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1. Introduction

Since their introduction in [3], averaged nonexpansive operators have proved to be very useful in the 
analysis and the numerical solution of problems arising in nonlinear analysis and its applications; see, e.g., 
[2,4–8,11,14–16,18–21].

Definition 1.1. Let H be a real Hilbert space, let D be a nonempty subset of H, let α ∈ ]0, 1[, and let 
T : D → H be a nonexpansive (i.e., 1-Lipschitz) operator. Then T is averaged with constant α, or α-averaged, 
if there exists a nonexpansive operator R : D → H such that T = (1 − α) Id + αR.

As discussed in [6,11,16], averaged operators are stable under compositions and convex combinations and 
such operations form basic building blocks in various composite fixed point algorithms. The averagedness 
constants resulting from such operations determine the range of the step sizes and other parameters in such 
algorithms. It is therefore important that they be tight since these parameters have a significant impact on 
the speed of convergence.
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In this paper, we discuss averagedness constants for compositions and convex combinations of averaged 
operators and construct novel fixed point algorithms based on these constants. In particular, we obtain a 
new version of the forward–backward algorithm with an extended relaxation range and iteration-dependent 
step sizes.

Throughout the paper, H is a real Hilbert space with scalar product �· | ·� and associated norm � · �. We 
denote by Id the identity operator on H and by dS the distance function to a set S ⊂ H; � and → denote, 
respectively, weak and strong convergence in H.

2. Compositions and convex combinations of averaged operators

We first recall some characterizations of averaged operators (see [11, Lemma 2.1] or [6, Proposition 4.25]).

Proposition 2.1. Let D be a nonempty subset of H, let T : D → H be nonexpansive, and let α ∈ ]0, 1[. Then 
the following are equivalent:

(i) T is α-averaged.
(ii) (1 − 1/α) Id + (1/α)T is nonexpansive.
(iii) (∀x ∈ D)(∀y ∈ D) �Tx − Ty�2 � �x − y�2 − 1−α

α �(Id − T )x − (Id − T )y�2.
(iv) (∀x ∈ D)(∀y ∈ D) �Tx − Ty�2 + (1 − 2α)�x − y�2 � 2(1 − α)�x − y | Tx − Ty�.

The next result concerns the averagedness of a convex combination of averaged operators.

Proposition 2.2. Let D be a nonempty subset of H, let (Ti)i∈I be a finite family of nonexpansive operators 
from D to H, let (αi)i∈I be a family in ]0, 1[, and let (ωi)i∈I be a family in ]0, 1] such that 

�
i∈I ωi = 1. 

Suppose that, for every i ∈ I, Ti is αi-averaged, and set T =
�

i∈I ωiTi and α =
�

i∈I ωiαi. Then T is 
α-averaged.

Proof. For every i ∈ I, there exists a nonexpansive operator Ri : D → H such that Ti = (1 − αi) Id + αiRi. 
Now set R = (1/α) 

�
i∈I ωiαiRi. Then R is nonexpansive and

�

i∈I

ωiTi =
�

i∈I

ωi(1 − αi) Id +
�

i∈I

ωiαiRi = (1 − α) Id + αR. (2.1)

We conclude that T is α-averaged. ✷

Remark 2.3. In view of [8, Corollary 2.2.17], Proposition 2.2 is equivalent to [8, Theorem 2.2.35], and it 
improves the averagedness constant of [11, Lemma 2.2(ii)] which was α = maxi∈I αi. In the case of two
operators, Proposition 2.2 can be found in [16, Theorem 3(a)].

Next, we turn our attention to compositions of averaged operators, starting with the following result, 
which was obtained in [16, Theorem 3(b)] with a different proof.

Proposition 2.4. Let D be a nonempty subset of H, let (α1, α2) ∈ ]0, 1[2, let T1 : D → D be α1-averaged, 
and let T2 : D → D be α2-averaged. Set

T = T1T2 and α = α1 + α2 − 2α1α2
1 − α1α2

. (2.2)

Then α ∈ ]0, 1[ and T is α-averaged.
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Proof. Since α1(1 − α2) < (1 − α2), we have α1 + α2 < 1 + α1α2 and, therefore, α ∈ ]0, 1[. Now let x ∈ D, 
let y ∈ D, and set

τ = 1 − α1
α1

+ 1 − α2
α2

. (2.3)

It follows from Proposition 2.1 that

�T1T2x − T1T2y�2 � �T2x − T2y�2 − 1 − α1
α1

��(Id − T1)T2x − (Id − T1)T2y
��2

� �x − y�2 − 1 − α2
α2

��(Id − T2)x − (Id − T2)y
��2

− 1 − α1
α1

��(Id − T1)T2x − (Id − T1)T2y
��2

. (2.4)

