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STOCHASTIC QUASI-FEJÉR BLOCK-COORDINATE FIXED POINT
ITERATIONS WITH RANDOM SWEEPING∗

PATRICK L. COMBETTES† AND JEAN-CHRISTOPHE PESQUET‡

Abstract. This work proposes block-coordinate fixed point algorithms with applications to
nonlinear analysis and optimization in Hilbert spaces. The asymptotic analysis relies on a notion of
stochastic quasi-Fejér monotonicity, which is thoroughly investigated. The iterative methods under
consideration feature random sweeping rules to select arbitrarily the blocks of variables that are
activated over the course of the iterations and they allow for stochastic errors in the evaluation of the
operators. Algorithms using quasi-nonexpansive operators or compositions of averaged nonexpansive
operators are constructed, and weak and strong convergence results are established for the sequences
they generate. As a by-product, novel block-coordinate operator splitting methods are obtained
for solving structured monotone inclusion and convex minimization problems. In particular, the
proposed framework leads to random block-coordinate versions of the Douglas–Rachford and forward-
backward algorithms and of some of their variants. In the standard case of m = 1 block, our results
remain new as they incorporate stochastic perturbations.
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1. Introduction. The main advantage of block-coordinate algorithms is to
result in implementations with reduced complexity and memory requirements per
iteration. These benefits have long been recognized [3, 18, 50] and have become
increasingly important in very-large-scale problems. In addition, block-coordinate
strategies may lead to faster [20] or distributed [41] implementations. In this paper,
we propose a block-coordinate fixed point algorithmic framework to solve a variety of
problems in Hilbertian nonlinear numerical analysis and optimization. Algorithmic
fixed point theory in Hilbert spaces provides a unifying and powerful framework for
the analysis and the construction of a wide array of solution methods in such prob-
lems [5, 7, 19, 22, 66]. Although several block-coordinate algorithms exist for solving
specific optimization problems in Euclidean spaces, a framework for dealing with gen-
eral fixed point methods in Hilbert spaces and which guarantees the convergence of
the iterates does not seem to exist at present. In the proposed constructs, a random
sweeping strategy is employed for selecting the blocks of coordinates which are acti-
vated over the iterations. The sweeping rule allows for an arbitrary sampling of the
indices of the coordinates. Furthermore, the algorithms tolerate stochastic errors in
the implementation of the operators. This paper provides the first general stochastic
block-coordinate fixed point framework with guaranteed convergence of the iterates.
It generates a wide range of new algorithms, which will be illustrated by numerical
experiments elsewhere.
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A main ingredient for proving the convergence of many fixed point algorithms
is the fundamental concept of (quasi-)Fejér monotonicity [21, 23, 33, 57]. In section
2, refining the seminal work of [34, 35, 36], we revisit this concept from a stochastic
standpoint. By exploiting properties of almost supermartingales [59], we establish
novel almost sure convergence results for an abstract stochastic iteration scheme. In
section 3, this scheme is applied to the design of block-coordinate algorithms for
relaxed iterations of quasi-nonexpansive operators. A simple instance of such iter-
ations is the Krasnosel’skĭı–Mann method, which has found numerous applications
[7, 17]. In section 4, we design block-coordinate algorithms involving compositions
of averaged nonexpansive operators. The results are used in section 5 to construct
block-coordinate algorithms for structured monotone inclusion and convex minimiza-
tion problems. Splitting algorithms have recently become tools of choice in signal
processing and machine learning; see, e.g., [17, 27, 29, 31, 56, 60]. Providing versatile
block-coordinate versions of these algorithms is expected to benefit these emerging
areas, as well as more traditional fields of applications of splitting methods, e.g., [39].
One of the offsprings of our work is an original block-coordinate primal-dual algorithm
which can be employed to solve a large class of variational problems.

2. Stochastic quasi-Fejér monotonicity. Fejér monotonicity has been ex-
ploited in various areas of nonlinear analysis and optimization to unify the conver-
gence proofs of deterministic algorithms; see, e.g., [7, 23, 33, 57]. In the late 1960s,
this notion was revisited in a stochastic setting in Euclidean spaces [34, 35, 36]. In this
section, we investigate a notion of stochastic quasi-Fejér monotone sequence in Hilbert
spaces and apply the results to a general stochastic iterative method. Throughout
the paper, the following notation will be used.

Notation 2.1. H is a separable real Hilbert space with scalar product · | ·, as-
sociated norm  · , and Borel σ-algebra B. Id denotes the identity operator on H
and  and → denote, respectively, weak and strong convergence in H. The sets of
strong and weak sequential cluster points of a sequence (xn)n∈N in H are denoted by
S(xn)n∈N and W(xn)n∈N, respectively. The underlying probability space is (Ω,F,P).
A H-valued random variable is a measurable map x : (Ω,F) → (H,B). The σ-algebra
generated by a family Φ of random variables is denoted by σ(Φ). Let F = (Fn)n∈N
be a sequence of sub-sigma algebras of F such that (∀n ∈ N) Fn ⊂ Fn+1. We denote
by +(F ) the set of sequences of [0,+∞[-valued random variables (ξn)n∈N such that,
for every n ∈ N, ξn is Fn-measurable. We set

(2.1) (∀p ∈ ]0,+∞[) p+(F ) =


(ξn)n∈N ∈ +(F )




n∈N
ξpn < +∞ P-a.s.



and

(2.2) ∞+ (F ) =


(ξn)n∈N ∈ +(F )

 sup
n∈N

ξn < +∞ P-a.s.


.

Given a sequence (xn)n∈N of H-valued random variables, we define

(2.3) X = (Xn)n∈N, where (∀n ∈ N) Xn = σ(x0, . . . , xn).

Equalities and inequalities involving random variables will always be understood to
hold P-almost surely, even if the expression “P-a.s.” is not explicitly written. For
background on probability in Hilbert spaces, see [37, 42].
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Lemma 2.2 (see [59, Theorem 1]). Let F = (Fn)n∈N be a sequence of sub-sigma
algebras of F such that (∀n ∈ N) Fn ⊂ Fn+1. Let (αn)n∈N ∈ +(F ), (ϑn)n∈N ∈
+(F ), (ηn)n∈N ∈ 1+(F ), and (χn)n∈N ∈ 1+(F ) be such that

(2.4) (∀n ∈ N) E(αn+1 |Fn) + ϑn � (1 + χn)αn + ηn P-a.s.

Then (ϑn)n∈N ∈ 1+(F ) and (αn)n∈N converges P-a.s. to a [0,+∞[-valued random
variable.

Proposition 2.3. Let F be a nonempty closed subset of H, let φ : [0,+∞[ →
[0,+∞[ be a strictly increasing function such that limt→+∞ φ(t) = +∞, and let
(xn)n∈N be a sequence of H-valued random variables. Suppose that, for every z ∈ F,
there exist (χn(z))n∈N ∈ 1+(X ), (ϑn(z))n∈N ∈ +(X ), and (ηn(z))n∈N ∈ 1+(X ) such
that the following is satisfied P-a.s.:

(2.5) (∀n ∈ N) E(φ(xn+1 − z) |Xn) + ϑn(z) � (1 + χn(z))φ(xn − z) + ηn(z).

Then the following hold:

(i) (∀z ∈ F)


n∈N ϑn(z) < +∞ P-a.s.

.

(ii) (xn)n∈N is bounded P-a.s.

(iii) There exists Ω ∈ F such that P(Ω) = 1 and, for every ω ∈ Ω and every z ∈ F,
(xn(ω)− z)n∈N converges.

(iv) Suppose that W(xn)n∈N ⊂ F P-a.s. Then (xn)n∈N converges weakly P-a.s. to
an F-valued random variable.

(v) Suppose that S(xn)n∈N∩F = ∅ P-a.s. Then (xn)n∈N converges strongly P-a.s.
to an F-valued random variable.

(vi) Suppose that S(xn)n∈N = ∅ P-a.s. and that W(xn)n∈N ⊂ F P-a.s. Then
(xn)n∈N converges strongly P-a.s. to an F-valued random variable.

Proof. (i) Fix z ∈ F. It follows from (2.5) and Lemma 2.2 that


n∈N ϑn(z) <
+∞ P-a.s.

(ii) Let z ∈ F and set (∀n ∈ N) ξn = xn−z. We derive from (2.5) and Lemma 2.2
that (φ(ξn))n∈N converges P-a.s., say, φ(ξn) → α P-a.s., where α is a [0,+∞[-valued
random variable. In turn, since limt→+∞ φ(t) = +∞, (ξn)n∈N is bounded P-a.s. and
so is (xn)n∈N. For subsequent use, let us also note that

(2.6) (xn − z)n∈N converges to a [0,+∞[-valued random variable P-a.s.

Indeed, take ω ∈ Ω such that (ξn(ω))n∈N is bounded. Suppose that there exist
τ(ω) ∈ [0,+∞[, ζ(ω) ∈ [0,+∞[, and subsequences (ξkn(ω))n∈N and (ξln(ω))n∈N such
that ξkn(ω) → τ(ω) and ξln(ω) → ζ(ω) > τ(ω), and let δ(ω) ∈ ]0, (ζ(ω)− τ(ω))/2[.
Then, for n sufficiently large, ξkn(ω) � τ(ω)+ δ(ω) < ζ(ω)− δ(ω) � ξln(ω) and, since
φ is strictly increasing, φ(ξkn(ω)) � φ(τ(ω) + δ(ω)) < φ(ζ(ω) − δ(ω)) � φ(ξln(ω)).
Taking the limit as n → +∞ yields α(ω) � φ(τ(ω) + δ(ω)) < φ(ζ(ω)− δ(ω)) � α(ω),
which is impossible. It follows that τ(ω) = ζ(ω) and, in turn, that ξn(ω) → τ(ω).
Thus, ξn → τ P-a.s.

