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Abstract

Numerous researches about hybrid electrical vehicles (HEV) deal with topologies,

technologies, sizing and control. These aspects allow reducing transportation costs

and environmental impacts. The paper focuses on the sizing of the electrical machine

of the HEV, taking into account its surroundings: the hybrid system, the driving cycle

and an optimal energy management. In the paper, the parallel hybrid electrical vehicle

is the study case. In a classical HEV design process, a scaling factor is usually applied

on an efficiency map model to fix the standard power of the electrical machine. The

efficiency and the maximum torque power are scaled using a linear dependency on the

rated maximum power. But this method has some disadvantages. The paper proposes

two formulations of a scaling model based on a magnetic circuit model (MCM) with

one or 10 parameters. Then, the MCM is involved in a multi-objective optimization

process of the HEV. This process is a global sizing process using dynamic programming

as an optimal energy management. Optimal sizings of the hybrid vehicle are then

proposed for various driving conditions.

1 Introduction

The fuel consumption of a hybrid electric vehicle (HEV) depends on: the driving cycle (i.e.

the use of the vehicle), the energy management and the power-train components, e.g. the
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internal combustion engine (ICE), the electrical machine (EM) and gear ratios. In HEVs,

there is a strong interaction between the driving cycle, the energy management and com-

ponents. In particular, the components efficiency and performances highly interfere with

the energy management which in return fixes the operation of the components. Previous

studies on optimizing the drive train component of HEVs usually use predefined energy

management strategies, such as rule-based strategies [1]. Thus, during the optimization

process, the different vehicle sizings will benefit differently from the strategy. Therefore,

to optimize the electrical machine (EM), the whole hybrid system must be taken into ac-

count and a joint optimization of the system component and the energy management must

be performed. This approach was developed in previous studies for energetic parameters

such as standard power and ratios [2–9]. One limitation of this approach is that it usually

uses efficiency maps. The paper aims to take into account the geometrical parameters of

the EM in order to adapt the design of the EM to the use of the HEV.

In order to estimate electrical machine performances, finite element methods (FEM)

are generally used by designers to predict core losses and efficiency for various operating

points and geometries. However, their estimation is generally time-consuming, which

makes the use of the FEM prohibitive in an iterative optimization process of the global

system. Thus, a map scaling factor model (MSFM) based on the knowledge of an efficiency

map is generally used [5,6]. This way, the standard power of the EM can vary easily in the

sizing process. However, depending on whether the optimization goes far or close to the

EM initial power, the results can be accurate or not. In addition, there is no direct link

between the standard power of the EM and the geometrical proprieties of the machine.

Thus, the paper proposes a compromise between the FEM and the MSFM introducing

a magnetic circuit model (MCM). A comparison between the MSFM and the MCM was

done in a previous study in an optimization process. As a main result, the MSFM is not

adapted to a sizing process of the EM [10].

This paper presents the development of a magnetic circuit model and its use in an

optimal sizing process. Two models are proposed and compared, using only one scaling

factor or ten uncorrelated geometrical parameters.

Firstly, a general presentation of the parallel hybrid electric vehicle is made in section

2. Secondly, the two sizing methods (MSFM and MCM) are described in section 3. Af-

terwards, the optimal energy management problem is presented in section 4. Then, the

sizing problem of the parallel-HEV is defined in section 5. Lastly, optimal sizing results
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are presented for three driving conditions, and a full operating analysis of the optimal EM

is proposed for an urban driving cycle.

2 Parallel Hybrid Electric Vehicle

The parallel hybrid electric vehicle is a well-known HEV topology which involves an elec-

trical machine (EM) coupled to an internal combustion engine (ICE) by a coupling device

(see Fig. 1). Both the ICE and the EM deliver power to the drive train. The energy flow

is parallel.

Such an architecture can operate in different mode:

• an all electric mode (clutch1 closed and clutch2 open) which is used to propel the

vehicle at low power or during electrical regenerative braking.