Moreover, by [6, Corollary 2.14], we have

1 − α1
τα1

��(Id − T1)T2x − (Id − T1)T2y
��2 + 1 − α2

τα2

��(Id − T2)x − (Id − T2)y
��2

=
����

1 − α1
τα1

�
(Id − T1)T2x − (Id − T1)T2y

�
− 1 − α2

τα2

�
(Id − T2)x − (Id − T2)y

�����
2

+ (1 − α1)(1 − α2)
τ2α1α2

��(x − y) − (T1T2x − T1T2y)
��2

� (1 − α1)(1 − α2)
τ2α1α2

��(Id − T1T2)x − (Id − T1T2)y
��2

. (2.5)

Combining (2.4), (2.5), and (2.2) yields

�T1T2x − T1T2y�2 � �x − y�2 − (1 − α1)(1 − α2)
τα1α2

��(Id − T1T2)x − (Id − T1T2)y
��2

= �x − y�2 − 1 − α1 − α2 + α1α2
α1 + α2 − 2α1α2

��(Id − T1T2)x − (Id − T1T2)y
��2

= �x − y�2 − 1 − α

α

��(Id − T1T2)x − (Id − T1T2)y
��2

. (2.6)

In view of Proposition 2.1, we conclude that T is α-averaged. ✷

In [8, Theorem 2.2.37], the averagedness constant of (2.2) was written as

α = 1

1 + 1
α1

1 − α1
+ α2

1 − α2

. (2.7)

By induction, it leads to the following result for the composition of m averaged operators, which was 
obtained in [8] (combine [8, Theorem 2.2.42] and [8, Corollary 2.2.17]).

Proposition 2.5. Let D be a nonempty subset of H, let m � 2 be an integer, and set

φ : ]0, 1[ m → ]0, 1[ : (α1, . . . , αm) 	→ 1

1 + 1
m�

i=1

αi

1 − αi

. (2.8)
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For every i ∈ {1, . . . , m}, let αi ∈ ]0, 1[ and let Ti : D → D be αi-averaged. Set

T = T1 · · · Tm and α = φ(α1, . . . , αm). (2.9)

Then T is α-averaged.

Proof. We proceed by induction on k ∈ {2, . . . , m}. To this end, let us set (∀k ∈ {2, . . . , m}) βk = [1 +
[
�k

i=1 αi/(1 − αi)]−1]−1. By Proposition 2.4 and (2.7), the claim is true for k = 2. Now assume that, for
some k ∈ {2, . . . , m − 1}, T1 · · · Tk is βk-averaged. Then we deduce from Proposition 2.4 and (2.7) that the
averagedness constant of (T1 · · · Tk)Tk+1 is

1

1 + 1
1

β−1
k − 1

+ αk+1
1 − αk+1

= 1

1 + 1�
k�

i=1

αi

1 − αi

�
+ αk+1

1 − αk+1

= βk+1, (2.10)

which concludes the induction argument. ✷

Remark 2.6. Let m � 2 be an integer, let φ be as in (2.8), let (αi)1�i�m ∈ ]0, 1[ m, and let (σj)1�j�m the 
elementary symmetric polynomials in the variables (αi)1�i�m, i.e.,

�
∀j ∈ {1, . . . , m}

�
σj =

�

1�i1<···<ij�m

j	

l=1
αil

. (2.11)

Then one shows by induction that φ(α1, . . . , αm) = [
�m

j=1(−1)j−1jσj ]/[1 +
�m

j=2(−1)j−1(j − 1)σj ]. Note 
also that (2.8) implies that

φ(α1, . . . , αm) >
1

1 + 1
max

1�i�m

αi

1 − αi

= max
1�i�m

αi. (2.12)

Remark 2.7. Let us compare the averagedness constant of Proposition 2.5 with alternative ones. Set


φ : ]0, 1[ m → ]0, 1[ : (α1, . . . , αm) 	→ m max{α1, . . . , αm}
(m − 1) max{α1, . . . , αm} + 1 , (2.13)

and let (αi)1�i�m ∈ ]0, 1[ m.

(i) The averagedness constant of Proposition 2.5 is sharper than that of [11, Lemma 2.2(iii)], namely

φ(α1, . . . , αm) � 
φ(α1, . . . , αm). (2.14)

(ii) φ(α1, . . . , αm) = 
φ(α1, . . . , αm) if α1 = · · · = αm and, in particular, if all the operators are firmly 
nonexpansive, i.e., α1 = · · · = αm = 1/2.

(iii) If m = 2, the averagedness constant of Proposition 2.5 is strictly sharper than that of [19, Lemma 3.2], 
namely (see also [8, Remark 2.2.38])

φ(α1, α2) < �φ(α1, α2), where �φ(α1, α2) = α1 + α2 − α1α2. (2.15)

In addition, φ(α1, α1) = 
φ(α1, α1) < �φ(α1, α1) while, for α1 = 3/4 and α2 = 1/8, �φ(α1, α2) = 25/32 <
6/7 = 
φ(α1, α2), which shows that 
φ and �φ cannot be compared in general.
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Proof. (i): Combine [8, Theorem 2.2.42], and [8, Corollary 2.2.17].
(ii): Set β1 = δ1 = α1 and

�
∀k ∈ {2, . . . , m}

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βk = 1

1 + 1
k�

i=1

αi

1 − αi

,

δk = k max{α1, . . . , αk}
(k − 1) max{α1, . . . , αk} + 1 .