(iii) Since H is separable, there exists a countable set Z such that Z = F. According
to (2.6), for every z ∈ F, there exists a set Ωz ∈ F such that P(Ωz) = 1 and, for every

ω ∈ Ωz, the sequence (xn(ω)−z)n∈N converges. Now set Ω =


z∈Z Ωz and let �Ω be

its complement. Then, since Z is countable, P(Ω) = 1 − P(�Ω) = 1− P(


z∈Z �Ωz) �
1−z∈Z P(�Ωz) = 1, hence P(Ω) = 1. We now fix z ∈ F. Since Z = F, there exists a
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sequence (zk)k∈N in Z such that zk → z. As just seen, (2.6) yields

(2.7) (∀k ∈ N)(∃ τk : Ω → [0,+∞[)(∀ω ∈ Ωzk) xn(ω)− zk → τk(ω).

Now let ω ∈ Ω. We have

(2.8) (∀k ∈ N)(∀n ∈ N) − zk − z � xn(ω)− z − xn(ω)− zk � zk − z.

Therefore

(∀k ∈ N) − zk − z � lim
n→+∞

xn(ω)− z − lim
n→+∞

xn(ω)− zk

= lim
n→+∞

xn(ω)− z − τk(ω)

� lim
n→+∞

xn(ω)− z − τk(ω)

= lim
n→+∞

xn(ω)− z − lim
n→+∞

xn(ω)− zk

� zk − z.(2.9)

Hence, taking the limit as k → +∞ in (2.9), we obtain that (xn(ω) − z)n∈N con-
verges; more precisely, limn→+∞ xn(ω)− z = limk→+∞ τk(ω).

(iv) By assumption, there exists Ω ∈ F such that P(Ω) = 1 and (∀ω ∈ Ω)
W(xn(ω))n∈N ⊂ F. Now define Ω as in the proof of (iii), let ω ∈ Ω ∩ Ω, and let x(ω)
and y(ω) be two points in W(xn(ω))n∈N, say, xkn(ω)  x(ω) and xln(ω)  y(ω).
Then (iii) implies that (xn(ω) − x(ω))n∈N and (xn(ω) − y(ω))n∈N converge. In
turn, since

(2.10) (∀n ∈ N) xn(ω) | x(ω)− y(ω)

=
1

2


xn(ω)− y(ω)2 − xn(ω)− x(ω)2 + x(ω)2 − y(ω)2


,

the sequence (xn(ω) | x(ω)− y(ω))n∈N converges, say,

(2.11) xn(ω) | x(ω)− y(ω) → (ω).

However, since xkn(ω)  x(ω), we have x(ω) | x(ω)− y(ω) = (ω). Likewise,
passing to the limit along the subsequence (xln(ω))n∈N in (2.11) yields

(2.12) y(ω) | x(ω)− y(ω) = (ω).

Thus,

(2.13) 0 = x(ω) | x(ω)− y(ω) − y(ω) | x(ω)− y(ω) = x(ω)− y(ω)2.

This shows that x(ω) = y(ω). Since ω ∈ Ω, (xn(ω))n∈N is bounded and we invoke [7,

Lemma 2.38] to conclude that xn(ω)  x(ω) ∈ F. Altogether, since P(Ω ∩ Ω) = 1,
xn  x P-a.s. and the measurability of x follows from [55, Corollary 1.13].

(v) Let x ∈ S(xn)n∈N ∩F P-a.s. Then there exists Ω ∈ F such that P(Ω) = 1 and

(∀ω ∈ Ω) lim xn(ω) − x(ω) = 0. Now let Ω be as in (iii) and let ω ∈ Ω ∩ Ω. Then

P(Ω ∩ Ω) = 1, x(ω) ∈ F, and (iii) implies that (xn(ω)− x(ω))n∈N converges. Thus,
lim xn(ω)− x(ω) = 0. We conclude that xn → x P-a.s.
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(vi)⇒(v) Since ∅ = S(xn)n∈N ⊂ W(xn)n∈N ⊂ F P-a.s., we have S(xn)n∈N ∩ F =
∅ P-a.s.

Remark 2.4. Suppose that φ : t → t2 in (2.5). Then special cases of Proposi-
tion 2.3 are stated in several places in the literature. Thus, stochastic quasi-Fejér
sequences were first discussed in [34] in the case when H is a Euclidean space and for
every n ∈ N, ϑn = χn = 0 and ηn is deterministic. A Hilbert space version of the
results of [34] appears in [4] without proof. Finally, the case when all the processes
are deterministic in (2.5) is discussed in [21].

The analysis of our main algorithms will rely on the following key illustration
of Proposition 2.3. This result involves a general stochastic iterative process and it
should also be of interest in the analysis of the asymptotic behavior of a broad class
of stochastic algorithms, beyond those discussed in the present paper.

Theorem 2.5. Let F be a nonempty closed subset of H, let (λn)n∈N be a sequence
in ]0, 1], and let (tn)n∈N, (xn)n∈N, and (en)n∈N be sequences of H-valued random
variables. Suppose that the following hold:

(i) (∀n ∈ N) xn+1 = xn + λn(tn + en − xn).
(ii)


n∈N λn


E(en2 |Xn) < +∞ P-a.s.

(iii) For every z ∈ F, there exist (θn(z))n∈N ∈ +(X ), (μn(z))n∈N ∈ ∞+ (X ),
and (νn(z))n∈N ∈ ∞+ (X ) such that (λnμn(z))n∈N ∈ 1+(X ), (λnνn(z))n∈N ∈

1/2
+ (X ), and the following is satisfied P-a.s.:

(2.14) (∀n ∈ N) E(tn − z2 |Xn) + θn(z) � (1 + μn(z))xn − z2 + νn(z).

Then

(2.15) (∀z ∈ F)



n∈N
λnθn(z) < +∞ P-a.s.



and

(2.16)


n∈N
λn(1 − λn)E(tn − xn2 |Xn) < +∞ P-a.s.

Furthermore, suppose that
(iv) W(xn)n∈N ⊂ F P-a.s.

Then (xn)n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addi-
tion,

(v) S(xn)n∈N = ∅ P-a.s.,
then (xn)n∈N converges strongly P-a.s. to x.

Proof. Let z ∈ F and set

(2.17) (∀n ∈ N) εn = λn


E(en2 |Xn).

It follows from Jensen’s inequality and (iii) that

(∀n ∈ N) E(tn − z |Xn) �

E(tn − z2 |Xn)

�

(1 + μn(z))xn − z2 + νn(z)

�

1 + μn(z)xn − z+


νn(z)

� (1 + μn(z)/2)xn − z+

νn(z).(2.18)
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On the other hand, (i) and the triangle inequality yield

(2.19) (∀n ∈ N) xn+1 − z � (1− λn)xn − z+ λntn − z+ λnen.

Consequently,

(∀n ∈ N) E(xn+1 − z |Xn) � (1− λn)xn − z+ λnE(tn − z |Xn)

+ λnE(en |Xn)

�

1 +

λnμn(z)

2


xn − z

+ λn


νn(z) + λn


E(en2 |Xn)

=

1 +

λnμn(z)

2


xn − z+


λnνn(z) + εn.(2.20)

Upon applying Proposition 2.3(ii) with φ : t → t, we deduce from (2.20) that (xn)n∈N
is almost surely bounded and, by virtue of assumption (iii), that (E(tn−z2 |Xn))n∈N
is likewise. Thus, there exist ]0,+∞[-valued random variables ρ1(z) and ρ2(z) such
that, almost surely,

(2.21) (∀n ∈ N) xn − z � ρ1(z) and

E(tn − z2 |Xn) � ρ2(z).

Now set
(2.22)

(∀n ∈ N)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

χn(z) = λnμn(z),

ξn(z) = 2λn(1− λn)xn − z en+ 2λ2
ntn − z en+ λ2

nen2,
ϑn(z) = λnθn(z) + λn(1 − λn)E(tn − xn2 |Xn),

ηn(z) = E(ξn(z) |Xn) + λnνn(z).

On the one hand, it follows from (2.22), the Cauchy–Schwarz inequality, and (2.17)
that

(∀n ∈ N) E(ξn(z) |Xn) = 2λn(1− λn)xn − zE(en |Xn)

+ 2λ2
nE(tn − z en |Xn) + λ2

nE(en2 |Xn)

� 2λnxn − z

E(en2 |Xn)

+ 2λn


E(tn − z2 |Xn)


E(en2 |Xn)

+ λ2
nE(en2 |Xn)

� 2(ρ1(z) + ρ2(z))εn + ε2n.(2.23)

In turn, we deduce from (2.17), (2.22), (ii), and (iii) that

(2.24)

ηn(z)


n∈N ∈ 1+(X ) and


χn(z)


n∈N ∈ 1+(X ).

On the other hand, we derive from (i), [7, Corollary 2.14], and (2.22) that

(∀n ∈ N) xn+1 − z2 = (1− λn)(xn − z) + λn(tn − z)2

+ 2λn


(1− λn)(xn − z) + λn


tn − z


| en

+ λ2

nen2

� (1− λn)xn − z2 + λntn − z2

− λn(1 − λn)tn − xn2 + ξn(z).(2.25)
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Hence, (iii), (2.22), and (2.23) imply that

(∀n ∈ N) E(xn+1 − z2 |Xn)

� (1− λn)xn − z2 + λnE(tn − z2 |Xn)− λn(1− λn)E(tn − xn2 |Xn)

+ E(ξn(z) |Xn)

� (1− λn)xn − z2 + λn


(1 + μn(z))xn − z2 + νn(z)− θn(z)



− λn(1 − λn)E(tn − xn2 |Xn) + E(ξn(z) |Xn)

� (1 + χn(z))xn − z2 − ϑn(z) + ηn(z).(2.26)

Thus, in view of (2.24), applying Proposition 2.3(i) with φ : t → t2 yields
n∈N ϑn(z) < +∞ P-a.s. and it follows from (2.22) that (2.15) and (2.16) are es-

tablished. Finally, the weak convergence assertion follows from (iv) and Proposi-
tion 2.3(iv) applied with φ : t → t2. Likewise, the strong convergence assertion follows
from (iv)–(v) and Proposition 2.3(vi) applied with φ : t → t2.

