Introduction

In two recent papers [START_REF] Ogden | The eect of pre-stress on the propagation and re¯ection of plane waves in incompressible elastic solids[END_REF][START_REF] Ogden | Re¯ection of plane waves from the boundary of a pre-stressed compressible elastic half-space[END_REF], for incompressible and compressible isotropic elastic solids, respectively, the in¯uence of pre-stress and pure homogeneous strain on the re¯ection of homogeneous plane waves from the plane boundary of a half-space has been studied in detail. In the present paper, we extend the results in [START_REF] Ogden | The eect of pre-stress on the propagation and re¯ection of plane waves in incompressible elastic solids[END_REF] by considering the eect of a pure homogeneous prestrain on the re¯ection and transmission of homogeneous plane waves at the boundary between two half-spaces of incompressible isotropic elastic material. In general, we take the two halfspaces to consist of dierent materials and to be subject to dierent deformations with their principal axes aligned (one normal to the interface). For pre-stressed materials, this problem has not apparently been considered previously, either for incompressible or compressible materials, except in the paper by Dey and Addy [START_REF] Dey | Re¯ection and refraction of plane waves under initial stresses at an interface[END_REF], which, as pointed out by Norris [START_REF] Norris | Propagation of plane waves in a pre-stressed elastic medium[END_REF], contains fundamental errors. In the case of an incompressible material the analogous problem in which the two half-spaces consist of the same material but are subject to equal and opposite simple shears has been considered recently by Hussain and Ogden [START_REF] Hussain | Re¯ection and transmission of plane waves at a shear-twin interface[END_REF] (see also the related paper [START_REF] Hussain | On the re¯ection of plane waves at the boundary of an elastic half-space subject to simple shear[END_REF]). The problem of interfacial waves (i.e., Stoneley waves) has been considered by a number of authors in respect of pre-stressed incompressible materials (see, for example [7±9]) and interfacial waves and stability by Dowaikh and Ogden [START_REF] Dowaikh | Interfacial waves and deformations in pre-stressed elastic media[END_REF]. For discussion of re¯ection and transmission in the context of the anisotropic theory without pre-strain, the reader is referred to [START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF].

The required equations and notations are summarized in Section 2. In Section 3 the propagation of plane harmonic waves is discussed with reference to the slowness curves for the two materials in respect of two distinct classes of strain-energy functions, exempli®ed by the neo-Hookean and Varga functions.

For the case in which the two half-spaces correspond to (dierent) neo-Hookean materials, the amplitudes of the re¯ected, transmitted and interfacial waves are calculated explicitly in Section 4.1. For each angle of incidence a single re¯ected wave, with angle of re¯ection equal to the angle of incidence, is generated when a homogeneous plane (SV) wave is incident on the boundary from one half-space, and it is accompanied by an interfacial wave (whose amplitude may vanish for certain discrete angles of incidence, which depend on the material parameters and the deformations in the two half-spaces). It is shown that under a certain restriction on the material parameters and deformations a transmitted (homogeneous plane SV) wave and an interfacial wave are generated for all angles of incidence. When this restriction does not hold there exists a critical angle (measured from parallel to the interface) above which there is again a transmitted and an interfacial wave but below which there are two interfacial waves (and no transmitted wave). The interfacial waves have the same speed but decay at dierent rates with distance from the interface.

When the half-spaces consist of (dierent) Varga materials corresponding results are given in Section 4.2. In this case, additional possibilities may arise for certain combinations of angle of incidence, material parameters and deformations. Speci®cally, two re¯ected (homogeneous plane SV) waves may be generated instead of one re¯ected and one interfacial wave and (not in general for the same angles of incidence, material parameters and deformations) two transmitted (homogeneous plane SV) waves may emerge. The ranges of values of the material parameters, deformations and angles of incidence for which the various possibilities arise are identi®ed in Section 4.2.

For each class of materials the conditions under which the incident wave is not refracted at the interface are determined and the angle of incidence for which this happens is obtained explicitly in terms of the deformations and material properties. The theory in Section 4 is illustrated in Section 5 using graphical results to show the dependence of the amplitudes of the waves on the angle of incidence for representative values of the material and deformation parameters.

