > 1. We compute the probability P{U(τ U 1 ) > b} which, due to the equality U (τ U 1 ) = U(τ U 1 ) + 1, coincides with P{U(τ U 1 ) > b -1}. By applying the strong Markov property at time σ U 0 := inf{t ≥ 0 : U(t) = 1}, we see that the value of P{U(τ U 1 ) > b} does not change if the squared Bessel process U starts at U(0) = 1. Indeed, observing that

σ U 0 ≤ τ U 1 , U(σ U 0 ) = 1 and that U (τ U ) = sup s∈[σ U 0 , τ U 1 ] U(s), we have P{U(τ U 1 ) > b} = P sup s∈[σ U 0 , τ U 1 ] U(s) > b = P 1 {U (τ U 1 ) > b} ,
the subscript 1 in P 1 indicating the initial value of U. More generally, for x ≥ 0, we write

P x (•) := P(• | U(0) = x); so P = P 0 . Let b 0 = 1 < b 1 < • • • < b n := b be a subdivision of [1, b] such that max 1≤i≤n (b i - b i-1 ) → 0, n → ∞. Consider the event {U(τ U 1 ) > b}: since U(0) = 1, this means U hits position b before time τ U 1 ; for all i ∈ [1, n -1] ∩ Z, starting from position b i , U must hit b i+1
before hitting b i -1 (caution: not to be confused with b i-1 ). More precisely, let

σ U i := inf{t ≥ 0 : U(t) = b i } and let U i (s) := U(s + σ U i ), s ≥ 0; then {U(τ U 1 ) > b} ⊂ n-1 i=1 {U i hits b i+1 before hitting b i -1} .
By the strong Markov property, the events {U i hits b i+1 before hitting b i -1}, 1 ≤ i ≤ n -1, are independent (caution : the processes (U i (s), s ≥ 0), 1 ≤ i ≤ n -1, are not independent). Hence (2.3)

P 1 {U(τ U 1 ) > b} ≤ n-1 i=1 P b i {U hits b i+1 before hitting b i -1} .
Conversely, let ε > 0, and if max 1≤i≤n (b ib i-1 ) < ε, then we also have

P 1 {U (τ U 1+ε ) > b} ≥ n-1 i=1 P b i {U hits b i+1 before hitting b i -1} , with τ U 1+ε := inf{t ≥ 0 : U (t)-U(t) ≥ 1+ε}. By scaling, U (τ U 1+ε ) has the same distribution as (1 + ε)U(τ U 1 )
. So, as long as max 1≤i≤n (b ib i-1 ) < ε, we have

P 1 {U(τ U 1 ) > b} ≤ n-1 i=1 P b i {U hits b i+1 before hitting b i -1} ≤ P 1 {U (τ U 1 ) > b 1 + ε } .
Since 1

x is a scale function for U, we have

P b i {U hits b i+1 before hitting b i -1} = 1 b i -1 -1 b i 1 b i -1 -1 b i+1 = 1 - 1 b i -1 b i+1 1 b i -1 -1 b i+1 . If lim n→∞ max 0≤i≤n-1 (b i+1 -b i ) = 0, then for n → ∞, n-1 i=1 1 b i -1 b i+1 1 b i -1 -1 b i+1 = n-1 i=1 b i -1 b i (b i+1 -b i ) + o(1) → b 1 r -1 r dr = b -1 -log b .
Therefore,

lim n→∞ n-1 i=1 P b i {U hits b i+1 before hitting b i -1} = e -(b-1-log b) = b e -(b-1) .
Consequently,

P{U(τ U 1 ) > b} = b e -(b-1) , ∀b > 1. 
We have already noted that U(τ U 1 ) = U(τ U 1 ) -1. This completes the proof of Lemma 2.2.

Proof of (2.1). The Brownian motion B being the Dambis-Dubins-Schwarz Brownian motion associated with the continuous martingale (U(t)-4t, t ≥ 0), it is a (G r ) r≥0 -Brownian motion (Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], Theorem V. 1.6), where, for r ≥ 0, For all r ≥ 0,

G r := F C(r) , C(r) := A -1 (r), A ( 
{A(τ U 1 ) > r} = {τ U 1 > C(r)} ∈ F C(r) = G r (observing that τ U 1 is an (F t ) t≥0 - stopping time), which means that A(τ U 1 ) is a (G r ) r≥0 -stopping time. If A(τ U 1 ) = τ U
1 0 U(s) ds has a finite expectation, then we are entitled to apply the (first) Wald identity to see that It remains to prove that E[A(τ U 1 )] < ∞. Recall that U is the square of the Euclidean modulus of an R 4 -valued Brownian motion.

By considering only the first coordinate of this Brownian motion, say β, we have

P sup s∈[0, a] U(s) < a 1-ε ≤ P sup s∈[0, a] |β(s)| < a (1-ε)/2 = P sup s∈[0, 1]
|β(s)| < a -ε/2 ; so by the small ball probability for Brownian motion, we obtain:

P sup s∈[0, a] U(s) < a 1-ε ≤ exp(-c 1 a ε ) , for all a ≥ 1 et all ε ∈ (0, 1), with some constant c 1 = c 1 (ε) > 0. On the event {sup s∈[0, a] U(s) ≥ a 1-ε }, if τ U 1 > a, then for all i ∈ [1, a 1-ε -1]
∩ Z, the squared Bessel process U, starting from i, must first hit position i + 1 before hitting i -1 (which, for each i, can be realized with probability ≤ 1c 2 , where c 2 ∈ (0, 1) is a constant that does not depend on i, nor on a). Accordingly,

1 P sup s∈[0, a] U(s) ≥ a 1-ε , τ U 1 > a ≤ (1 -c 2 ) ⌊a 1-ε -1⌋ ≤ exp(-c 3 a 1-ε ) ,
with some constant c 3 > 0, uniformly in a ≥ 2. We have thus proved that for all a ≥ 2 and all ε ∈ (0, 1),

P{τ U 1 > a} ≤ exp(-c 3 a1-ε ) + exp(-c 1 a ε ). Taking ε := 1 2 , we see that there exists a constant c 4 > 0 such that P{τ U 1 > a} ≤ exp(-c 4 a 1/2 ), ∀a ≥ 2.

On the other hand, U being a squared Bessel process, we have, for all a > 0 and all b ≥ 

t) := t 0 U 1 0U

 01 (s) ds , and A -1 denotes the inverse of A. [We mention that F C(r) is well defined because C(r) is an (F t ) t≥0 -stopping time.] As such, τ U (s) ds = A(τ U 1 ) .

a 2 , 2 .

 22 P{A(a)≥ b} = P{A(1) ≥ b a 2 } ≤ P sup s∈[0, 1] U(s) ≥ b a 2 ≤ e -c 5 b/a 2 ,for some constant c 5 > 0. Hence, for b ≥ a 2 and a ≥ 2,P{A(τ U 1 ) ≥ b} ≤ P{τ U 1 > a} + P{A(a) ≥ b} ≤ exp(-c 4 a 1/2 ) + e -c 5 b/aTaking a := b 2/5 gives thatP{A(τ U 1 ) ≥ b} ≤ exp(-c 6 b 1/5 ) ,for some constant c 6 > 0 and all b ≥ 4. In particular, E[A(τ U 1 )] < ∞ as desired.

This is the special case b i := i of the argument we have used to obtain (2.3).
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