Definition 2.6. An operator T : H → H is nonexpansive if it is 1-Lipschitz, and
it is demicompact at y ∈ H if, for every bounded sequence (yn)n∈N in H such that
Tyn − yn → y, we have S(yn)n∈N = ∅ [54].

Although our primary objective is to apply Theorem 2.5 to block-coordinate
methods, it also yields new results for classical methods. As an illustration,
the following application describes a Krasnosel’skĭı–Mann iteration with stochastic
errors.

Corollary 2.7. Let (λn)n∈N be a sequence in [0, 1] such that


n∈N λn(1−λn) =
+∞ and let T : H → H be a nonexpansive operator such that FixT = ∅. Let x0 and
(en)n∈N be H-valued random variables. Iterate

(2.27)
for n = 0, 1, . . .
xn+1 = xn + λn


Txn + en − xn


.

In addition, assume that


n∈N λn


E(en2 |Xn) < +∞ P-a.s. Then the following

hold:
(i) (xn)n∈N converges weakly P-a.s. to a (FixT)-valued random variable.
(ii) Suppose that T is demicompact at 0 (see Definition 2.6). Then (xn)n∈N con-

verges strongly P-a.s. to a (FixT)-valued random variable.
Proof. Set F = FixT. Since T is continuous, T is measurable and F is closed.

Now let z ∈ F and set (∀n ∈ N) tn = Txn. Then, using the nonexpansiveness of T,
we obtain

(2.28) (∀n ∈ N)

⎧
⎪⎨
⎪⎩

xn+1 = xn + λn(tn + en − xn),

E(tn − xn2 |Xn) = Txn − xn2,
E(tn − z2 |Xn) = Txn − Tz2 � xn − z2.

It follows that properties (i)–(iii) in Theorem 2.5 are satisfied with (∀n ∈ N) θn = 0,

μn = 0, and νn = 0. Hence, (2.16) and (2.28) imply the existence of Ω ∈ F such that

P(Ω) = 1 and

(2.29) (∀ω ∈ Ω)


n∈N
λn(1− λn)Txn(ω)− xn(ω)2 < +∞.
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Moreover,

(∀n ∈ N) Txn+1 − xn+1 = Txn+1 − Txn + (1 − λn)(Txn − xn)− λnen
� Txn+1 − Txn+ (1− λn)Txn − xn+ λnen
� xn+1 − xn+ (1− λn)Txn − xn+ λnen
� λnTxn − xn+ (1− λn)Txn − xn+ 2λnen
= Txn − xn+ 2λnen(2.30)

and, therefore,

(∀n ∈ N) E(Txn+1 − xn+1 |Xn) � Txn − xn+ 2λnE(en |Xn)

� Txn − xn+ 2λn


E(en2 |Xn).(2.31)

In turn, Lemma 2.2 implies that there exists Ω ⊂ Ω such that Ω ∈ F, P(Ω) = 1, and,

for every ω ∈ Ω, (Txn(ω)− xn(ω))n∈N converges.

(i) It is enough to establish property (iv) of Theorem 2.5. Let ω ∈ Ω and let
x ∈ W(xn(ω))n∈N, say, xkn(ω)  x. In view of (2.29), since


n∈N λn(1−λn) = +∞,

we have lim Txn(ω)− xn(ω) = 0. Therefore,

(2.32) Txn(ω)− xn(ω) → 0.

Altogether, xkn(ω)  x and Txkn(ω) − xkn(ω) → 0. Since T is nonexpansive, the
demiclosedness principle [7, Corollary 4.18] asserts that x ∈ F.

(ii) It is enough to establish property (v) of Theorem 2.5. Let ω ∈ Ω.
As shown above, (xn(ω))n∈N converges weakly and it is therefore bounded [7,
Lemma 2.38]. Hence, by demicompactness, (2.32) implies that S(xn(ω))n∈N = ∅.
Thus, S(xn)n∈N = ∅ P-a.s.

Remark 2.8. Corollary 2.7 extends [21, Theorem 5.5], which is restricted to
deterministic processes and therefore less realistic error models. As shown in [7, 19,
21], the Krasnosel’skĭı–Mann iteration process is at the core of many algorithms in
variational problems and optimization. Corollary 2.7 therefore provides stochastically
perturbed versions of these algorithms.

3. Single-layer random block-coordinate fixed point algorithms. In the
remainder of the paper, the following notation will be used.

Notation 3.1. H1, . . . ,Hm are separable real Hilbert spaces and H = H1⊕ · · ·⊕Hm

is their direct Hilbert sum. The scalar products and associated norms of these spaces
are all denoted by · | · and  · , respectively, and x = (x1, . . . , xm) denotes a generic
vector in H. Given a sequence (xn)n∈N = (x1,n, . . . , xm,n)n∈N of H-valued random
variables, we set (∀n ∈ N) Xn = σ(x0, . . . ,xn).

We recall that an operator T : H → H with fixed point set FixT is quasi-
nonexpansive if [7]

(3.1) (∀z ∈ FixT)(∀x ∈ H) Tx− z � x− z.

Theorem 3.2. Let (λn)n∈N be a sequence in ]0, 1[ such that infn∈N λn > 0 and
supn∈N λn < 1 and set D = {0, 1}m  {0}. For every n ∈ N, let Tn : H → H : x →
(Ti,n x)1�i�m be a quasi-nonexpansive operator where, for every i ∈ {1, . . . ,m},
Ti,n : H → Hi is measurable. Let x0 and (an)n∈N be H-valued random variables,



BLOCK-COORDINATE FIXED POINT ITERATIONS 1229

and let (εn)n∈N be identically distributed D-valued random variables. Iterate

(3.2)
for n = 0, 1, . . .

for i = 1, . . . ,m
xi,n+1 = xi,n + εi,nλn


Ti,n (x1,n, . . . , xm,n) + ai,n − xi,n


,

and set (∀n ∈ N) En = σ(εn). In addition, assume that the following hold:
(i) F =


n∈N FixTn = ∅.

(ii)


n∈N

E(an2 |Xn) < +∞.

(iii) For every n ∈ N, En and Xn are independent.
(iv) (∀i ∈ {1, . . . ,m}) pi = P[εi,0 = 1] > 0.

Then

(3.3) Tnxn − xn → 0 P-a.s.

Furthermore, suppose that
(v) W(xn)n∈N ⊂ F P-a.s.

Then (xn)n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addi-
tion,

(vi) S(xn)n∈N = ∅ P-a.s.,
then (xn)n∈N converges strongly P-a.s. to x.

Proof. We define a norm ||| · ||| on H by

(3.4) (∀x ∈ H) |||x|||2 =

m

i=1

1

pi
xi2.

We are going to apply Theorem 2.5 in (H, ||| · |||). Let us set

(3.5) (∀n ∈ N)


tn = (ti,n)1�i�m,

en = (εi,nai,n)1�i�m,

where (∀i ∈ {1, . . . ,m}) ti,n = xi,n + εi,n(Ti,n xn − xi,n).

Then it follows from (3.2) that

(3.6) (∀n ∈ N) xn+1 = xn + λn


tn + en − xn


,

while (ii) implies that

(3.7)


n∈N
λnE(|||en|||2 |Xn) �



n∈N
E(|||an|||2 |Xn) < +∞.

Since the operators (Tn)n∈N are quasi-nonexpansive, F is closed [6, section 2]. Now
let z ∈ F and set

(3.8) (∀n ∈ N)(∀i ∈ {1, . . . ,m}) qi,n : H×D → R : (x, ) → xi−zi+i(Ti,n x−xi)2.

Note that, for every n ∈ N and every i ∈ {1, . . . ,m}, since Ti,n is measurable, so are
the functions (qi,n(·, ))∈D. Consequently, since, for every n ∈ N, (iii) asserts that
the events ([εn = ])∈D form an almost sure partition of Ω and are independent from
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Xn, and since the random variables (qi,n(xn, ))1�i�m, ∈D are Xn-measurable, we
obtain [44, section 28.2]

(∀n ∈ N)(∀i ∈ {1, . . . ,m}) E(ti,n − zi2 |Xn) = E


qi,n(xn, εn)



∈D

1[εn=]

Xn



=


∈D

E(qi,n(xn, )1[εn=] |Xn)

=


∈D

E(1[εn=] |Xn)qi,n(xn, )

=


∈D

P[εn = ]qi,n(xn, ).(3.9)

Thus, (3.4), (3.5), (3.9), (3.8), (iv), and (3.1) yield

(∀n ∈ N) E(|||tn − z|||2 |Xn)

=

m

i=1

1

pi
E(ti,n − zi2 |Xn)

=

m

i=1

1

pi



∈D

P[εn = ]xi,n − zi + i(Ti,n xn − xi,n)2

=

m

i=1

1

pi



∈D,i=1

P[εn = ] Ti,nxn − zi2

+


∈D, i=0

P[εn = ] xi,n − zi2


= Tnxn − z2 +
m

i=1

1− pi
pi

xi,n − zi2

= |||xn − z|||2 + Tnxn − z2 − xn − z2

� |||xn − z|||2.(3.10)

Altogether, properties (i)–(iii) of Theorem 2.5 are satisfied with (∀n ∈ N) θn = μn =
νn = 0. We therefore derive from (2.16) that


n∈N λn(1− λn)E(|||tn − xn|||2 |Xn) <

+∞ P-a.s. In view of our conditions on (λn)n∈N, this yields

(3.11) E(|||tn − xn|||2 |Xn) → 0 P-a.s.