Basic equations

We consider an incompressible isotropic elastic material subject to pure homogeneous strain. Let k 1 ; k 2 ; k 3 denote the principal stretches of the deformation. Then, the incompressibility condition is expressed as

k 1 k 2 k 3 1: 2:1
Since the material is isotropic, the principal Cauchy stresses are given by r i k i oW ok i À p; i P f1; 2; 3g; 2:2

where W , the strain-energy function per unit volume, is symmetric in k 1 ; k 2 ; k 3 ; and p is a Lagrange multiplier.

We consider incremental motions in the x 1 ; x 2 -plane superimposed on the pure homogeneous deformation such that the displacement vector v has components v 1 x 1 ; x 2 ; t; v 2 x 1 ; x 2 ; t; v 3 0:

The incremental incompressibility condition div v 0 is then used to deduce that v 1 w ;2 ; v 2 Àw ;1 ; 2:3 where wx 1 ; x 2 ; t is a scalar function and ;i denotes o=ox i ; i P f1; 2g:

The incremental nominal stress tensor referred to the homogeneously deformed con®guration is denoted by R; and its components are given by

R ji A 0jilk v k;l pv j;i À pd ij ; 2:4
where p is the increment in p and A 0jilk are the components of the fourth-order tensor A 0 of instantaneous elastic moduli. The components of A 0 in terms of the derivatives of the strainenergy function W are given by

A 0iijj k i k j W ij ; 2:5 A 0ijij k i W i À k j W j k 2 i k 2 i À k 2 j ; i T j; k i T k j ; 2:6 A 0ijij 1 2 A 0iiii À A 0iijj k i W i ; i T j; k i k j ; 2:7 A 0ijji A 0jiij A 0ijij À k i W i ; i T j; 2:8
where W i oW =ok i ; W ij o 2 W =ok i ok j and there is no summation over the repeated indices. The components A 0jilk of A 0 are constants since the deformation is homogeneous. For details see, for example, [START_REF] Ogden | Non-linear Elastic Deformations[END_REF]. The equation of motion is given by A 0jilk v k;jl À p ;i q v i ; i P f1; 2g; 2:9

where q is the material density, a superposed dot indicates the material time derivative and summation is over repeated indices in f1; 2g. Since the motion is restricted to the x 1 ; x 2 -plane we have from (2.9) explicitly in the latter of which the incremental hydrostatic pressure p has been eliminated by dierentiating R 22 with respect to x 1 and then using (2.10).

A 01111 À A

Plane waves

We consider time harmonic plane waves of the form w A exp ikx 1 cos h x 2 sin h À ct; 3:1 where A; c and k are constants, c being the wave speed and k the wave number, both being taken to be positive. Also, h is the angle that the direction of propagation cos h; sin h of the wave in the x 1 ; x 2 -plane makes with the x 1 direction.

Substitution of (3.1) into (2.12) yields a cos 4 h 2b sin 2 h cos 2 h c sin 4 h qc 2 : 3:2

Eq. (3.2) is the propagation condition, which identi®es the wave speed associated with any given angle h.

For qc 2 > 0, it is necessary and sucient that a; b and c satisfy the strong ellipticity inequalities a > 0; c > 0; b > À ac p :

3:3

For an inhomogeneous plane wave of the form

w A expik H x 1 À imx 2 À c H t 3:4
Eq. (2.12) gives a À 2bm 2 cm 4 q1 À m 2 c H 2 3:5 in place of (3.2). For a given wave speed c H , Eq. (3.5) determines m. The wave decays exponentially as x 2 3 ÀII provided m has positive (negative) real part.

We now consider two half-spaces of dierent incompressible isotropic elastic materials. The half-spaces are subjected to pure homogeneous strain and then bonded along their common (plane) boundary in such a way that the principal directions of strain are aligned, one direction being normal to the interface. In rectangular Cartesian coordinates we take the interface to be x 2 0.