• In hybrid mode clutch 1 and 2 are closed. In this mode the EM can be used to

help the ICE in case of high power requirement. It can also be used as a generator

to charge the battery. This can allow the ICE to operate on better specific full

consumption and the stored energy can be used later.

It is clear that the system needs to be managed to fix the operating mode. In fact, the

energy management is a key point of the efficiency of hybrid vehicle [1, 11,12].

Energy management can be performed using a rule based heuristic method [7–9], but

this can have a non-monotonic effect depending of the size of the components [3, 6]. The

management law can be efficient for one sizing and not for another. To avoid this, in the

scope of this paper, the author choses to use the optimal management method giving the

fuel consumption on a driving cycle (see section 4).

ICE

EM

Clutch 2 Clutch 1 GearGear boxCoupling

Battery Converter

Figure 1: Parallel HEV architecture

The paper aims to optimize a parallel-HEV. The initial sizing of which is based on a

real small passenger car (see Tab. 8) coupled with a known electric machine. The basic

requirements for an electrical machine for HEV are : power density, efficiency on various

operating points, controllability, reliability, technological maturity and cost [13,14]. There
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Figure 2: Geometrical representation of one eighth of the initial IPMSM

is no global consensus about which types of electrical machine is to be used for parallel-

HEV. Nevertheless, the permanent motor (PM) present a higher power density and a

higher maximal efficiency than other type of EM, like the induction machine, the DC

machine or the switch reluctance machine. That is why we choose to study an interior

permanent magnet synchronous motor (IPMSM) such as those usually used in hybrid or

electric vehicles (Toyota hybrid system for instance). It is noted that the proposed method

can be applied to other type of EM if a MCM is developed.

The initial characteristics of the EM are shown in Fig. 2. The initial geometrical

characteristics and manufacturing assessment come from pictures and measurements of

the Toyota Prius 2004 electrical machine [15–17].

The following section deals with a sizing method of the EM.

3 Scaling models of the electrical machine

In a vehicle simulation context, the efficiency map is a useful data, usually obtained from

measurements or from a fine model (like FEM). In a sizing context, it is commonly used

to simulate instantaneous fuel rate for ICE and the efficiency of the EM with respect to

the speed and the torque. The size of the EM varies according to a scaling factor applied

to the torque and losses.

There is no direct link between the nominal power Pb,k and the geometrical parame-

ters. Nevertheless, in order to compute the new geometrical characteristics of the scaled

machine, it is usually assumed that the power density is constant and lengths proportional

to k1/3 [5, 18]. Mass moments of inertia have units of dimension M.L2, this leads to a

moment of inertia proportional to k5/3.
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The scaling factor model based on an efficiency map can be a very accurate model

close to the initial EM power. But this model, usually obtained from measurements, does

not give information about the geometrical characteristics of the EM. Furthermore, the

accuracy of this model is decreasing as the factor is far from 1. In parallel HEVs, the

standard power of the EM is not constrained directly by the dynamic performances of

the vehicle. Thus, its standard power can vary from half to twice the initial standard

power. In addition, this lack of accuracy can have a negative impact on the global sizing

of the vehicle. A wrong assessment of the weight and the efficiency map can lead to a

sub-optimal sizing of the vehicle [10].

The relation between the standard power and the geometrical characteristics of the

EM is not trivial. A scaling factor applied to an efficiency map appears to be questionable

in some cases. Thus, the paper introduces a parametrized magnetic circuit model of the

EM, which will be used in the global design of the system.