On the other hand, proceeding as in (3.9) leads to
(3.12)

(∀n ∈ N)(∀i ∈ {1, . . . ,m}) E(ti,n − xi,n2 |Xn) =


∈D

iP[εn = ]Ti,n xn − xi,n2.
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Hence, it follows from (3.4), (3.5), and (iv) that

(∀n ∈ N) E(|||tn − xn|||2 |Xn) =

m

i=1

1

pi
E(ti,n − xi,n2 |Xn)

=

m

i=1

1

pi



∈D

iP[εn = ]Ti,n xn − xi,n2

=

m

i=1

1

pi



∈D,i=1

P[εn = ]Ti,n xn − xi,n2

= Tnxn − xn2.(3.13)

Accordingly, (3.11) yields Tnxn − xn → 0 P-a.s. In turn, the weak and strong con-
vergence assertions are consequences of Theorem 2.5.

Remark 3.3. Let us make a few comments about Theorem 3.2.
(i) The binary variable εi,n signals whether the ith coordinate Ti,n of the operator

Tn is activated or not at iteration n.
(ii) Assumption (iv) guarantees that each operator in (Ti,n)1�i�m is activated

with a nonzero probability at each iteration n of algorithm (4.1). The sim-
plest scenario corresponds to the case when the block sweeping process assigns
nonzero probabilities to multivariate indices  ∈ D having a single component
equal to 1. Then only one of the operators in (Ti,n)1�i�m is activated ran-
domly. In general, the sweeping rule allows for an arbitrary sampling of the
indices {1, . . . ,m}.

(iii) In view of (3.3), (v) is satisfied if there exists Ω ∈ F such that P(Ω) = 1 and

(3.14) (∀ω ∈ Ω)

Tnxn(ω)− xn(ω) → 0 ⇒ W(xn(ω))n∈N ⊂ F


.

In the deterministic case, this is akin to the focusing conditions of [5]; see
[5, 6, 21] for examples of suitable sequences (Tn)n∈N. Likewise, (vi) is satisfied

if there exists Ω ∈ F such that P(Ω) = 1 and

(3.15) (∀ω ∈ Ω)

sup
n∈N

xn(ω) < +∞ and Tnxn(ω)− xn(ω) → 0



⇒ S(xn(ω))n∈N = ∅.

In the deterministic case, this is the demicompactness regularity condition of
[21, Definition 6.5]. Examples of suitable sequences (Tn)n∈N are provided in
[21].

Our first corollary is a random block-coordinate version of the Krasnosel’skĭı–
Mann iteration.

Corollary 3.4. Let (λn)n∈N be a sequence in ]0, 1[ such that infn∈N λn > 0
and supn∈N λn < 1, set D = {0, 1}m  {0}, and let T : H → H : x → (Ti x)1�i�m

be a nonexpansive operator such that FixT = ∅ where, for every i ∈ {1, . . . ,m},
Ti : H → Hi. Let x0 and (an)n∈N be H-valued random variables, and let (εn)n∈N be
identically distributed D-valued random variables. Iterate

(3.16)
for n = 0, 1, . . .

for i = 1, . . . ,m
xi,n+1 = xi,n + εi,nλn


Ti (x1,n, . . . , xm,n) + ai,n − xi,n


,
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and set (∀n ∈ N) En = σ(εn). In addition, assume that properties (ii)–(iv) of Theorem
3.2 hold. Then (xn)n∈N converges weakly P-a.s. to a (FixT)-valued random variable.
The convergence is strong if T is demicompact at 0 (see Definition 2.6).

Proof. This is an application of Theorem 3.2 with F = FixT and (∀n ∈ N)
Tn = T. Indeed, (3.14) follows from the demiclosedness principle [7, Corollary 4.18]
and (3.15) follows from the demicompactness assumption.

Remark 3.5. A special case of Corollary 3.4 appears in [41]. It corresponds
to the scenario in which H is finite-dimensional, T is firmly nonexpansive, and, for
every n ∈ N, λn = 1, an = 0, and only one block is activated as in Remark 3.3(ii).
Let us also note that a renorming similar to that performed in (3.4) was employed
in [49].

Next, we consider the construction of a fixed point of a family of averaged oper-
ators.

Definition 3.6. Let T : H → H be nonexpansive and let α ∈ ]0, 1[. Then T
is averaged with constant α, or α-averaged, if there exists a nonexpansive operator
R : H → H such that T = (1− α)Id + αR.

Proposition 3.7 (see [7, Proposition 4.25]). Let T : H → H be nonexpansive and
let α ∈ ]0, 1[. Then T is α-averaged if and only if

(3.17) (∀x ∈ H)(∀y ∈ H) Tx− Ty2 � x− y2 − 1− α

α
(Id − T)x− (Id − T)y2.

Corollary 3.8. Let χ ∈ ]0, 1[, let (αn)n∈N be a sequence in ]0, 1[, and set
D = {0, 1}m  {0}. For every n ∈ N, let λn ∈ [χ/αn, (1− χ)/αn] and let Tn : H →
H : x → (Ti,n x)1�i�m be an αn-averaged operator, where, for every i ∈ {1, . . . ,m},
Ti,n : H → Hi. Furthermore, let x0 and (an)n∈N be H-valued random variables, and
let (εn)n∈N be identically distributed D-valued random variables. Iterate

(3.18)
for n = 0, 1, . . .

for i = 1, . . . ,m
xi,n+1 = xi,n + εi,nλn


Ti,n (x1,n, . . . , xm,n) + ai,n − xi,n


,

and set (∀n ∈ N) En = σ(εn). Furthermore, assume that there exists Ω ∈ F such that

P(Ω) = 1 and the following hold:

(i) F =


n∈N FixTn = ∅.

(ii)


n∈N α
−1
n


E(an2 |Xn) < +∞.

(iii) For every n ∈ N, En, and Xn are independent.
(iv) (∀i ∈ {1, . . . ,m}) P[εi,0 = 1] > 0.

(v) (∀ω ∈ Ω) [α−1
n


Tnxn(ω)− xn(ω)


→ 0 ⇒ W(xn(ω))n∈N ⊂ F].

Then (xn)n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addi-
tion,

(vi) (∀ω ∈ Ω)


supn∈N xn(ω) < +∞ and α−1
n


Tnxn(ω) − xn(ω)


→ 0


⇒

S(xn(ω))n∈N = ∅

,

then (xn)n∈N converges strongly P-a.s. to x.

Proof. Set (∀n ∈ N) Rn = (1 − α−1
n )Id + α−1

n Tn and (∀i ∈ {1, . . . ,m}) Ri,n =
(1 − α−1

n )Id + α−1
n Ti,n. Moreover, set (∀n ∈ N) μn = αnλn andbn = α−1

n an. Then
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(∀n ∈ N) FixRn = FixTn and Rn is nonexpansive. In addition, we derive from (3.18)
that

(3.19) (∀n ∈ N)(∀i ∈ {1, . . . ,m}) xi,n+1 = xi,n + εi,nμn


Ri,n xn + bi,n − xi,n


.

Since (μn)n∈N lies in [χ, 1− χ] and

(3.20)


n∈N


E(bn2 |Xn) =



n∈N
α−1
n


E(an2 |Xn) < +∞,

the result follows from Theorem 3.2 and Remark 3.3(iii).
Remark 3.9. In the special case of a single-block (i.e., m = 1) and of deterministic

errors, Corollary 3.8 reduces to a scenario found in [22, Theorem 4.2].

4. Double-layer random block-coordinate fixed point algorithms. The
algorithm analyzed in this section comprises two successive applications of nonexpan-
sive operators at each iteration. We recall that Notation 3.1 is in force.

Theorem 4.1. Let (αn)n∈N and (βn)n∈N be sequences in ]0, 1[ such that
supn∈N αn < 1 and supn∈N βn < 1, let (λn)n∈N be a sequence in ]0, 1] such that
infn∈N λn > 0, and set D = {0, 1}m {0}. Let x0, (an)n∈N, and (bn)n∈N be H-valued
random variables, and let (εn)n∈N be identically distributed D-valued random vari-
ables. For every n ∈ N, let Rn : H → H be βn-averaged and let Tn : H → H : x →
(Ti,nx)1�i�m be αn-averaged, where (∀i ∈ {1, . . . ,m}) Ti,n : H → Hi. Iterate

(4.1)

for n = 0, 1, . . .⎢⎢⎢⎣
yn = Rnxn + bn
for i = 1, . . . ,m
xi,n+1 = xi,n + εi,nλn


Ti,nyn + ai,n − xi,n


,

and set (∀n ∈ N) En = σ(εn). In addition, assume that the following hold:
(i) F =


n∈N Fix (Tn ◦ Rn) = ∅.

(ii)


n∈N

E(an2 |Xn) < +∞ and


n∈N


E(bn2 |Xn) < +∞.

(iii) For every n ∈ N, En and Xn are independent.
(iv) (∀i ∈ {1, . . . ,m}) pi = P[εi,0 = 1] > 0.

Then

(4.2)

(∀z ∈ F) Tn(Rnxn)− Rnxn + Rnz → z


P-a.s.

and

(4.3)

(∀z ∈ F) xn − Rnxn + Rnz → z


P-a.s.

Furthermore, suppose that
(v) W(xn)n∈N ⊂ F P-a.s.

Then (xn)n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addi-
tion,

(vi) S(xn)n∈N = ∅ P-a.s.,
then (xn)n∈N converges strongly P-a.s. to x.

Proof. Let us prove that the result is an application of Theorem 2.5 in the
renormed Hilbert space (H, ||| · |||), where ||| · ||| is defined in (3.4). Note that

(4.4) (∀x ∈ H) x2 � |||x|||2 � 1

min
1�i�m

pi
x2
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and that, since the operators (Rn◦Tn)n∈N are nonexpansive, the sets (Fix (Tn◦Rn))n∈N
are closed [7, Corollary 4.15], and so is F. Next, for every n ∈ N, set rn = Rnxn, and
define tn, cn, dn, and en coordinatewise by

(∀i ∈ {1, . . . ,m})

⎧
⎪⎨
⎪⎩

ti,n = xi,n + εi,n(Ti,nrn − xi,n),

ci,n = εi,nai,n,

di,n = εi,n(Ti,nyn − Ti,nrn),

and ei,n = ci,n + di,n.