Let k 1 ; k 2 ; k 3 be the stretches associated with the half-space x 2 < 0, with strain-energy function W, and material constants a; b; c de®ned by (2.13) with (2.5)±(2.8). Similarly, let k à 1 ; k à 2 ; k à 3 ; W à ; a à ; b à ; c à be the corresponding quantities for the half-space x 2 > 0. For simplicity, we take the deformation to correspond to plane strain with k 3 k à 3 1 so that, with reference to the incompressibility condition (2.1), we introduce the notations k; k à such that

k 1 k À1 2 k; k à 1 k ÃÀ1 2 k à : 3:6
Two distinct strain-energy functions are now examined since these exemplify the range of possible behaviour encountered. For these either 2b a c or 2b T a c in x 2 < 0 and similarly for x 2 > 0.

Case

A: 2b a c; 2b à a à c Ã
In this case (3.2) and (3.5) reduce, respectively, to a cos 2 h c sin 2 h qc 2 3:7

and 1 À m 2 a À À cm 2 À qc H 2 Á 0: 3:8
In terms of the slowness vector s 1 ; s 2 , de®ned by s 1 ; s 2 cos h; sin h=c; 3:9

Eq. (3.7) becomes the slowness curve k 4 s 2 1 s 2 2 q; x 2 < 0; 3:10 in s 1 ; s 2 -space, where q is de®ned by q q=c; 3:11 and a=c k 4 follows from (2.6) and (2.13). By using the dimensionless notation s 1 ; s 2 de®ned by

s 1 ; s 2 s 1 ; s 2 = q p ; 3:12
we can write (3.10) as

k 4 s 2 1 s 2 2 1; x 2 < 0: 3:13
Let h à ; c à ; q à be the counterparts of h; c; q for x 2 > 0 and let q à be de®ned by q à q à =c à 3:14 analogously to (3.11). We use the same non-dimensionalization (3.12) for the slowness vector

s à 1 ; s à 2 cos h à ; sin h à =c à 3:15 and de®ne s à 1 ; s à 2 s à 1 ; s à 2 = q p : 3:16
The counterpart of (3.13) in x 2 > 0 is then written

k Ã4 s Ã2 1 s Ã2 2 D; x 2 > 0; 3:17
where D is de®ned by

D q à =q q à c=qc à : 3:18
Under the considered plane strain conditions the specialization 2b a c forces the strain-energy function to have the neo-Hookean form

W 1 2 lk 2 1 k 2 2 k 2 3 À 3 3:19
(with k 3 1) in x 2 < 0, where l> 0 is the shear modulus, and similarly for x 2 > 0 with shear modulus l à .

In this case the value of D can be obtained from (2.6), (2.13) and (3.19) and is given by D dfk à =kg 2 ; 3:20 where d lq à =ql à : 3:21

Slowness curves for x 2 < 0 and x 2 > 0 are shown superimposed in Fig. 1 for illustrative values of d; k; k à .

Case

B: 2b T a c; 2b à T a à c Ã
In this case we take the strain-energy functions to satisfy b ac p , which was used by Ogden and Sotiropoulos [START_REF] Ogden | The eect of pre-stress on the propagation and re¯ection of plane waves in incompressible elastic solids[END_REF] and in [START_REF] Hussain | Re¯ection and transmission of plane waves at a shear-twin interface[END_REF][START_REF] Hussain | On the re¯ection of plane waves at the boundary of an elastic half-space subject to simple shear[END_REF], and similarly b

à a à c à p . Then (3.2) takes the form a p cos 2 h È c p sin 2 h É 2 qc 2 3:22 and (3.5) becomes a p À À c p m 2 Á 2 q 1 À À m 2 Á c H 2 : 3:23
The slowness curve corresponding to (3.22) is given by

k 2 s 2 1 È s 2 2 É 2 s 2 1 s 2 2 ; x 2 < 0 3:24
in dimensionless form with the notation (3.12) and q de®ned by (3.11). Similarly, for x 2 > 0 the corresponding equation of the slowness curve is fd; k; k à g f10; 2; 1:2g, inner (outer) ellipse for x 2 < 0> 0, (c) fd; k; k à g f3; 1:2; 3g, short (tall) ellipse for

x 2 < 0> 0. k Ã2 s Ã2 1 È s Ã2 2 É 2 s Ã2 1 È s Ã2 2 É D; 3:25
where D is again de®ned by (3.18).