3.1 Magnetic circuit model

3.1.1 Modelling

AIR-GAP

ROTOR

Sources 

magnets

STATOR

Figure 3: Magnetic circuit model of one eighth of the IPMSM

The magnetic circuit model uses a magneto-electrical equivalence. It is based on

the knowledge of the geometrical parameter set named X, e.g. air-gap length, magnet

sizes, stator external radius and winding characteristics (see Fig. 2). This leads to a

magnetic circuit (see Fig. 3) where each reluctance depends on the geometrical parameters

(a reluctance is the magnetic equivalence to an electric resistance) [19]. Magnetic sources

depend on the peak current Iem and the internal electrical angle δ i.e. the oriented angle

between the current and the quadratic axes. A Newton-Raphson method is used to solve

5



the circuit problem [19], and gives the direct and quadratic flux linkage φd, φq:


φd = φd(X, Iem, δ)

φq = φq(X, Iem, δ)
(1)

In the Park ’s reference frame (a rotating bidirectional reference frame), the direct and

the quadratic voltage vd, vq are then deduced:


vd = Rsiq − ωφq

vq = Rsid + ωφd

(2)

where ω = pΩ is the electrical pulsation and p is the number of pole pairs. The calculation

of the electrical power Pe leads to:

Pe =
3

2
< [IemV

∗] = P + PJ + Piron + Pf︸ ︷︷ ︸
losses

(3)

where PJ , Piron and Pf , are respectively, the Joule, the iron and the mechanical losses.

Note that the eddy current losses in the permanent magnets are neglected in this model

since this machine has a theoretical null harmonic distortion that limits eddy current

losses [20]. Furthermore, in a complex reference, the vector Ime and V ∗ can be expressed

as follows: 
Iem = id + jiq

V ∗ = vd − jvq
(4)

thus,

Γem =
P

Ω
=
Pe − PJ − Piron − Pf

Ω

=
3

2
p(φdiq − φqid)−

(Piron + Pf )

Ωem
(5)

In this study, the iron losses per volume in each reluctance (pi) are calculated thanks

to a first harmonic Bertotti ’s model [21,22]:

pi = khfB
2
i + σ

d2π2

6
B2

i f
2 + 8.67kef

1.5B1.5
i (6)

where Bi is the maximum magnetic field in the reluctances, f is the fundamental frequency,

d is the lamination thickness and σ is the conductivity of the iron material. kh, ke are
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respectively the hysteresis and the excess material constants. The mechanical losses are

assumed to be proportional to the square of the external diameter of the machine, and

therefore, can be expressed by the empirical expression [17]:

Pf = Ω

(
Dext

0.2

)2

(7)

The optimal internal electrical angle, is calculated in order to reach the maximum

torque per amps with respect to the voltage constraint.

A scaling model of the static converter has been also developed. These are computed

thanks to an analytical model taking into account conduction and switching losses in

diodes and IGBT [23].

Torque limitations are calculated by voltage and current constraints. For thermal issue,

the maximum RMS current density allowed is jmax = 12 A.mm−1.

3.1.2 Model validation

A validation of the magnetic circuit model has been made using a Finite Element Method

(FEM) with FLUX2D for an IPMSM machine with the geometry presented in Fig. 2.

This fine model allows an accurate computation of torque and losses for different operating

points. Since MCM is a first-harmonic model, a table comparing first harmonic voltage

amplitude is proposed in Tab. 1. One can see the good agreement of the voltage for

different speeds and current. Note that the internal angle of the current is fixed, thus, the

voltage can be high for a speed higher than the base speed.

Speed Model First harmonic voltage amplitude (V)
(rpm) Iem = 0 A 50 A 100 A 200 A

600 MCM 102.0 112.4 117.8 139.1
FEM 103.4 117.1 126.0 147.7

1200 MCM 204.0 226.0 228.3 266.2
FEM 207.5 229.8 243.8 269.9

2400 MCM 408.0 438.0 449.3 520.9
FEM 416.0 455.2 479.3 526.4

Table 1: First harmonic of the voltage comparison between MCM and FEM models

In order to validate the model of losses, a comparison of the statoric iron losses is

shown in Tab. 2 for different operating points. The model used in the FEM model is

a multi-harmonic Bertotti’s model [24], whereas the MCM model uses a first-harmonic
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model [21]. One can see that trends are preserved and that relative error is kept under

20 %, which is reasonable for this simple model.