(4.5)

Then (4.1) implies that

(4.6) (∀n ∈ N) xn+1 = xn + λn


tn + en − xn


.

On the other hand, we derive from (4.5) that

(∀n ∈ N)

E(|||en|||2 |Xn) �


E(|||cn|||2 |Xn) +


E(|||dn|||2 |Xn)

�

E(|||an|||2 |Xn) +


E(|||dn|||2 |Xn).(4.7)

However, it follows from (4.5), (4.4), and the nonexpansiveness of the operators
(Tn)n∈N that

(∀n ∈ N) E(|||dn|||2 |Xn) �
1

min
1�i�m

pi
E

 m

i=1

εi,n(Ti,nyn − Ti,nrn)2
Xn



� 1

min
1�i�m

pi
E(Tnyn − Tnrn2 |Xn)

� 1

min
1�i�m

pi
E(yn − rn2 |Xn)

=
1

min
1�i�m

pi
E(bn2 |Xn).(4.8)

Consequently (4.4), (4.7), and (ii) yield



n∈N
λn


E(|||en|||2 |Xn) �

1

min
1�i�m

√
pi



n∈N


E(an2 |Xn) +



n∈N


E(bn2 |Xn)



< +∞.(4.9)

Now let z ∈ F, and set
(4.10)
(∀n ∈ N)(∀i ∈ {1, . . . ,m}) qi,n : H×D → R : (x, ) → xi− zi+ i(Ti,n(Rnx)− xi)2.
Observe that, for every n ∈ N and every i ∈ {1, . . . ,m}, by continuity of Rn and
Ti,n, Ti,n ◦ Rn is measurable, and the functions (qi,n(·, ))∈D are therefore likewise.
Consequently, using (iv) and arguing as in (3.9) leads to

(∀n ∈ N)(∀i ∈ {1, . . . ,m}) E(ti,n − zi2 |Xn)

=


∈D

E(qi,n(xn, )1[εn=] |Xn)

=


∈D

P[εn = ]xi,n − zi + i(Ti,nrn − xi,n)2.(4.11)
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Hence, recalling (3.4) and (iv), we obtain

(∀n ∈ N) E(|||tn − z|||2 |Xn)

=

m

i=1

1

pi
E(ti,n − zi2 |Xn)

=
m

i=1

1

pi



∈D

P[εn = ]xi,n − zi + i(Ti,nrn − xi,n)2

=
m

i=1

1

pi



∈D,i=1

P[εn = ] Ti,nrn − zi2

+


∈D,i=0

P[εn = ] xi,n − zi2


= Tnrn − z2 +
m

i=1

1− pi
pi

xi,n − zi2

= |||xn − z|||2 + Tnrn − z2 − xn − z2.(4.12)

However, we deduce from (i) and Proposition 3.7 that

(4.13) (∀n ∈ N) Tnrn − z2 + 1− αn

αn
rn − Tnrn − Rnz+ z2 � rn − Rnz2.

Combining (4.12) with (4.13) yields

(4.14) (∀n ∈ N) E(|||tn − z|||2 |Xn) +
1− αn

αn
rn − Tnrn − Rnz+ z2

� |||xn − z|||2 + Rnxn − Rnz2 − xn − z2.

Now set χ = min{1/supk∈Nαk, 1/supk∈Nβk} − 1. Then χ ∈ ]0,+∞[ and since, for
every n ∈ N, Rn is βn-averaged, Proposition 3.7 and (4.14) yield

(4.15) (∀n ∈ N) E(|||tn − z|||2 |Xn) + θn(z) � |||xn − z|||2,

where

(∀n ∈ N) θn(z) = χ

rn − Tnrn − Rnz+ z2 + xn − rn − z+ Rnz2


(4.16)

� 1− αn

αn
rn − Tnrn − Rnz+ z2 + 1− βn

βn
xn − rn − z+ Rnz2.(4.17)

We have thus shown that properties (i)–(iii) of Theorem 2.5 hold with (∀n ∈ N)
μn = νn = 0. Next, let Z be a countable set which is dense in F. Then (2.15) asserts
that

(4.18) (∀z ∈ Z)(∃Ωz ∈ F) P(Ωz) = 1 and (∀ω ∈ Ωz)


n∈N
λnθn(z,ω) < +∞.

Moreover, the event Ω =


z∈ZΩz is almost certain, i.e., P(Ω) = 1. Now fix z ∈ F. By
density, we can extract from Z a sequence (zk)k∈N such that zk → z. In turn, since
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infn∈N λn > 0, we derive from (4.16) and (4.18) that

(4.19) (∀k ∈ N)(∀ω ∈ Ω)

rn(ω)− Tnrn(ω)− Rnzk + zk → 0,

xn(ω)− rn(ω)− zk + Rnzk → 0.

Now set ζ = supn∈N

βn/(1− βn), and (∀n ∈ N) Sn = Id −Rn and pn = rn−Tnrn.

Then it follows from Proposition 3.7 that the operators (Sn)n∈N are ζ-Lipschitzian.
Consequently

(4.20) (∀k ∈ N)(∀n ∈ N)(∀ω ∈ Ω) − ζzk − z � −Snzk − Snz
� pn(ω) + Snz − pn(ω) + Snzk � Snzk − Snz � ζzk − z

and, therefore, (4.19) yields

(∀k ∈ N) − ζzk − z � lim
n→+∞

pn(ω) + Snz − lim
n→+∞

pn(ω) + Snzk

= lim
n→+∞

pn(ω) + Snz

� lim
n→+∞

pn(ω) + Snz

� lim
n→+∞

pn(ω) + Snz − lim
n→+∞

pn(ω) + Snzk

� ζzk − z.(4.21)

Since zk − z → 0 and P(Ω) = 1, we obtain pn+Snz → 0 P-a.s., which proves (4.2).
Likewise, set (∀n ∈ N) qn = xn − rn. Then, proceeding as in (4.21), (4.19) yields
qn + Snz → 0, which establishes (4.3). Finally, the weak and strong convergence
claims follow from (v), (vi), and Theorem 2.5.

Remark 4.2.
(i) Consider the special case when only one block is present (m = 1) and when the

error sequences (an)n∈N and (bn)n∈N, as well as x0, are deterministic. Then
the setting of Theorem 4.1 is found in [22, Theorem 6.3]. Our framework
therefore makes it possible to design block-coordinate versions of the algo-
rithms which comply with the two-layer format of [22, Theorem 6.3], such
as the forward-backward algorithm [22] or the algorithms of [14] and [56].
Theorem 4.1 will be applied to block-coordinate forward-backward splitting
in section 5.2.

(ii) Theorem 4.1(v) gives a condition for the P-a.s. weak convergence of a sequence
(xn)n∈N produced by algorithm (4.1) to a solution x. In infinite-dimensional
spaces, examples have been constructed for which the convergence is only
weak and not strong, i.e., (xn−x)n∈N does not converge to 0 P-a.s. [29, 40].
Even if, as in Theorem 4.1(vi), (xn−x)n∈N does converge to 0 P-a.s., there
is in general no theoretical upper bound on the worst-case behavior of the
rate of convergence, which can be arbitrarily slow [9]. The latter behavior is
also possible in Euclidean spaces [8, 65].

5. Applications to operator splitting. Let A : H → 2H be a set-valued op-
erator and let A−1 be its inverse, i.e., (∀(x, u) ∈ H2) x ∈ A−1u ⇔ u ∈ Ax. The
resolvent of A is JA = (Id + A)−1. The domain of A is domA =


x ∈ H

 Ax = ∅


and the graph of A is graA =

(x, u) ∈ H× H

 u ∈ Ax

. If A is monotone, then JA is

single-valued and nonexpansive, and, furthermore, if A is maximally monotone, then
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dom JA = H. We denote by Γ0(H) the class of lower semicontinuous convex functions
f : H → ]−∞,+∞] such that f ≡ +∞. The Moreau subdifferential of f ∈ Γ0(H) is the
maximally monotone operator

(5.1) ∂f : H → 2H : x →

u ∈ H

 (∀y ∈ H) y − x | u+ f(x) � f(y)

.

For every x ∈ H, f + x − ·2/2 has a unique minimizer, which is denoted by proxfx
[47]. We have

(5.2) proxf = J∂f .

For background on convex analysis and monotone operator theory, see [7]. We con-
tinue to use the standing Notation 3.1.

5.1. Random block-coordinate Douglas–Rachford splitting. We propose
a random sweeping, block-coordinate version of the Douglas–Rachford algorithm with
stochastic errors. The purpose of this algorithm is to construct iteratively a zero of the
sum of two maximally monotone operators and it has found applications in numerous
areas; see, e.g., [7, 11, 13, 24, 27, 32, 38, 43, 51, 52, 53].

Proposition 5.1. Set D = {0, 1}m  {0} and, for every i ∈ {1, . . . ,m}, let
Ai : Hi → 2Hi be maximally monotone and let Bi : H → 2Hi. Suppose that B : H →
2H : x → ×m

i=1Bix is maximally monotone and that the set F of solutions to the
problem

(5.3) find x1 ∈ H1, . . . , xm ∈ Hm such that

(∀i ∈ {1, . . . ,m}) 0 ∈ Aixi + Bi(x1, . . . , xm)

is nonempty. Set B−1 : u →×m

i=1Ciu, where, for every i ∈ {1, . . . ,m}, Ci : H → 2Hi .
We also consider the set F∗ of solutions to the dual problem

(5.4) find u1 ∈ H1, . . . , um ∈ Hm such that

(∀i ∈ {1, . . . ,m}) 0 ∈ −A−1
i (−ui) + Ci(u1, . . . , um).