As in Case A we illustrate the slowness curves for particular values of k and k à in the two halfspaces in Fig. 2. For this we use the Varga strain-energy function, which is given by

W 2lk 1 k 2 k 3 À 3 3:26
(with k 3 1 here) for x 2 < 0, where l is the shear modulus. Similarly for x 2 > 0 with shear modulus l à . For this material the value of D is obtained from (3.26) and (2.6) as 

D dk à k Ã2

Re¯ection and transmission at the interface

For continuity of traction at the interface associated with the underlying deformation we require r à 2 r 2 . The boundary conditions corresponding to continuous displacement are

v 1 v à 1 ; v 2 v à 2 on x 2 0, where v 1 ; v 2 are the displacement components in x 2 < 0 and v à 1 ; v à 2 are those in x 2 > 0. From (2.
3) these boundary conditions can be written in terms of the scalar functions w and w à as We now consider a wave incident on the boundary x 2 0 from the region x 2 < 0 with direction of propagation cos h; sin h in the x 1 ; x 2 -plane and speed c. Because of the symmetry with respect to the normal direction to the interface we henceforth, without loss of generality, restrict attention to values of h in the interval 0; p=2. We write the solution comprising the incident wave, a re-¯ected wave (with angle of re¯ection equal to the angle of incidence) and an interfacial wave in x 2 < 0 as

w A exp ikx 1 cos h x 2 sin h À ct AR exp ikx 1 cos h Àx 2 sin h À ct AR H exp ik H x 1  À imx 2 À c H t à ; 4:5
where R is the re¯ection coecient and R H measures the amplitude of the interfacial wave. The notations k H ; m; c H are as used in (3.4) and m has positive real part.

In the half-space x 2 > 0 we write the solution comprising a transmitted and an interfacial wave in the form Eq. (4.7) states, in particular, that the ®rst components of the slowness vectors for each homogeneous plane wave interacting at the boundary x 2 0 are equal, in this case s 1 s à 1 .

w à AR à expik à x 1 cos h à x 2 sin h à À c à t AR ÃH expik ÃH x 1 im à x 2 À c
Thus, by reference to the slowness curves for x 2 < 0 and x 2 > 0, superimposed as exempli®ed in Figs. 1 and2, the range of angles of incidence for which a transmitted wave exists can be iden-ti®ed. In Fig. 1(b), for example, since the inner curve corresponds to x 2 < 0 there is, for every angle of incidence (i.e. for every s 1 associated with the curve) a point on the outer curve for which s à 1 s 1 , and hence a transmitted wave. In Fig. 1(a), on the other hand, there are values of s 1 on the slowness curve for x 2 < 0 for which there are no corresponding values of s à 1 on the x 2 > 0 slowness curve, and therefore a range of angles of incidence for which no transmitted wave exists. This will be discussed further in Section 4.1. The situation in respect of Fig. 2 is less straightforward and will be examined in Section 4.2.

We now consider again Cases A and B separately. We do not examine here the mixed cases in which 2b a c; 2b à T a à c à or 2b T a c; 2b à a à c à since these do not introduce features that are qualitatively distinct from those arising in Case B.

Case

A: 2b a c; 2b à a à c Ã
In this case we see from Eq. (3.8) that m AE1, which yields an interfacial wave in the half-space x 2 < 0 for m 1. The zeros of the other quadratic factor in (3.8) correspond to m i tan h and m Ài tan h, which are associated, respectively, with the incident and re¯ected waves in x 2 < 0. Thus, in x 2 < 0 the solution (4.5) applies with m 1.