Speed Model Statoric iron losses (W)
(tr.min−1) 50 A 100 A 200 A

600 MCM 37.4 40.7 50.6
FEM 38.1 43.8 53.3

1200 MCM 84.4 91.6 113.9
FEM 89.5 102.6 130.1

2400 MCM 203.3 220.6 274.1
FEM 230.0 261.5 342.8

Table 2: Iron losses comparison between MCM and FEM models

3.2 Comparison between the MSFM and the MCM

As presented in 3.1, the geometrical parameters X are not correlated. In an energetic sizing

process or pre-sizing process, only homothetic transformations are usually considered. An

alternative to the map scaling factor method is then introduced using a scaling factor on

the geometrical parameters of the magnetic circuit model X. A scaling MCM method is

useful to perform a fair comparison with the MSFM [10]. It also can be compared with a

more complicated method using uncorrelated parameters (see section 6).

The differences between the classical map scaling factor method and the proposed

magnetic circuit scaling factor method in an optimization process are emphasized in [10].

In particular, note that the lack of accuracy of the MSFM introduces differences in the

optimal sizing of the EM. Afterwards, the paper only focuses on the MCM. The results

for the best operating points and standard operating points are presented in Tab. 3.

MSFM MCM
k ηb(%)a η∗(%)b Pb(kW ) ηb(%) η∗(%) Pb(kW )

1 89.7 94.9 58.8 89.7 94.9 58.8
0,4 89.7 94.9 23.5 89.6 93.0 25.7
1,3 89.7 94.9 76.4 92.5 95.3 73.1
a efficiency of the standard operating point
b efficiency of the best operating point

Table 3: Standard and maximum efficiency for the map scaling factor method (MSFM)
and the magnetic circuit method (MCM) with, k ∈ {1, 0.4, 1.3}

The scaling factor on the geometrical parameters and on the current does not preserve

the same magnetic operating as the initial EM. This phenomenon is mainly due to the

non-linearity of the first magnetization curve of the magnetic material. As a result, one

can see the negative evolution of the efficiency in the case k < 1.
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4 Optimal energy management

To exclude the influence of the control strategy on component sizing, an optimal control

method is used. It is an objective way to compare different sizings of hybrid vehicles

[5, 25, 26]. The driving cycle is fixed and a priori known. In this configuration, the

optimal control aims to determine:

• the battery current Ibat(t), which determines the power shared between the EM and

the ICE;

• the clutch control uc(t), which determines the operating mode (hybrid or electrical);

• and the gear shifting control kgb(t).

The fuel consumption objective J over the driving cycle can be expressed as follows:

J =

∫ tf

t0

dJ(Ibat(t), kgb(t), uc(t))dt (8)

where dJ is the instantaneous fuel rate, and t0, tf are respectively, the initial and the final

time of the driving cycle.

For a charge sustaining vehicle (non rechargeable vehicle), the variation of the state

of charge (soc) over the entire cycle is constraint to be equal to zero. Thus, an equality

constraint is added to this problem:

∆SOC =

∫ tf

t0

dSOC(Ibat(t))dt =̂ 0 (9)

In the paper, a dynamic programming algorithm is used [27]. This allows to solve the

optimal power flow problem (Ibat(t)) and the discrete control problem (kgb(t) and uc(t))

while respecting the equality constraint (9). This method is based on the knowledge of

the whole system: the driving cycle, the sizing of the vehicle, the component inertia,

the efficiency map of the EM and instantaneous fuel rate map of the ICE. A similar

presentation of the dynamic programming method is presented in [5, 26].