Let γ ∈ ]0,+∞[, let (μn)n∈N be a sequence in ]0, 2[ such that infn∈N μn > 0 and
supn∈N μn < 2, let x0, z0, (an)n∈N, and (bn)n∈N be H-valued random variables,
and let (εn)n∈N be identically distributed D-valued random variables. Set JγB : x →
(Qix)1�i�m, where, for every i ∈ {1, . . . ,m}, Qi : H → Hi, iterate

(5.5)

for n = 0, 1, . . .⎢⎢⎢⎢⎣
for i = 1, . . . ,m

zi,n+1 = zi,n + εi,n

Qi(x1,n, . . . , xm,n) + bi,n − zi,n



xi,n+1 = xi,n + εi,nμn


JγAi(2zi,n+1 − xi,n) + ai,n − zi,n+1


,

and set (∀n ∈ N) En = σ(εn). Assume that the following hold:
(i)


n∈N

E(an2 |Xn) < +∞ and


n∈N


E(bn2 |Xn) < +∞.

(ii) For every n ∈ N, En and Xn are independent.
(iii) (∀i ∈ {1, . . . ,m}) pi = P[εi,0 = 1] > 0.

Then (xn)n∈N converges weakly P-a.s. to a H-valued random variable x such that
z = JγBx is an F-valued random variable and u = γ−1(x−z) is an F∗-valued random
variable. Furthermore, suppose that
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(iv) JγB is weakly sequentially continuous and bn  0 P-a.s.
Then zn  z P-a.s. and γ−1(xn − zn)  u P-a.s.

Proof. Set A : H → 2H : x →×m

i=1Aixi and (∀i ∈ {1, . . . ,m}) Ti = (2JγAi − Id ) ◦
(2Qi − Id ). Then T = (2JγA − Id ) ◦ (2JγB − Id ) is nonexpansive as the composition
of two nonexpansive operators [7, Corollary 23.10(ii)]. Furthermore, FixT = ∅ since
[22, Lemma 2.6(iii)]

(5.6) JγB(FixT) = zer (A+ B) = F = ∅.

Now set
(5.7)

(∀n ∈ N)


λn = μn/2,

en = 2

JγA(2JγBxn + 2bn − xn)− JγA(2JγBxn − xn) + an − bn


.

Then we derive from (5.5) that

(∀n ∈ N)(∀i ∈ {1, . . . ,m})
xi,n+1 = xi,n + εi,nμn


JγAi


2Qixn + 2bi,n − xi,n


+ ai,n − zi,n+1



= xi,n + εi,nλn


2JγAi


2Qixn − xi,n


+ ei,n − 2Qixn



= xi,n + εi,nλn


Tixn + ei,n − xi,n


,(5.8)

which is precisely the iteration process (3.16). Furthermore, we infer from (5.7) and
the nonexpansiveness of JγA [7, Corollary 23.10(i)] that

(∀n ∈ N) en2 � 4JγA(2JγBxn + 2bn − xn)− JγA(2JγBxn − xn) + an − bn2

� 12

JγA(2JγBxn + 2bn − xn)− JγA(2JγBxn − xn)2

+ an2 + bn2


� 12

an2 + 5bn2


(5.9)

and therefore that

(5.10) (∀n ∈ N)

E(en2 |Xn) � 2

√
3


E(an2 |Xn) +
√
5

E(bn2 |Xn)


.

Thus, we deduce from (i) that


n∈N

E(en2 |Xn) < +∞. Altogether, the almost

sure weak convergence of (xn)n∈N to a (FixT)-valued random variable x follows from
Corollary 3.4. In turn, (5.6) asserts that z = JγBx ∈ F P-a.s. Now set u = γ−1(x−z).
Then, P-a.s.,

(5.11) z = JγBx ⇔ x− z ∈ γBz ⇔ z ∈ B−1u

and

x ∈ FixT ⇔ x = (2JγA − Id )(2z − x)

⇔ z = JγA(2z − x)

⇔ z − x ∈ γAz

⇔ −z ∈ −A−1(−u).(5.12)

These imply that 0 ∈ −A−1(−u) + B−1u P-a.s., i.e., that u ∈ F∗ P-a.s. Finally,

assume that (iv) holds. Then there exists Ω ∈ F such that P(Ω) = 1 and (∀ω ∈ Ω)
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JγBxn(ω)  JγBx(ω) = z(ω). Now let i ∈ {1, . . . ,m}, ω ∈ Ω, and v ∈ H. Then
Qixn(ω) | vi → zi(ω) | vi and (5.5) yields

(5.13) (∀n ∈ N) zi,n+1(ω) | vi = zi,n(ω) | vi
+ εi,n(ω)


Qixn(ω) | vi+ bi,n(ω) | vi − zi,n(ω) | vi


.

However, according to (iii), at the expense of possibly taking ω in a smaller almost
sure event, εi,n(ω) = 1 infinitely often. Hence, there exists a monotone sequence
(kn)n∈N in N such that kn → +∞ and, for n ∈ N sufficiently large,

(5.14) zi,n+1(ω) | vi = Qixkn(ω) | vi+ bi,kn(ω) | vi.

Thus, since Qixkn(ω) | vi → zi(ω) | vi and bi,kn(ω) | vi → 0, we have
zi,n+1(ω)− zi(ω) | vi → 0. Hence,

(5.15) zn+1(ω)− z(ω) | v =
m

i=1

zi,n+1(ω)− zi(ω) | vi → 0.

This shows that zn  z P-a.s., which allows us to conclude that γ−1(xn − zn)
u P-a.s.

Remark 5.2. Let us make some connections between Proposition 5.1 and existing
results.

(i) In the standard case of a single block (m = 1) and when all the variables are
deterministic, the above primal convergence result goes back to [32] and to
[43] in the unrelaxed case.

(ii) In minimization problems, the alternating direction method of multipliers
(ADMM) is strongly related to an application of the Douglas–Rachford al-
gorithm to the dual problem [38]. This connection can be used to construct
a random block-coordinate ADMM algorithm. Let us note that such an al-
gorithm was recently proposed in [41] in a finite-dimensional setting, where
single-block, unrelaxed, and error-free iterations were used.

Next, we apply Proposition 5.1 to devise a primal-dual block-coordinate algorithm
for solving a class of structured inclusion problems investigated in [25].

Corollary 5.3. Set D = {0, 1}m+p{0}, let (Gk)1�k�p be separable real Hilbert
spaces, and set G = G1 ⊕ · · · ⊕ Gp. For every i ∈ {1, . . . ,m}, let Ai : Hi → 2Hi be
maximally monotone, and, for every k ∈ {1, . . . , p}, let Bk : Gk → 2Gk be maximally
monotone, and let Lki : Hi → Gk be linear and bounded. It is assumed that the set F
of solutions to the problem

(5.16) find x1 ∈ H1, . . . , xm ∈ Hm such that

(∀i ∈ {1, . . . ,m}) 0 ∈ Aixi +

p

k=1

L∗kiBk

 m

j=1

Lkjxj



is nonempty. We also consider the set F∗ of solutions to the dual problem

(5.17) find v1 ∈ G1, . . . , vp ∈ Gp such that

(∀k ∈ {1, . . . , p}) 0 ∈ −
m

i=1

LkiA
−1
i


−

p

l=1

L∗livl


+ B−1

k vk.
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Let γ ∈ ]0,+∞[, let (μn)n∈N be a sequence in ]0, 2[ such that infn∈N μn > 0 and
supn∈N μn < 2, let x0, z0, (an)n∈N, and (cn)n∈N be H-valued random variables,
let y0, w0, (bn)n∈N, and (dn)n∈N be G-valued random variables, and let (εn)n∈N be
identically distributed D-valued random variables. Set

(5.18) V =


(x1, . . . , xm, y1, . . . , yp) ∈ H⊕ G

 (∀k ∈ {1, . . . , p}) yk =

m

i=1

Lkixi


,

let PV : x → (Qjx)1�j�m+p be its projection operator, where (∀i ∈ {1, . . . ,m}) Qi : H⊕
G → Hi and (∀k ∈ {1, . . . , p}) Qm+k : H⊕ G → Gk, iterate
(5.19)
for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for i = 1, . . . ,m
zi,n+1 = zi,n + εi,n


Qi(x1,n, . . . , xm,n, y1,n, . . . , yp,n) + ci,n − zi,n



xi,n+1 = xi,n + εi,nμn


JγAi(2zi,n+1 − xi,n) + ai,n − zi,n+1



for k = 1, . . . , p
wk,n+1 = wk,n + εm+k,n


Qm+k(x1,n, . . . , xm,n, y1,n, . . . , yp,n) + dk,n − wk,n



yk,n+1 = yk,n + εm+k,nμn


JγBk

(2wk,n+1 − yk,n) + bk,n − wk,n+1


,

and set (∀n ∈ N) Yn = σ(xj ,yj)0�j�n and En = σ(εn). In addition, assume that the
following hold:

(i) cn  0 P-a.s., dn  0 P-a.s.,


n∈N

E(an2 |Yn) < +∞,

n∈N

E(bn2 |Yn) < +∞,


n∈N


E(cn2 |Yn) < +∞, and

n∈N

E(dn2 |Yn) < +∞.

(ii) For every n ∈ N, En and Yn are independent.
(iii) (∀j ∈ {1, . . . ,m+ p}) P[εj,0 = 1] > 0.

Then (zn)n∈N converges weakly P-a.s. to an F-valued random variable, and (γ−1(wn−
yn))n∈N converges weakly P-a.s. to an F∗-valued random variable.

Proof. Set A : H → 2H : x → ×m

i=1Aixi, B : G → 2G : y → ×p

k=1Bkyk, and
L : H → G : x →

m
i=1 Lkixi


1�k�p

. Furthermore, let us introduce

(5.20) K = H⊕ G and C : K → 2K : (x, y) → Ax× By.

Then the primal-dual problem (5.16)–(5.17) can be rewritten as

(5.21) find (x, v) ∈ K such that


0 ∈ Ax+ L∗BLx

0 ∈ −LA−1(−L∗v) + B−1v.