In x 2 > 0 the solution consisting of a transmitted wave and an interfacial wave may be written as (4.6) subject to (4.7) and with m à 1. The latter arises from the ®rst factor in the analogue of Eq. (3.8) for x 2 > 0. The second factor gives

m Ã2 a à À q à c ÃH 2 =c à : 4:8
Using the fact that a à =c à k Ã4 together with (4.7) and de®nitions (3.11), (3.14) and (3.18), Eq. (4.8) may be written as

m Ã2 k Ã4 À D k 4 À tan 2 h Á : 4:9
If this corresponds to a transmitted wave then we must have

m à Ài tan h à ; 4:10
where h à is a real angle given by

tan 2 h à D k 4 À tan 2 h Á À k Ã4 : 4:11 If Dk 4 > k Ã4 , i.e., from (3.20), dk 2 > k Ã2
, then the right-hand side of (4.11) is positive for all h and a transmitted wave exists for all angles of incidence (including h 0, which corresponds to grazing incidence). If, on the other hand, Dk 4 < k Ã4 , then there is a critical angle, h h c say, such that

tan 2 h c k Ã4 =D À k 4 : 4:12
In this case there is a transmitted wave for angles of incidence such that h c < h 6 p=2, but for 0 6 h < h c there is no transmitted wave and there are two interfacial waves, one with m à 1, and the other with m à given as the positive solution of (4.9). These interfacial waves have the same speed c H according to (4.7) but in general the value of m à given by (4.9) is not equal to unity. In fact, it can be unity (for some h such that 0 6 h < h c ) only if k Ã4 À Dk 4 P 1. At the critical angle h h c we have h à 0 and the ®rst term in (4.6) corresponds to a plane shear (body) wave propagating parallel to the boundary in x 2 > 0 (grazing transmission). At this point it is convenient to introduce the notations de®ned by t tan h; t à tan h à ; t c tan h c ; 4:13 noting that h à is a real angle when the right-hand side of (4.11) is non-negative and that t; t à and t c are all non-negative. We now examine conditions under which there is no refraction, i.e. a transmitted wave has the same direction of propagation as the incident wave (h à h). For this to be the case we must have 

t à t,
1 À t 2 1 R 2R H d1 À t Ã2 R à 2R ÃH ; 4:20 2t1 À R À i1 À t 2 R H d2t à R à i1 À t Ã2
F t 1 3it t 2 À it 3 d2t À it à À i À it t à t it à i d 2 1 3it à t Ã2 À it Ã3 ; 4:24 G H 21 À t 2 À id3 À t 2 t à À i d 2 1 3it à t Ã2 À it Ã3 ; 4:25 G à À1 t 2 d1 t Ã2 ; G ÃH 1 À t 2 2it à dt à À i 2 ;
4:26 and F Àt is obtained from F t by replacing t by Àt without changing t à . In these equations t à is given by (4.11) and is replaced by im à with m à > 0 when the right-hand side of (4.11) is negative. In Section 5.1 some graphical results for the absolute values of R; R H ; R à and R ÃH are given for illustration. Note that the results for k k à 1, when neither half-space is subject to pre-strain, are included here as a special case, and are illustrated in Figs. 3 and4 in Section 5.1.

Case B: b ac

p ; b à a à c à p
In this case, from (3.23), after using a=c k 4 and Snell's law cos h=c 1=c H , we have

1 t 2 k 2 À m 2 2 1 À m 2 k 2 t 2 2 ;
which can be reorganized as

m 2 t 2 m 2 1 t 2 À t 2 k 2 k 2 À 2 0: 4:27
Note that m it and m Àit are the solutions of (4.27) corresponding to the incident and re¯ected waves respectively. The other solutions are

m AE 1 À k 2 À 1 2 =1 t 2 q : 4:28 If k 6 2 p
then m is real for all h and the positive solution of (4.28) corresponds to an interfacial wave in

x 2 < 0. If k > 2 p
then there is a critical value of h; h c say, for which m 0 and this is given by t 2 c k 2 k 2 À 2;