(2.16)

Then (2.16) yields

�
∀k ∈ {1, . . . , m}

�
δk = kα1

(k − 1)α1 + 1 . (2.17)

Let us show by induction that
�
∀k ∈ {1, . . . , m}

�
βk = δk. (2.18)

We have β1 = δ1 = α1. Next, suppose that, for some k ∈ {1, . . . , m − 1}, βk = δk. Then αk+1 = α1, while 
(2.10) and (2.17) yield

βk+1 = 1

1 + 1
1

β−1
k − 1

+ α1
1 − α1

= 1

1 + 1
1

δ−1
k − 1

+ α1
1 − α1

= (k + 1)α1
kα1 + 1 = δk+1. (2.19)

This establishes (2.18).
(iii): This inequality was already obtained in [8, Remark 2.2.38]. It follows from the fact that

�φ(α1, α2) − φ(α1, α2) = α1α2(1 − α1)(1 − α2)
1 − α1α2

> 0. (2.20)

The remaining assertions are easily verified. ✷

3. Algorithms

We present applications of the bounds discussed in Section 2 to fixed point algorithms. Henceforth, we 
denote the set of fixed points of an operator T : H → H by Fix T .

As a direct application of Proposition 2.2 and Proposition 2.5, we first consider so-called “string-
averaging” iterations, which involve a mix of compositions and convex combinations of operators. In the 
case of projection operators, such iterations go back to [9].

Proposition 3.1. Let (Ti)i∈I be a finite family of nonexpansive operators from H to H such that �
i∈I Fix Ti 
= ∅, and let (αi)i∈I be real numbers in ]0, 1[ such that, for every i ∈ I, Ti is αi-averaged. 

Let p be a strictly positive integer, for every k ∈ {1, . . . , p} let mk be a strictly positive integer and let 
ωk ∈ ]0, 1], and suppose that i : {(k, l) | k ∈ {1, . . . , p}, l ∈ {1, . . . , mk}} → I is surjective and that �p

k=1 ωk = 1. Define

T =
p�

k=1
ωkTi(k,1) · · · Ti(k,mk). (3.1)
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Then the following hold:

(i) Set

α =
p�

k=1

ωk

1 + 1
mk�

i=1

αi(k,i)

1 − αi(k,i)

. (3.2)

Then T is α-averaged and Fix T =
�

i∈I Fix Ti.
(ii) Let (λn)n∈N be a sequence in ]0, 1/α[ such that 

�
n∈N λn(1/α − λn) = +∞. Furthermore, let x0 ∈ H

and set

(∀n ∈ N) xn+1 = xn + λn(Txn − xn). (3.3)

Then (xn)n∈N converges weakly to a point in 
�

i∈I Fix Ti.

Proof. (i): The α-averagedness of T follows from Propositions 2.2 and 2.5. The remaining assertions follow 
from [6, Proposition 4.34 and Corollary 4.37].

(ii): This follows from (i) and [6, Proposition 5.15(iii)]. ✷

Remark 3.2. Proposition 3.1 improves upon [6, Corollary 5.18], where the averagedness constant α of (3.2)
was replaced by

α� = max
1�k�p

ρk, with
�
∀k ∈ {1, . . . , p}

�
ρk = mk

mk − 1 + 1
max{αi(k,1), . . . , αi(k,mk)}

. (3.4)

In view of Remarks 2.3 and 2.7(i), α� � α and therefore α provides a larger range for the relaxation 
parameters (λn)n∈N.

The subsequent applications require the following technical fact.

Lemma 3.3. (See [17, Lemma 2.2.2].) Let (αn)n∈N, (βn)n∈N, and (εn)n∈N be sequences in [0, +∞[ such that �
n∈N εn < +∞ and (∀n ∈ N) αn+1 � αn − βn + εn. Then (αn)n∈N converges and 

�
n∈N βn < +∞.

Next, we introduce a general iteration process for finding a common fixed point of a countable family of 
averaged operators which allows for approximate computations of the operator values.