The normal cone operator to V is [7, Example 6.42]
(5.22)

NV : K → 2K : (x, y) →

V⊥ if Lx = y;

∅ if Lx = y,
where V⊥ =


(u, v) ∈ K

 u = −L∗v

.
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Now let (x, y) ∈ K. Then

(0, 0) ∈ C(x, y) +NV(x, y) ⇔

(x, y) ∈ V,

(0, 0) ∈ (Ax× By) + V⊥

⇔

Lx = y,

(∃u ∈ Ax)(∃ v ∈ By) u = −L∗v

⇒ (∃ v ∈ B(Lx)) − L∗v ∈ Ax

⇒ (∃ v ∈ G) L∗v ∈ L∗BLx and − L∗v ∈ Ax

⇔ x solves (5.16).(5.23)

Since C and NV are maximally monotone, it follows from [7, Proposition 23.16] that
the iteration process (5.19) is an instance of (5.5) for finding a zero of C + NV in
K. The associated dual problem consists of finding a zero of −C−1(−·) + N−1

V . Let
(u, v) ∈ K. Then (5.22) yields

(0, 0) ∈ −C−1(−u,−v) +N−1
V (u, v)

⇔ (0, 0) ∈ −C−1(−u,−v) +NV⊥(u, v)

⇔

(u, v) ∈ V⊥,

(0, 0) ∈

− A−1(−u)×−B−1(−v)


+ V

⇔

u = −L∗v,

(∃ x ∈ −A−1(−u))(∃ y ∈ −B−1(−v)) Lx = y

⇒ (∃ x ∈ −A−1(L∗v)) Lx ∈ −B−1(−v)

⇒ (∃ x ∈ H) Lx ∈ −LA−1(L∗v)) and − Lx ∈ B−1(−v)

⇔ −v solves (5.17).(5.24)

The convergence result therefore follows from Proposition 5.1 using (5.23), (5.24), and
the weak continuity of PV = JγNV [7, Proposition 28.11(i)].

Remark 5.4. The parameterization (5.20) made it possible to reduce the struc-
tured primal-dual problem (5.16)–(5.17) to a basic two-operator inclusion, to which
the block-coordinate Douglas–Rachford algorithm (5.5) could be applied. A similar
parameterization was used in [1] in a different context. We also note that, at each
iteration of algorithm (5.19), components of the projector PV need to be activated.
This operator is expressed as

(5.25)

∀(x, y) ∈ H⊕ G


PV : (x, y) → (t,Lt) = (x− L∗s, y + s),

where t = (Id + L∗L)−1(x+ L∗y) and s = (Id + LL∗)−1(Lx− y) [1, Lemma 3.1]. This
formula allows us to compute the components of PV, which is especially simple when
Id+ L∗L or Id + LL∗ is easily inverted.

The previous result leads to a random block-coordinate primal-dual proximal
algorithm for solving a wide range of structured convex optimization problems.

Corollary 5.5. Set D = {0, 1}m+p{0}, let (Gk)1�k�p be separable real Hilbert
spaces, and set G = G1 ⊕ · · ·⊕Gp. For every i ∈ {1, . . . ,m}, let fi ∈ Γ0(Hi), and, for
every k ∈ {1, . . . , p}, let gk ∈ Γ0(Gk), and let Lki : Hi → Gk be linear and bounded. It
is assumed that there exists (x1, . . . , xm) ∈ H such that

(5.26) (∀i ∈ {1, . . . ,m}) 0 ∈ ∂fi(xi) +

p

k=1

L∗ki∂gk

 m

j=1

Lkjxj


.
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Let F be the set of solutions to the problem

(5.27) minimize
x1∈H1,...,xm∈Hm

m

i=1

fi(xi) +

p

k=1

gk

 m

i=1

Lkixi



and let F∗ be the set of solutions to the dual problem

(5.28) minimize
v1∈G1,...,vp∈Gp

m

i=1

f∗i


−

p

k=1

L∗kivk


+

p

k=1

g∗k(vk).

Let γ ∈ ]0,+∞[, let (μn)n∈N be a sequence in ]0, 2[ such that infn∈N μn > 0
and supn∈N μn < 2, let x0, z0, (an)n∈N, and (cn)n∈N be H-valued random vari-
ables, let y0, w0, (bn)n∈N, and (dn)n∈N be G-valued random variables, and let
(εn)n∈N be identically distributed D-valued random variables. Define V as in (5.18)
and set PV : x → (Qjx)1�j�m+p, where (∀i ∈ {1, . . . ,m}) Qi : H ⊕ G → Hi and
(∀k ∈ {1, . . . , p}) Qm+k : H⊕ G → Gk, and iterate
(5.29)
for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for i = 1, . . . ,m
zi,n+1 = zi,n + εi,n


Qi(x1,n, . . . , xm,n, y1,n, . . . , yp,n) + ci,n − zi,n



xi,n+1 = xi,n + εi,nμn


proxγfi(2zi,n+1 − xi,n) + ai,n − zi,n+1



for k = 1, . . . , p
wk,n+1 = wk,n + εm+k,n


Qm+k(x1,n, . . . , xm,n, y1,n, . . . , yp,n) + dk,n − wk,n



yk,n+1 = yk,n + εm+k,nμn


proxγgk(2wk,n+1 − yk,n) + bk,n − wk,n+1


.

In addition, assume that conditions (i)–(iii) of Corollary 5.3 are satisfied. Then
(zn)n∈N converges weakly P-a.s. to an F-valued random variable, and (γ−1(wn −
yn))n∈N converges weakly P-a.s. to an F∗-valued random variable.

Proof. Using the same arguments as in [25, Proposition 5.4] one sees that this is
an application of Corollary 5.3 with, for every i ∈ {1, . . . ,m}, Ai = ∂fi, and, for every
k ∈ {1, . . . , p}, Bk = ∂gk.

Remark 5.6. Sufficient conditions for (5.26) to hold are provided in [25, Proposi-
tion 5.3].

5.2. Random block-coordinate forward-backward splitting. The forward-
backward algorithm addresses the problem of finding a zero of the sum of two maxi-
mally monotone operators, one of which has a strongly monotone inverse (see [2, 22] for
historical background). It has been applied to a wide variety of problems, are among
which are mechanics, partial differential equations, best approximation, evolution in-
clusions, signal and image processing, convex optimization, learning theory, inverse
problems, statistics, and game theory [2, 7, 16, 17, 22, 27, 29, 31, 39, 46, 61, 62, 63].
In this section we design a block-coordinate version of this algorithm with random
sweeping and stochastic errors.

Definition 5.7 (see [2, Definition 2.3]). An operator A : H → 2H is demiregular
at x ∈ domA if, for every sequence ((xn, un))n∈N in graA and every u ∈ Ax such that
xn  x and un → u, we have xn → x.

Lemma 5.8 (see [2, Proposition 2.4]). Let A : H → 2H be monotone and suppose
that x ∈ domA. Then A is demiregular at x in each of the following cases:

(i) A is uniformly monotone at x, i.e., there exists an increasing function
θ : [0,+∞[ → [0,+∞] that vanishes only at 0 such that (∀u ∈ Ax)(∀(y, v) ∈
graA) x− y | u− v � θ(x− y).
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(ii) A is strongly monotone, i.e., there exists α ∈ ]0,+∞[ such that A − αId is
monotone.

(iii) JA is compact, i.e., for every bounded set C ⊂ H, the closure of JA(C) is
compact. In particular, domA is boundedly relatively compact, i.e., the inter-
section of its closure with every closed ball is compact.

(iv) A : H → H is single-valued with a single-valued continuous inverse.
(v) A is single-valued on domA and Id − A is demicompact.
(vi) A = ∂f, where f ∈ Γ0(H) is uniformly convex at x, i.e., there exists an in-

creasing function θ : [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(5.30) (∀α ∈ ]0, 1[)(∀y ∈ dom f) f

αx+ (1 − α)y


+ α(1 − α)θ(x − y)
� αf(x) + (1− α)f(y).

(vii) A = ∂f, where f ∈ Γ0(H) and, for every ξ ∈ R,

x ∈ H

 f(x) � ξ

is boundedly

compact.

Our block-coordinate forward-backward algorithm is the following.
Proposition 5.9. Set D = {0, 1}m  {0} and, for every i ∈ {1, . . . ,m}, let

Ai : Hi → 2Hi be maximally monotone and let Bi : H → Hi. Suppose that
(5.31)

(∃ϑ ∈ ]0,+∞[)(∀x ∈ H)(∀y ∈ H)

m

i=1

xi − yi | Bix− Biy � ϑ

m

i=1

Bix− Biy
2

and that the set F of solutions to the problem
(5.32)
find x1 ∈ H1, . . . , xm ∈ Hm such that (∀i ∈ {1, . . . ,m}) 0 ∈ Aixi + Bi(x1, . . . , xm)

is nonempty. Let (γn)n∈N be a sequence in ]0, 2ϑ[ such that infn∈N γn > 0 and
supn∈N γn < 2ϑ, and let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0.
Let x0, (an)n∈N, and (cn)n∈N be H-valued random variables, and let (εn)n∈N be iden-
tically distributed D-valued random variables. Iterate
(5.33)
for n = 0, 1, . . .

for i = 1, . . . ,m
xi,n+1 = xi,n + εi,nλn


JγnAi


xi,n − γn(Bi(x1,n, . . . , xm,n) + ci,n)


+ ai,n − xi,n


,

and set (∀n ∈ N) En = σ(εn). Furthermore, assume that the following hold:

(i)


n∈N

E(an2 |Xn) < +∞ and


n∈N


E(cn2 |Xn) < +∞.

(ii) For every n ∈ N, En and Xn are independent.
(iii) (∀i ∈ {1, . . . ,m}) P[εi,0 = 1] > 0.