The following section deals with the dynamic programming method as an optimal

energy management, in a sizing context.
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5 Sizing problem

The global problem can be seen as an optimization problem involving the sizing parameters

and the optimal energy management. Indeed, the optimal trajectory Ibat(t) changes at

each step of the sizing problem solving. A possible method to deal with this kind of

problem is to determine the optimal control (see section 5.3) at each step of the sizing

optimization.

5.1 Optimization variables

This study focuses on the electrical machine. However, as said in section 1, we have to take

into account the other power train components that have impacts on the operating points

of the EM, on the dynamic performances and on the fuel consumption. The optimization

parameters taken into account in this study are : Nbat, Pice, Pme, kcpl and kred (see Tab. 8

for definitions). This study proposes to compare two sizing problem formulations described

in Tab. 4 in terms of computation time, complexity and efficiency.

SP1 SP2

unknown
variables

Nbat, Pice, k, kcpl, kred Nbat, X, Vdc, Pice, kcpl, kred

subject to
X = k1/4X1

Vmax =
√
k.Vmax,1

—

Table 4: Sizing problem formulations

For the first formulation, noted SP1, the geometrical parameters of the electrical

machine and the maximal voltage are related by a scaling factor k. X1 and Vmax,1 are

respectively the initial parameter set and the initial maximal voltage of the EM (see Fig. 2

and Tab. 8). This formulation leads to a unique shape of the electrical machine and only 5

unknown sizing variables, whereas the formulation SP2 considers the geometrical variables

of the EM to be uncorrelated. Thus, the second formulation defines 15 unknown variables.

Using this two methods allows a fair comparison in terms of methodology and results

(e.g. time to compute, fuel consumption, volume of the EM, raw materials, etc. see section

6).

5.2 Constraints and objective functions

In order to maintain constant comfort and security for all vehicle sizings, performance

constraints have been added to the sizing problem:

10



• the acceleration time from 0 to 100 km.h−1, t0−100 < 12s;

• the maximum speed of the vehicle on a flat road, Vmax < 140 km.h−1;

• the passing time of a truck driving at 80 km.h−1, tdep < 9s.

These constraints are computed with a forward approach [28]. For the SP2, some geo-

metrical constraints are added in order to only have positive reluctances in the MCM.

The sizing of a HEV is usually a compromise between the cost-in-use and the raw

material. To solve this problem, two objectives are introduced for the sizing problem :

• the fuel consumption (see eq. (8)),

• the battery module number in series Nbat.

5.3 Optimization strategy

The sizing optimization is carried out by the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) introduced by K. Deb in [29]. This method, based on an evolutionary theory

is used to perform conflicted multi-objective optimization. This algorithm leads to a non-

dominated set of solutions, called the Pareto front. A solution is called non-dominated,

if none of the objective functions can be improved without degrading other objectives.

In our case, we obtain a non-dominated set of sizing depending on the battery module

number and the fuel consumption.

variation of the sizing

constraints 
OK ?

Multi-objectives

optimum

no

no

yes

Optimal fuel consumption 

calculation by DP

max number 

of iteration ?
yes

Figure 4: Optimization strategy – energy management as a sub-optimization problem

The optimization strategy is represented in Fig. 4 for both formulations. Note that

the constraints are computed in a first place, then the optimal energy management is

computed for each vehicle using dynamic programming. The optimization process stops

when the maximum number of iterations is reached [29]. In our case, the convergence of the
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algorithm is acceptable after about 3.104 evaluations (about 500 generations) depending

on the driving cycle and the problem formulation.

6 Optimal sizing results

An example of the derived method is proposed on a compact-class vehicle with the charac-

teristics showed in Tab. 8 and in §2. For this study, we consider urban, road and highway

driving cycles [30].

6.1 Global analysis for three driving cycles

The Pareto fronts for the three driving cycles are presented in Fig. 5. For a given driving

cycle, all the evaluated sizings are represented considering two objectives: fuel consump-

tion and battery number.