Proposition 3.4. For every n ∈ N, let αn ∈ ]0, 1[, let λn ∈ ]0, 1/αn[, let en ∈ H, and let Tn : H → H be an 
αn-averaged operator. Suppose that S =

�
n∈N Fix Tn 
= ∅ and that 

�
n∈N λn�en� < +∞. Let x0 ∈ H and 

set, for every n ∈ N,

xn+1 = xn + λn(Tnxn + en − xn). (3.5)

Then the following hold:

(i) Let n ∈ N, let x ∈ S, and set ν =
�

k∈N λk�ek� + 2 supk∈N �xk − x�. Then ν < +∞ and

�xn+1 − x�2 �
��xn + λn(Tnxn − xn) − x

��2 + νλn�en� (3.6)

� �xn − x�2 − λn(1/αn − λn)�Tnxn − xn�2 + νλn�en�. (3.7)
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(ii)
�

n∈N λn(1/αn − λn)�Tnxn − xn�2 < +∞.
(iii) (xn)n∈N converges weakly to a point in S if and only if every weak sequential cluster point of (xn)n∈N

is in S. In this case, the convergence is strong if int S 
= ∅.
(iv) (xn)n∈N converges strongly to a point in S if and only if lim dS(xn) = 0.

Proof. (i): Set

Rn = (1 − 1/αn) Id + (1/αn)Tn and μn = αnλn. (3.8)

Then Fix Rn = Fix Tn and, by Proposition 2.1, Rn is nonexpansive. Furthermore, (3.5) can be written as

xn+1 = xn + μn(Rnxn − xn) + λnen, where μn ∈ ]0, 1[. (3.9)

Now set zn = xn + μn(Rnxn − xn). Since x ∈ Fix Rn and Rn is nonexpansive, we have

�zn − x� =
��(1 − μn)(xn − x) + μn(Rnxn − Rnx)

��

� (1 − μn)�xn − x� + μn�Rnxn − Rnx�
� �xn − x�. (3.10)

Hence, (3.9) yields

�xn+1 − x� � �zn − x� + λn�en� (3.11)

� �xn − x� + λn�en� (3.12)

and, since 
�

k∈N λk�ek� < +∞, it follows from Lemma 3.3 that

ν =
�

k∈N
λk�ek� + 2 sup

k∈N
�xk − x� < +∞. (3.13)

Moreover, using (3.11), (3.10), and [6, Corollary 2.14], we can write

�xn+1 − x�2 � �zn − x�2 +
�
2�zn − x� + λn�en�

�
λn�en�

� �zn − x�2 +
�
2�xn − x� + λn�en�

�
λn�en�

�
��(1 − μn)(xn − x) + μn(Rnxn − x)

��2 + νλn�en� (3.14)

= (1 − μn)�xn − x�2 + μn�Rnxn − x�2

− μn(1 − μn)�Rnxn − xn�2 + νλn�en�
= (1 − μn)�xn − x�2 + μn�Rnxn − Rnx�2

− μn(1 − μn)�Rnxn − xn�2 + νλn�en�
� �xn − x�2 − μn(1 − μn)�Rnxn − xn�2 + νλn�en�
= �xn − x�2 − λn(1/αn − λn)�Tnxn − xn�2 + νλn�en� (3.15)

� �xn − x�2 + νλn�en�. (3.16)

Thus, (3.6) follows from (3.8) and (3.14), and (3.15) provides (3.7).
(ii): This follows from (3.7), (3.13), and Lemma 3.3.
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(iii): The weak convergence statement follows from (3.13), (3.16), and [10, Theorem 3.8], while the strong 
convergence statement follows from [10, Proposition 3.10].

(iv): By [6, Corollary 4.15], the sets (Fix Tn)n∈N are closed, and so is therefore their intersection S. Hence, 
the result follows from (3.13), (3.16), (ii), and [10, Theorem 3.11]. ✷

The main result of this section is the following.

Theorem 3.5. Let ε ∈ ]0, 1/2[, let m � 2 be an integer, let x0 ∈ H, and define φ as in (2.8). For every 
i ∈ {1, . . . , m} and every n ∈ N, let αi,n ∈ ]0, 1[, let Ti,n : H → H be αi,n-averaged, and let ei,n ∈ H. For 
every n ∈ N, let λn ∈ ]0, (1 − ε)(1 + εφ(α1,n, . . . , αm,n))/φ(α1,n, . . . , αm,n)] and set

xn+1 = xn + λn

�
T1,n

�
T2,n

�
· · · Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

�
+ e2,n

�
+ e1,n − xn

�
. (3.17)

Suppose that

S =
�

n∈N
Fix(T1,n · · · Tm,n) 
= ∅ and

�
∀i ∈ {1, . . . , m}

� �

n∈N
λn�ei,n� < +∞, (3.18)

and define

�
∀i ∈ {1, . . . , m}

�
(∀n ∈ N) Ti+,n =

�
Ti+1,n · · · Tm,n, if i 
= m;
Id, if i = m.

(3.19)

Then the following hold:

(i)
�

n∈N λn(1/φ(α1,n, . . . , αm,n) − λn)�T1,n · · · Tm,nxn − xn�2 < +∞.

(ii) (∀x ∈ S) max
1�i�m

�

n∈N

λn(1 − αi,n)
αi,n

�(Id − Ti,n)Ti+,nxn − (Id − Ti,n)Ti+,nx�2 < +∞.