Then (xn)n∈N converges weakly P-a.s. to an F-valued random variable x. If, in addi-
tion, one of the following holds, then (xn)n∈N converges strongly P-a.s. to x:

(iv) For every x ∈ F and every i ∈ {1, . . . ,m}, Ai is demiregular at xi.
(v) The operator x → (Bix)1�i�m is demiregular at every point in F.

Proof. We are going to apply Theorem 4.1. Set A : H → 2H : x → ×m

i=1Aixi,
B : H → H : x → (Bix)1�i�m, and, for every n ∈ N, αn = 1/2, βn = γn/(2ϑ), Tn =
JγnA, Rn = Id − γnB, and bn = −γncn. Then, F = zer (A+B) and, for every n ∈ N,
Tn is αn-averaged [7, Corollary 23.8], Tn : x → (JγnAixi)1�i�m [7, Proposition 23.16],
Rn is βn-averaged [7, Proposition 4.33], and Fix (Tn◦Rn) = F [7, Proposition 25.1(iv)].
Moreover,


n∈N


E(bn2 |Xn) � 2ϑ


n∈N


E(cn2 |Xn) < +∞ and (5.33) is a
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special case of (4.1). Observe that (4.2) and (4.3) imply the existence of Ω ∈ F such

that P(Ω) = 1 and

(5.34) (∀ω ∈ Ω)(∀z ∈ F)


Tn(Rnxn(ω))− Rnxn(ω) + Rnz → z,

Rnxn(ω)− xn(ω)− Rnz → −z.

Consequently, since infn∈N γn > 0,
(5.35)

(∀ω ∈ Ω)(∀z ∈ F)


JγnA


xn(ω)− γnBxn(ω)


− xn(ω) = Tn


Rnxn(ω)


− xn(ω) → 0,

Bxn(ω) → Bz.

Now set

(5.36) (∀n ∈ N) yn = JγnA(xn − γnBxn) and un = γ−1
n (xn − yn)− Bxn.

Then (5.35) yields

(5.37) (∀ω ∈ Ω)(∀z ∈ F) xn(ω)− yn(ω) → 0 and un(ω) → −Bz.

Now, let us establish condition (v) of Theorem 4.1. To this end, it is enough to fix

z ∈ F, x ∈ H, a strictly increasing sequence (kn)n∈N in N, and ω ∈ Ω such that
xkn(ω)  x and to show that x ∈ F. It follows from (5.35) that Bxkn(ω) → Bz.
Hence, since [7, Example 20.28] asserts that B is maximally monotone, we deduce from
[7, Proposition 20.33(ii)] that Bx = Bz. We also derive from (5.37) that ykn

(ω)  x
and ukn(ω) → −Bz = −Bx. Since (5.36) implies that (ykn

(ω),ukn(ω))n∈N lies in the
graph of A, it follows from [7, Proposition 20.33(ii)] that −Bx ∈ Ax, i.e., x ∈ F. This
proves that (xn)n∈N converges weakly P-a.s. to an F-valued random variable x, say,

(5.38) xn(ω)  x(ω)

for every ω in some Ω ∈ F such that Ω ⊂ Ω and P(Ω) = 1.

Finally take ω ∈ Ω. First, suppose that (iv) holds. Then A is demiregular at
x(ω). In view of (5.37) and (5.38), yn(ω)  x(ω). Furthermore, un(ω) → −Bx(ω)
and (yn(ω),un(ω))n∈N lies in the graph of A. Altogether yn(ω) → x(ω) and therefore
xn(ω) → x(ω). Now, suppose that (v) holds. Then, since (5.35) yields Bxn(ω) →
Bx(ω), (5.38) implies that xn(ω) → x(ω).

Remark 5.10. Here are a few remarks regarding Proposition 5.9.
(i) Proposition 5.9 generalizes [22, Corollary 6.5 and Remark 6.6], which does

not allow for block-processing and uses deterministic variables.
(ii) Problem (5.32) was considered in [2], where it was shown to capture for-

mulations encountered in areas such as evolution equations, game theory,
optimization, best approximation, and network flows. It also models domain
decomposition problems in partial differential equations [12].

(iii) Proposition 5.9 generalizes [2, Theorem 2.9], which uses a fully parallel de-
terministic algorithm in which all the blocks are used at each iteration, i.e.,
(∀n ∈ N)(∀i ∈ {1, . . . ,m}) εi,n = 1.

(iv) As shown in [26, 28], strongly monotone composite inclusion problems can
be solved by applying the forward-backward algorithm to the dual problem.
Using Proposition 5.9 we can obtain a block-coordinate version of this primal-
dual framework. Likewise, it was shown in [28, 30, 64] that suitably renormed
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versions of the forward-backward algorithm applied in the primal-dual space
yielded a variety of methods for solving composite inclusions in duality. Block-
coordinate versions of these methods can be devised via Proposition 5.9.

Next, we present an application of Proposition 5.9 to block-coordinate convex
minimization.

Corollary 5.11. Set D = {0, 1}m  {0} and let (Gk)1�k�p be separable real
Hilbert spaces. For every i ∈ {1, . . . ,m}, let fi ∈ Γ0(Hi), and, for every k ∈ {1, . . . , p},
let τk ∈ ]0,+∞[, let gk : Gk → R be a differentiable convex function with a τk-
Lipschitz-continuous gradient, and let Lki : Hi → Gk be linear and bounded. It is
assumed that min1�k�p

m
i=1 Lki2 > 0 and that the set F of solutions to the prob-

lem

(5.39) minimize
x1∈H1,...,xm∈Hm

m

i=1

fi(xi) +

p

k=1

gk

 m

i=1

Lkixi



is nonempty. Let

(5.40) ϑ ∈

0,

 p

k=1

τk


m

i=1

LkiL
∗
ki


−1

,

let (γn)n∈N be a sequence in ]0, 2ϑ[ such that infn∈N γn > 0 and supn∈N γn < 2ϑ,
and let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0. Let x0, (an)n∈N,
and (cn)n∈N be H-valued random variables, and let (εn)n∈N be identically distributed
D-valued random variables. Iterate

(5.41)

for n = 0, 1, . . .⎢⎢⎢⎢⎣
for i = 1, . . . ,m

ri,n = εi,n

xi,n − γn

p
k=1 L

∗
ki∇gk

m
j=1 Lkjxj,n


+ ci,n



xi,n+1 = xi,n + εi,nλn


proxγnfiri,n + ai,n − xi,n


.

In addition, assume that conditions (i)–(iii) in Proposition 5.9 are satisfied. Then
(xn)n∈N converges weakly P-a.s. to an F-valued random variable. If, furthermore, one
of the following holds (see Lemma 5.8(vi)–(vii) for examples), then (xn)n∈N converges
strongly P-a.s. to x:

(i) For every x ∈ F and every i ∈ {1, . . . ,m}, ∂fi is demiregular at xi.
(ii) The operator x → (

p
k=1 L

∗
ki∇gk(

m
j=1 Lkjxj))1�i�m is demiregular at every

point in F.
Proof. As shown in [2, section 4], (5.39) is a special case of (5.32) with

(5.42) Ai = ∂fi and Bi : (xj)1�j�m →
p

k=1

L∗ki∇gk

 m

j=1

Lkjxj


.

Now set h : H → R : x → p
k=1 gk

m
i=1 Lkixi


. Then h is a Fréchet-differentiable

convex function and B = ∇h is Lipschitz-continuous with constant 1/ϑ, where ϑ
is given in (5.40). It therefore follows from the Baillon–Haddad theorem [7, The-
orem 18.15] that (5.31) holds with this constant. Since, in view of (5.2), (5.33)
specializes to (5.41), the convergence claims follow from Proposition 5.9.

Remark 5.12. Here are a few observations about Corollary 5.11.
(i) If more assumptions are available about the problem, the Lipschitz constant

ϑ of (5.40) can be improved. Some examples are given in [15].
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(ii) Recently, some block-coordinate forward-backward methods have been pro-
posed for not necessarily convex minimization problems in Euclidean spaces.
Thus, when applied to convex functions satisfying the Kurdyka–Lojasiewicz
inequality, the deterministic block-coordinate forward-backward algorithm
proposed in [10, section 3.6] corresponds to the special case of (5.39) in which

(5.43) H is a Euclidean space, p = 1, and (∀x ∈ H)

m

i=1

L1ixi = x.

In that method, the sweeping proceeds by activating only one block at each
iteration according to a periodic schedule. Moreover, errors and relaxations
are not allowed. This approach was extended in [20] to an error-tolerant form
with a cyclic sweeping rule whereby each block is used at least once within a
preset number of consecutive iterations.

(iii) A block-coordinate forward-backward method with random seeping was pro-
posed in [58] in the special case of (5.43). That method uses only one block
at each iteration, no relaxation, and no error terms. The asymptotic analysis
of [58] provides a lower bound on the probability that (f + g1)(xn) be close
to inf(f + g1)(H), with no result on the convergence of the sequence (xn)n∈N.
Related work is presented in [45, 48].
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non différentiables, Numer. Math., 18 (1971/72), pp. 213–223.

[4] K. Barty, J.-S. Roy, and C. Strugarek, Hilbert-valued perturbed subgradient algorithms,
Math. Oper. Res., 32 (2007), pp. 551–562.

[5] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility
problems, SIAM Rev., 38 (1996), pp. 367–426.

[6] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejér-
monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), pp. 248–264.

[7] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer, New York, 2011.

[8] H. H. Bauschke, M. N. Dao, D. Noll, and H. M. Phan, Proximal point algorithm, Douglas-
Rachford algorithm and alternating projections: A case study, J. Convex Anal., to appear.

[9] H. H. Bauschke, F. Deutsch, and H. Hundal, Characterizing arbitrarily slow convergence
in the method of alternating projections, Int. Trans. Oper. Res., 16 (2009), pp. 413–425.

[10] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for
nonconvex and nonsmooth problems, Math. Program., 146 (2014), pp. 459–494.
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