The absolute improvement of the fuel consumption is about 10% in comparison to the

initial design (see §2) for the three driving cycles and for Nbat = 28. For all the driving

cycles and the two formulations, one can see the improvement of the fuel consumption while

the battery number increases. This phenomenon is mainly explained by the regenerative

braking and the decreasing of the battery losses. Afterwards, the fuel consumption is no

longer improved because of the increasing weight of the vehicle.

Comparing the two formulations, we observe that the second formulation, taking into

account 15 unknown variables, always gives better results, which is due to the fact that the

geometrical variables are uncorrelated. Between the two formulations, we notice a maximal

difference of 1.8, 1.7 and 0.8 % for the optimal fuel consumption for the urban, road and

highway driving cycles. As a consequence, an optimization process is approximately three

times longer for the formulation SP2. For instance, the SP1 for the urban case takes

about 4 h to converge (with a i7-2630QM 2.0 GHz processor, 8Go RAM and Windows 7

Pro) whereas the SP2 takes about 12 h.

6.2 Optimal sizing analysis for the urban driving cycle

Optimal sizings for the two formulations are described in Tab. 5 for the urban driving

cycle. For the two formulations, we observe a coherent increasing of the EM standard

power with respect to the number of battery cells. In parallel, the decreasing of the ICE

12
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Figure 5: Pareto fronts for three driving cycles – comparison between SP1 and SP2

standard power allows a decrease of the fuel consumption while respecting the dynamic

performances.

Comparing the optimal results of the two formulations, we notice small differences for

the optimal ratios kcpl and kred that influence the operating points of the EM. For display

reasons, geometrical variables of the EM are not given in Tab. 5.
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Nbat
Pbat

(kW )
Pme

(kW )
Pice

(kW )
kcpl kred

J1
(l/100 km)

10 10,5 12,5 46,9 1,050 2,663 2,790

VH1 25 26,2 15,4 32,1 0,9092 2,754 2,552

35 36,8 19,5 27,6 0,7930 3,108 2,530

(a) SP1

Nbat
Pbat

(kW )
Ubus

(V )
Pme

(kW )
Pice

(kW )
kcpl kred

J1
(l/100 km)

10 10,5 201 18,62 47,40 0,7637 2,644 2,756

VH2 25 26,2 221 29,88 31,92 0,5956 2,658 2,506

35 36,8 233 31,79 28,04 0,5999 2,794 2,479

(b) SP2

Table 5: Optimal sizing results for SP1 and SP2 for the urban driving cycle

6.3 Comparative analysis for the urban case and Nbat = 25

The optimal shapes of the EM are represented in Fig. 6 for Nbat = 25. In the rest of the

paper, the optimal sizings for the urban driving cycle and Nbat = 25 are noted VH1 and

VH2.

0 20 40 60 80 100 120

depth : 61.81mm

(a) VH1

0 20 40 60 80 100 120

depth : 97.91mm

(b) VH2

Figure 6: Geometrical representations of optimal EM for the urban driving cycle and
Nbat = 25

The optimal EM resulting from the second formulation gets bigger dimensions (external

radius and depth) and leads to a powerful electrical machine. In addition, we notice a big

difference in the use of raw material (copper and magnet) between the two formulations.

Volumes of raw materials are presented in Tab. 6 for VH1 and VH2. The increasing

volume of magnets tends to increase the electromotive force and the synchronous torque.

In addition, the salience of the EM is bigger and tends to increase the reluctance torque.

The section of the copper allows to reduce Joule losses in the windings.

Efficiency maps of sizings VH1 and VH2 and operating points over the urban driving

cycle are presented in Fig. 7. Firstly, we note that both EM are over-sized considering the
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magnet volume copper volume

(×10−4 m3) (×10−3 m3)

VH1 0,961 0,77

VH2 1,87 (+95,1 %) 1,44 (+86,3 %)

Table 6: Raw material volumes

operating points. This is due to a compromise between the standard power of the ICE

because the total installed power is mainly constrained to the dynamical performances.