4:29 where the notation t c tan h c is used. It follows that m is real for h c 6 h 6 p=2. For h c < h 6 p=2 there is a re¯ected wave accompanied by an interfacial wave and for h h c the interfacial wave becomes a plane shear (body) wave propagating parallel to the boundary in x 2 < 0 (grazing re-¯ection). When 0 < h < h c the interfacial wave is replaced by a second re¯ected wave with angle of re¯ection, h H say, obtained from (4.28) by replacing m by Ài tan h H to give

t H 2 k 2 k 2 È À 2 À t 2 É 1 t 2 ; 4:30
where t H tan h H . The speed c H of the second re¯ected wave is obtained from Snell's law in the form c H c cos h H = cos h together with (4.30). Note that Eq. ( 4.30) may be rewritten as cos 2 h cos 2 h H 1=k 2 À 1 2 ; 4:31 which is the same as Eq. ( 5.5) given in [START_REF] Ogden | The eect of pre-stress on the propagation and re¯ection of plane waves in incompressible elastic solids[END_REF] for the Varga material and does not depend on the presence of the half-space x 2 > 0 (it requires only the use of Snell's law and the propagation condition). The two re¯ected waves coincide when the angle of incidence, h 0 say, is given by t 2 0 k 2 À 2; 4:32 where t 0 tan h 0 . Clearly, this gives a non-trivial real angle only if k > 2 p . For the half-space x 2 > 0, we obtain an equation similar to (4.27), namely

m Ã2 t Ã2 m Ã2 1 Â t Ã2 À t Ã2 k Ã2 k Ã2 À 2 Ã 0: 4:33
The solution m à it à corresponds to a transmitted wave provided t à is real and positive. The other relevant solution is

m à AE 1 À k Ã2 À 1 2 =1 t Ã2 q 4:34
with the plus sign when m à is real. The nature of m à in (4.34) depends on that of t à , which is obtained by using the propagation condition (3.22) and its counterpart for x 2 > 0 together with Snell's law (4.7). This gives a quadratic for t Ã2 , which we write as

t Ã4 À D Ã À À 2k Ã2 Á t Ã2 k Ã4 À D Ã 0; 4:35
where D Ã is de®ned by

D Ã Dk 2 t 2 2 =1 t 2 k Ã2 t Ã2 2 =1 t Ã2 4:36
and D is given by (3.27). Eq. (4.35) may have real, pure imaginary or complex solutions for t à depending on the values of k; k à and D and on the angle of incidence. We delimit the possibilities as follows.

(a) There are two positive solutions for t Ã2 and hence two transmitted waves if

k Ã2 > 2; k Ã4 > D Ã P 4 k Ã2 À À 1 Á : 4:37
When the equality holds on the right-hand side the two solutions (and hence the transmitted waves) coincide. The direction of propagation, h à 0 say, is then de®ned by

t Ã2 0 k Ã2 À 2 4:38
similarly to (4.32), where t à 0 tan h à 0 . If k Ã4 D à > 4k Ã2 À 1 then one of the transmitted waves becomes a plane shear (body) wave propagating parallel to the boundary in x 2 > 0. One solution of (4.35) is then t à 0, while the other de®nes a critical angle h à c in x 2 > 0 with t à c tan h à c given by

t Ã2 c k Ã2 k Ã2 À À 2 Á 4:39
analogously to (4.29). (b) There is one positive and one negative solution for t Ã2 , and hence one transmitted and one interfacial wave, if

D Ã > k Ã4 ; 4:40
where k Ã2 may be greater than, equal to or less than 2. If D Ã k Ã4 < 2k Ã2 the transmitted wave becomes a plane shear (body) wave as in (a). (c) There are two negative solutions for t Ã2 , and hence two interfacial waves, if

k Ã2 < 2; k Ã4 > D Ã P 4k Ã2 À 1 4:41
with the solutions equal when equality holds on the right-hand side. In this case the interfacial waves propagate parallel to the boundary. (d) There are two complex conjugate solutions for t Ã2 , and hence two interfacial waves, if

D Ã < 4k Ã2 À 1 6 k Ã4 : 4:42
As for (b) this can hold for k Ã2 greater than, equal to or less than 2. In this case the interfacial waves propagate away from instead of parallel to the boundary. Note that waves of this type are not generated in x 2 < 0 for any values of the parameters.