(iii) (xn)n∈N converges weakly to a point in S if and only if every weak sequential cluster point of (xn)n∈N
is in S. In this case, the convergence is strong if int S 
= ∅.

(iv) (xn)n∈N converges strongly to a point in S if and only if lim dS(xn) = 0.

Proof. Let n ∈ N and let x ∈ S. We can rewrite (3.17) as an instance of (3.5), namely

xn+1 = xn + λn(Tnxn + en − xn), (3.20)

where

Tn = T1,n · · · Tm,n (3.21)

and

en = T1,n

�
T2,n

�
· · · Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

�
+ e2,n

�
+ e1,n − T1,n · · · Tm,nxn. (3.22)

It follows from Proposition 2.5 that

Tn is αn-averaged, where αn = φ(α1,n, . . . , αm,n). (3.23)
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Since αn ∈ ]0, 1[,

(1 − ε)(1 + εαn)
αn

<
(1 − ε)(1 + ε)

αn
= 1 − ε2

αn
<

1
αn

(3.24)

and therefore λn ∈ ]0, 1/αn[, as required in Proposition 3.4.
(i): Using the nonexpansiveness of the operators (Ti,n)1�i�m, we derive from (3.22) that

�en� � �e1,n�
+

��T1,n

�
T2,n

�
· · · Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

�
+ e2,n

�
− T1,n · · · Tm,nxn

��

� �e1,n�
+

��T2,n

�
T3,n

�
· · · Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

�
+ e3,n

�
+ e2,n − T2,n · · · Tm,nxn

��

� �e1,n� + �e2,n�
+

��T3,n

�
T4,n

�
· · · Tm−1,n(Tm,nxn + em,n) + em−1,n · · ·

�
+ e4,n

�
+ e3,n − T3,n · · · Tm,nxn

��
...

�
m�

i=1
�ei,n�. (3.25)

Accordingly, (3.18) yields

�

k∈N
λk�ek� < +∞. (3.26)

Hence, we deduce from Proposition 3.4(i) that

ν =
�

k∈N
λk�ek� + 2 sup

k∈N
�xk − x� < +∞ (3.27)

and from Proposition 3.4(ii) that

�

k∈N
λk

�
1

αk
− λk

�
�Tkxk − xk�2 < +∞. (3.28)

(ii): We derive from Proposition 2.1 that

�
∀i ∈ {1, . . . , m}

��
∀(u, v) ∈ H2�

�Ti,nu − Ti,nv�2 � �u − v�2 − 1 − αi,n

αi,n

��(Id − Ti,n)u − (Id − Ti,n)v
��2

. (3.29)

Using this inequality m times leads to

�Tnxn − x�2 = �T1,n · · · Tm,nxn − T1,n · · · Tm,nx�2

� �xn − x�2 −
m�

i=1

1 − αi,n

αi,n

��(Id − Ti,n)Ti+,nxn − (Id − Ti,n)Ti+,nx
��2

� �xn − x�2 − βn

λn
, (3.30)
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where

βn = λn max
1�i�m

�
1 − αi,n

αi,n

��(Id − Ti,n)Ti+,nxn − (Id − Ti,n)Ti+,nx
��2

�
. (3.31)

Note also that

λn � (1 − ε)(1 + εαn)
αn

⇒ λn � 1 + εαn

(1 + ε)αn

⇔
�

1 + 1
ε

�
λn � 1

εαn
+ 1

⇔ λn − 1 � 1
ε

�
1

αn
− λn

�
. (3.32)

Thus, Proposition 3.4(i), (3.20), and [6, Corollary 2.14] yield

�xn+1 − x�2 �
��(1 − λn)(xn − x) + λn(Tnxn − x)

��2 + νλn�en�
= (1 − λn)�xn − x�2 + λn�Tnxn − x�2 + λn(λn − 1)�Tnxn − xn�2 + νλn�en�
� (1 − λn)�xn − x�2 + λn�Tnxn − x�2 + εn, (3.33)

where

εn = λn

ε

�
1

αn
− λn

�
�Tnxn − xn�2 + νλn�en�. (3.34)

On the one hand, it follows from (3.26), (3.27), and (3.28) that

�

k∈N
εk < +∞. (3.35)

On the other hand, combining (3.30) and (3.33), we obtain

�xn+1 − x�2 � �xn − x�2 − βn + εn. (3.36)

Consequently, Lemma 3.3 implies that 
�

k∈N βk < +∞.
(iii)–(iv): These follow from their counterparts in Proposition 3.4. ✷

Remark 3.6. Theorem 3.5 extends the results of [11, Section 3], where the relaxations parameters (λn)n∈N
cannot exceed 1. Since these parameters control the step-lengths of the algorithm, the proposed extension 
can result in significant accelerations.