One can see the differences on the torque limits. It is mainly explained by the copper

section difference and the maximal voltage available (see Fig. 6). For both efficiency maps,

the average operating speeds are adapted to the maximum efficiency by the coupling ratios

kcpl and kred.
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Figure 7: Efficiency maps and operating points of VH1 and VH2 on the urban driving
cycle

J1
(l/100 km)

SFCm

(g/(kW.h))
ηme

(%)
Energy

(W.h.km−1)

VH1 2,552 216,9 83,90 96,21

VH2
2,506

(-1,8 %)
217,3 87,33 94,79

Table 7: Efficiency analysis for the urban driving cycle

The mean specific fuel consumption (SFCm) and the mean efficiency of the EM (ηme)

are presented in Tab. 7. One can see an improvement of 3.34 % of the EM efficiency over

the whole cycle. Over the urban driving cycle, the fuel consumption gain between VH1

and VH2 is mainly explained by a better use of the EM.
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7 Conclusion

In the paper, the optimization of the electrical machine of a hybrid vehicle was discussed.

First, a parametrized model of the EM has been developed and implemented in the model

of a parallel-HEV. A particular attention was paid to the magnetic circuit model of the

EM. Then, the model of the parallel-HEV was integrated in a global joint optimization of

the sizing of the parallel-HEV and the energy management. This optimization process is

a multi-objective optimization taking into account the optimal energy management, the

main sizing variables of the drive train and the geometry of the electrical machine.

In a previous work, the comparison between the MCM and the MSFM emphasized the

importance of an accurate model in an optimization context [10]. The MSFM tends to be

optimistic in case of downsizing of the EM. The benefit of the magnetic circuit model is to

take into account the geometrical characteristics of the EM. Thus, MCM, or fine models,

appear to be a must, in order to size the electrical machine in a hybrid application.

In this paper, two formulations of the sizing problem have been developed and involved

in the optimization process for three different driving cycles. The first formulation consid-

ers a scaling factor on the geometrical parameters, thus, it leads to a smaller search space.

The second formulation, considering the geometrical parameters to be uncorrelated, leads

to better results in terms of fuel consumption (about 1%). Moreover, as the Pareto front

is different, this method can lead to a different choice of the standard power of the EM and

the final size of the battery pack. This way, we designed the EM for the hybrid applica-

tion. Nevertheless, this formulation considers numerous optimization variables and takes

about 15 hours to converge, compared to about 4 hours with a scaling factor method. In

addition, it leads to an important use of raw materials. This study assumes only two cost

functions, the fuel consumption and the battery number. For a simple model of the EM,

it can be sufficient, but for more complex model (i.e. the formulation taking into account

all the geometrical parameters of the EM), a compromise between the use of raw materials

and the fuel consumption could be considered. Further work will also include a robustness

study regarding the driving cycles.

Appendix

The initial characteristics of the initial hybrid vehicle and the electrical machine are shown

in Table 8.
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Notation Name Value Unit

ME

vehicle total
weigth

1120 kg

ME

Pb standard power 56.4 kW

Ωb standard speed 1242 tr.min−1

Γb max. torque 454.5 N.m

Udc
continuous
voltage

500 V

jmax
max. RMS
current density

12 A.mm−2

Vmax
max. peak
voltage

295 V

ICE

type diesel

Pice max. power 50.6 kW

Vice displacement 1598 cm3

NiMh Battery pack

Nbat

NiMh module
number in se-
ries

28 s.u

Pbat standard power 29.5 kW

Gears

kcpl coupling ratio 2.0 s.u

kred
reduction
ration

3.2941 s.u

kgb gearbox ratios

{∅,
41/11,
43/21,
37/28,
34/35,
31/41}

s.u

Table 8: Parallel HEV characteristics
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