In connection with determination of which of cases (a)±(d) holds it should be observed that if k 2 6 2 then D Ã , regarded as a function of t P 0 is monotonically increasing with minimum Dk 4 at t 0. On the other hand, if k 2 > 2 then, as t increases from zero, D Ã decreases from Dk 4 to its minimum 4Dk 2 À 1 where t t 0 and thereafter increases monotonically, reaching the value Dk 4 again when t t c .

The equation D Ã k Ã4 identi®es values of t corresponding to transition between regimes (a) and (b) or (b) and (c). If k 2 6 2 and k Ã4 < Dk 4 then this equation is not satis®ed for any real t, while if k Ã4 > Dk 4 there is one positive value of t, which becomes zero if the latter inequality is replaced by equality. If k 2 > 2 and k Ã4 > Dk 4 there is again one positive value of t; t 1 say, satisfying t 1 > t c , while if Dk 4 > k Ã4 P 4Dk 2 À 1 there are two positive values of t; t 1 and t 2 say, distributed according to t 1 < t 0 < t 2 < t c .

Transition between regimes (a) and (d) or (c) and (d) is identi®ed by the equation D Ã 4k Ã2 À 1. This yields one positive value of t if 4k Ã2 À 1 > Dk 4 (greater than t c ) and two if Dk 4 > 4k Ã2 À 1 > 4Dk 2 À 1, with a distribution similar to that noted in the above paragraph in respect of D Ã k Ã4 .

As h increases from 0 through to p=2, ten possible distributions of ranges of values of h associated with the regimes (a)±(d) can occur depending on the various inequalities restricting the parameters k; k à and D. We do not catalogue all of these here but illustrate some of the possibilities. Firstly, for example, if 4Dk 2 À 1 > k Ã4 ; k 2 > 2 then (b) applies for all angles of incidence. Secondly, if k Ã4 > Dk 4 ; Dk 2 À 1 > k Ã2 À 1; k 2 > 2; k Ã2 > 2 then there is a transition from a sector in which (a) holds to one in which (b) holds as h increases. Thirdly, if As in Case A, the solutions w and w à may be written in the forms (4.5) and (4.6) respectively, with m in (4.5) given by the positive solution of (4.28) when real and replaced by Ài tan h H when imaginary. In (4.6), tan h à and t à im à are the relevant solutions of (4.35) appropriate to which of the possibilities (a)±(d) applies.

2k Ã2 P k Ã4 > Dk 4 > 4k Ã2 À 1 > 4Dk 2 À 1; k 2 > 2 the transition is from (c) to (d) to (c) to (b). Finally, for Dk 4 > k Ã4 ; k Ã2 À 1 > Dk 2 À 1; k 2 > 2; k Ã2 > 2
The angle of incidence for which there is no refraction may be found as in Case A, this time by substituting t à t in Eq. (4.35) and making use of the de®nition (4.36). The resulting equation has two solutions for t 2 , namely

t 2 D p k 2 À k Ã2 1 À D p ; t 2 À D p k 2 k Ã2 D p 1 : 4:43
The second of these is negative and therefore does not yield a transmitted wave. The ®rst is positive under exactly the same conditions as its counterpart ( 

t1 À R À imR H t à R à im à R ÃH ; 4:47 1 À t 2 1 R 1 m 2 R H d1 À t Ã2 R à d1 m Ã2 R ÃH ; 4:48 t1 m 2 1 À R À im1 À t 2 R H t à d1 m Ã2 R à im à d1 À t Ã2
F t 1 2imt m 2 t 2 À imt 3 im 3 t d2mt À im à t à À i À imt m à t à t imt à im à d 2 1 2im à t à m Ã2 t Ã2 À im à t Ã3 im Ã3 t à ; 4:52 G H 1 m 2 À idm à t à À i1 À t 2 À idm à t à À i À im à t à d 2 t à im à 2 ; 4:53 G à m1 À t 2 À m à 1 m 2 dm à 1 À t Ã2 À m1 m Ã2 ; 4:54 G ÃH m1 À t 2 it à 1 m 2 À dit à 1 m Ã2 m1 À