4. Application to forward–backward splitting

The forward–backward algorithm is one of the most versatile and powerful algorithms for finding a zero 
of the sum of two maximally monotone operators (see [12,13] and the references therein for historical back-
ground and recent developments). In [11], the first author showed that the theory of averaged nonexpansive 
operators provided a convenient setting for analyzing this algorithm. In this section, we exploit the results of 
Sections 2 and 3 to further extend this analysis and obtain a new version of the forward–backward algorithm 
with an extended relaxation range.
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Let us recall a few facts about monotone set-valued operators and convex analysis [6]. Let A : H → 2H

be a set-valued operator. The domain, the graph, and the set of zeros of A are respectively defined by 
dom A = {x ∈ H | Ax 
= ∅}, gra A = {(x, u) ∈ H × H | u ∈ Ax}, and zer A = {x ∈ H | 0 ∈ Ax}. The 
inverse of A is A−1 : H 	→ 2H: u 	→ {x ∈ H | u ∈ Ax}, and the resolvent of A is

JA = (Id + A)−1. (4.1)

This operator is firmly nonexpansive if A is monotone, i.e.,

�
∀(x, y) ∈ H × H

��
∀(u, v) ∈ Ax × Ay

�
�x − y | u − v� � 0, (4.2)

and dom JA = H if, furthermore, A is maximally monotone, i.e., there exists no monotone operator B :
H → 2H such that gra A ⊂ gra B and A 
= B. We denote by Γ0(H) the class of proper lower semicontinuous 
convex functions f : H → ]−∞, +∞]. Let f ∈ Γ0(H). For every x ∈ H, f + �x − ·�2/2 possesses a unique 
minimizer, which is denoted by proxf x. We have

proxf = J∂f , where ∂f : H → 2H: x 	→
�

u ∈ H
�� (∀y ∈ H) �y − x | u� + f(x) � f(y)

�
(4.3)

is the Moreau subdifferential of f .
We start with a specialization of Theorem 3.5 to m = 2.

Corollary 4.1. Let ε ∈ ]0, 1/2[ and let x0 ∈ H. For every n ∈ N, let α1,n ∈ ]0, 1/(1 + ε)], let α2,n ∈
]0, 1/(1 + ε)], let T1,n : H → H be α1,n-averaged, let T2,n : H → H be α2,n-averaged, let e1,n ∈ H, and let 
e2,n ∈ H. In addition, for every n ∈ N, let

λn ∈
�
ε,

(1 − ε)(1 + εφn)
φn

�
, where φn = α1,n + α2,n − 2α1,nα2,n

1 − α1,nα2,n
, (4.4)

and set

xn+1 = xn + λn

�
T1,n(T2,nxn + e2,n) + e1,n − xn

�
. (4.5)

Suppose that

S =
�

n∈N
Fix(T1,nT2,n) 
= ∅,

�

n∈N
λn�e1,n� < +∞, and

�

n∈N
λn�e2,n� < +∞. (4.6)

Then the following hold:

(i) (∀x ∈ S) 
�

n∈N �T1,nT2,nxn − T2,nxn + T2,nx − x�2 < +∞.
(ii) (∀x ∈ S) 

�
n∈N �T2,nxn − xn − T2,nx + x�2 < +∞.

(iii)
�

n∈N �T1,nT2,nxn − xn�2 < +∞.
(iv) Suppose that every weak sequential cluster point of (xn)n∈N is in S. Then (xn)n∈N converges weakly to 

a point in S, and the convergence is strong if int S 
= ∅.
(v) Suppose that lim dS(xn) = 0. Then (xn)n∈N converges strongly to a point in S.

Proof. For every n ∈ N, since φn ∈ ]0, 1[, ε < 1 − ε < (1 − ε)(1/φn + ε) and λn is therefore well defined in 
(4.4). Overall, the present setting is encompassed by that of Theorem 3.5 with m = 2.
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(i)–(ii): Let x ∈ S. We derive from Theorem 3.5(ii) with m = 2 that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�

n∈N

λn(1 − α1,n)
α1,n

��(Id − T1,n)T2,nxn − (Id − T1,n)T2,nx
��2

< +∞

�

n∈N

λn(1 − α2,n)
α2,n

��(Id − T2,n)xn − (Id − T2,n)x
��2

< +∞.

(4.7)

However, it follows from the assumptions that

(∀n ∈ N) T1,nT2,nx = x,
λn(1 − α1,n)

α1,n
� ε2, and λn(1 − α2,n)

α2,n
� ε2. (4.8)

Combining (4.7) and (4.8) yields the claims.
(iii): Let x ∈ S. Then, for every n ∈ N,

�T1,nT2,nxn − xn�2 =
��(T1,nT2,nxn − T2,nxn + T2,nx − x) + (T2,nxn − xn − T2,nx + x)

��2

� 2�T1,nT2,nxn − T2,nxn + T2,nx − x�2 + 2�T2,nxn − xn − T2,nx + x�2. (4.9)

Hence the claim follows from (i)–(ii).
(iv)–(v): These follow from Theorem 3.5(iii)–(iv). ✷

Definition 4.2. (See [1, Definition 2.3].) An operator A : H → 2H is demiregular at x ∈ dom A if, for every 
sequence ((xn, un))n∈N in gra A and every u ∈ Ax such that xn � x and un → u, we have xn → x.

Here are some examples of demiregular monotone operators.

Lemma 4.3. (See [1, Proposition 2.4].) Let A : H → 2H be monotone and suppose that x ∈ dom A. Then A
is demiregular at x in each of the following cases:

(i) A is uniformly monotone at x, i.e., there exists an increasing function θ : [0, +∞[ → [0, +∞] that 
vanishes only at 0 such that (∀u ∈ Ax)(∀(y, v) ∈ gra A) �x − y | u − v� � θ(�x − y�).

(ii) A is strongly monotone, i.e., there exists α ∈ ]0, +∞[ such that A − α Id is monotone.
(iii) JA is compact, i.e., for every bounded set C ⊂ H, the closure of JA(C) is compact. In particular, 

dom A is boundedly relatively compact, i.e., the intersection of its closure with every closed ball is 
compact.

(iv) A : H → H is single-valued with a single-valued continuous inverse.
(v) A is single-valued on dom A and Id − A is demicompact, i.e., for every bounded sequence (xn)n∈N in 

dom A such that (Axn)n∈N converges strongly, (xn)n∈N admits a strong cluster point.
(vi) A = ∂f , where f ∈ Γ0(H) is uniformly convex at x, i.e., there exists an increasing function θ :

[0, +∞[ → [0, +∞] that vanishes only at 0 such that

�
∀α ∈ ]0, 1[

�
(∀y ∈ dom f)

f
�
αx + (1 − α)y

�
+ α(1 − α)θ

�
�x − y�

�
� αf(x) + (1 − α)f(y). (4.10)

(vii) A = ∂f , where f ∈ Γ0(H) and, for every ξ ∈ R, {x ∈ H | f(x) � ξ} is boundedly compact.

Our extended forward–backward splitting scheme can now be presented.
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Proposition 4.4. Let β ∈ ]0, +∞[, let ε ∈ ]0, min{1/2, β}[, let x0 ∈ H, let A : H → 2H be maximally 
monotone, and let B : H → H be β-cocoercive, i.e.,

(∀x ∈ H)(∀y ∈ H) �x − y | Bx − By� � β�Bx − By�2. (4.11)

Furthermore, let (γn)n∈N be a sequence in [ε, 2β/(1 + ε)], and let (an)n∈N and (bn)n∈N be sequences in H
such that 

�
n∈N �an� < +∞ and 

�
n∈N �bn� < +∞. Suppose that zer(A + B) 
= ∅ and, for every n ∈ N, let

λn ∈
�
ε, (1 − ε)

�
2 + ε − γn

2β

��
(4.12)

and set

xn+1 = xn + λn

�
JγnA

�
xn − γn(Bxn + bn)

�
+ an − xn

�
. (4.13)

Then the following hold:

(i)
�

n∈N �JγnA(xn − γnBxn) − xn�2 < +∞.
(ii) Let x ∈ zer(A + B). Then 

�
n∈N �Bxn − Bx�2 < +∞.

(iii) (xn)n∈N converges weakly to a point in zer(A + B).
(iv) Suppose that one of the following is satisfied:

(a) A is demiregular at every point in zer(A + B).
(b) B is demiregular at every point in zer(A + B).
(c) int S 
= ∅.

Then (xn)n∈N converges strongly to a point in zer(A + B).

Proof. We are going to establish the results as an application of Corollary 4.1. Set

(∀n ∈ N) T1,n = JγnA, T2,n = Id − γnB, e1,n = an, and e2,n = −γnbn. (4.14)

Then, for every n ∈ N, T1,n is α1,n-averaged with α1,n = 1/2 [6, Remark 4.24(iii) and Corollary 23.8] and 
T2,n is α2,n-averaged with α2,n = γn/(2β) [6, Proposition 4.33]. Moreover, for every n ∈ N,

φn = α1,n + α2,n − 2α1,nα2,n

1 − α1,nα2,n
= 2β

4β − γn
(4.15)

and, therefore,

λn ∈
�
ε, (1 − ε)(1 + εφn)/φn

�
, (4.16)

in conformity with (4.4). In turn, (2.12) yields

(∀n ∈ N) λn � 1
φn

+ ε <
1

α1,n
+ ε = 2 + ε. (4.17)

Consequently,

�

n∈N
λn�e1,n� = (2 + ε)

�

n∈N
�an� < +∞ and

�

n∈N
λn�e2,n� � 2(2 + ε)β

�

n∈N
�bn� < +∞. (4.18)
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On the other hand, [6, Proposition 25.1(iv)] yields

(∀n ∈ N) zer(A + B) = Fix(T1,nT2,n). (4.19)

Altogether, S = zer(A + B) 
= ∅, (4.6) is satisfied, and (4.13) is an instance of (4.5).
(i): This is a consequence of Corollary 4.1(iii) and (4.14).
(ii): Corollary 4.1(ii) and (4.14) yield

�

n∈N
�Bxn − Bx�2 =

�

n∈N
γ−2

n �T2,nxn − xn − T2,nx + x�2

� ε−2
�

n∈N
�T2,nxn − xn − T2,nx + x�2

< +∞. (4.20)

(iii): Let (kn)n∈N be a strictly increasing sequence in N and let y ∈ H be such that xkn
� y. In view of 

Corollary 4.1(iv), it remains to show that y ∈ zer(A + B). We set

(∀n ∈ N) yn = JγnA(xn − γnBxn) and un = xn − yn

γn
− Bxn, (4.21)

and note that

(∀n ∈ N) un ∈ Ayn. (4.22)

We derive from (i) that yn − xn → 0, hence ykn
� y. Now let x ∈ zer(A + B). Then (ii) implies that Bxn →

Bx, hence un → −Bx. However, since (4.11) implies that B is maximally monotone [6, Example 20.28], 
it follows from the properties xkn

� y and Bxkn
→ Bx that By = Bx [6, Proposition 20.33(ii)]. Thus, 

ykn
� y and ukn

→ −By, and it therefore follows from (4.22) and [6, Proposition 20.33(ii)] that −By ∈ Ay, 
i.e., y ∈ zer(A + B).

(iv): By (iii), there exists x ∈ zer(A + B) such that xn � x. In addition, we derive from (4.21), (i), and 
(ii) that yn � x and un → −Bx ∈ Ax.

(iv)(a): Suppose that A is demiregular at x. Then (4.22) yields yn → x and (i) implies that xn → x.
(iv)(b): Suppose that B is demiregular at x. Since xn � x and Bxn → Bx by (ii), we have xn → x.
(iv)(c): This follows from (iii) and Corollary 4.1(iv). ✷

Remark 4.5. Proposition 4.4 extends [11, Corollary 6.5] and [1, Theorem 2.8], which impose the additional 
assumption that the relaxation parameters (λn)n∈N satisfy (∀n ∈ N) λn � 1. By contrast, the relaxation 
range allowed in (4.12) can be an arbitrarily large interval in ]0, 2[ and the maximum relaxation is always 
strictly greater than 1.

Remark 4.6. In Proposition 4.4, the parameters (γn)n∈N are allowed to vary at each iteration. Now suppose 
that they are restricted to a fixed value γ ∈ ]0, 2β[. Then, as in (3.20), (4.13) reduces to xn+1 = xn +
λn(Txn +en −xn), where T = JγA(Id−γB) is α-averaged and en is given by (3.22). In this special case, the 
weak convergence of (xn)n∈N to a zero of A +B can be derived from Proposition 3.4(iii) applied with Tn ≡ T , 
αn ≡ α, and (λn)n∈N in ]0, 1/α[ satisfying

�
n∈N λn(1/α−λn) = +∞ (see also [6, Proposition 5.15(iii)]). This 

approach was proposed in [6, Theorem 25.8(i)] with the constant α = 
φ(1/2, γ/(2β)) = 1/(1/2 +min{1, β/γ})
of (2.13), and revisited in [14, Lemma 4.4] in the case of subdifferentials of convex functions with the sharper 
constant α = φ(1/2, γ/(2β)) = 2β/(4β − γ) of [16, Theorem 3(b)] (see Remark 2.7).
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Proposition 4.7. Let β ∈ ]0, +∞[, let ε ∈ ]0, min{1/2, β}[, let x0 ∈ H, let f ∈ Γ0(H), let g : H → R be convex 
and differentiable with a 1/β-Lipschitz gradient, and suppose that the set S of solutions to the problem

minimize
x∈H

f(x) + g(x) (4.23)

is nonempty. Furthermore, let (γn)n∈N be a sequence in [ε, 2β/(1 + ε)], and let (an)n∈N and (bn)n∈N be 
sequences in H such that 

�
n∈N �an� < +∞ and 

�
n∈N �bn� < +∞. For every n ∈ N, let λn ∈ [ε, (1 −

ε)(2 + ε − γn/(2β))] and set

xn+1 = xn + λn

�
proxγnf

�
xn − γn

�
∇g(xn) + bn

��
+ an − xn

�
. (4.24)

Then the following hold:

(i)
�

n∈N �proxγnf (xn − γn∇g(xn)) − xn�2 < +∞.
(ii) Let x ∈ S. Then 

�
n∈N �∇g(xn) − ∇g(x)�2 < +∞.

(iii) (xn)n∈N converges weakly to a point in S.
(iv) Suppose that ∂f or ∇g is demiregular at every point in S, or that int S 
= ∅. Then (xn)n∈N converges 

strongly to a point in S.

Proof. Using the same arguments as in [6, Section 27.3], one shows that this is the specialization of Propo-
sition 4.4 to the case when A = ∂f and B = ∇g. ✷
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