Numerical results

In Sections 5.1 and 5.2 some graphical results are given for Cases A and B, respectively. For discussion of the stability of the pair of half-spaces we refer to Dowaikh and Ogden [START_REF] Dowaikh | Interfacial waves and deformations in pre-stressed elastic media[END_REF]. 1(a), which is the relevant one for Fig. 3, it can be seen that there is no transmitted wave for 0 6 h 6 h c , where h c is the critical value of h given by (4.12), in this case approximately 0:685. From Fig. 3(a) we observe that jRj 1 in this range, while Fig. 3(b) shows that jR H j vanishes at h approximately equal to 0:553. In the case of Fig. 4 there is a transmitted wave for all angles of incidence.

Figs. 5 and6 show the results for when there is pre-strain. With reference to the slowness curve in Fig. 1(b), we see that there is a transmitted wave for every angle of incidence, which is relevant for Fig. 5. In respect of Fig. 6, from Section 4 and from the discussion of the slowness curves in In each of Figs. 3±6 there are no non-trivial results for grazing incidence since jRj 1 and R H R Ã R ÃH 0 when h 0. In each of Figs. 3 and6 there is a critical angle associated with grazing transmission, approximately 0:685 and 0:983, respectively, where one of the interfacial waves changes to a transmitted wave (in x 2 > 0). In x 2 < 0 there is no such transition because there is only one re¯ected wave and one interfacial wave for each angle of incidence.

Case B: b ac

p ; b à a à c à p
For this case graphical results are given in Figs. 7±9. In Fig. 7, with reference to the slowness curves in Fig. 2(a), there is one re¯ected wave accompanied by an interfacial wave in x 2 < 0 and one transmitted wave accompanied by an interfacial wave in x 2 > 0 for each angle of incidence (i.e. (b) applies). As in Case A, there are no non-trivial results for grazing incidence.

In Fig. 8, with reference to the slowness curves in Fig. 2(b), there are three separate regions, namely 0 6 h 6 0:743; 0:743 6 h 6 1:06 and 1:06 6 h 6 p=2 corresponding to (d) to (a) to (b) transition as h increases from zero. In x 2 < 0 there is one re¯ected wave accompanied by an interfacial wave for each value of h since k < 2 p , as discussed in Section 4.2. For 0 6 h 6 0:743, we have two interfacial waves in x 2 > 0, for 0:743 6 h 6 1:06 we have two transmitted waves in x 2 > 0 and ®nally, for 1:06 6 h 6 p=2, one transmitted wave is accompanied by an interfacial wave. In Fig. 9, with reference to the slowness curves in Fig. 2(c) for x 2 > 0, we have one transmitted wave with an interfacial wave in 0 6 h 6 p=2 but for x 2 < 0 we have two intervals, namely 0 6 h 6 h c with two re¯ected waves and h c 6 h 6 p=2 with one re¯ected wave accompanied by an interfacial wave, where h c , approximately 1:38 here, is the critical value identi®ed in Eq. (4.29). Note that for h h 0 , approximately 1:12, the two re¯ected waves coincide and then jR H j 1 and R R Ã R ÃH 0, as can be seen from the ®gure. The vanishing of R; R Ã and R ÃH is associated with vanishing of the common factor t im in (4.50) and (4.51) or, equivalently, t H t.

Fig. 1 .

 1 Fig.1. Slowness curves for 2b a c; 2b à a à c à : (a) fd; k; k à g f0:6; 1; 1g, inner (outer) circle for x 2 > 0< 0, (b) fd; k; k à g f10; 2; 1:2g, inner (outer) ellipse for x 2 < 0> 0, (c) fd; k; k à g f3; 1:2; 3g, short (tall) ellipse for x 2 < 0> 0.

Fig. 2 .

 2 Fig. 2. Slowness curves for b ac p ; b à a à c à p : (a) fd; k; k à g f6; 1:4; 2g, inner (outer) curve for x 2 < 0> 0, (b) fd; k; k à g f1:1; 0:7; 3:5g, short (tall) curve for x 2 < 0> 0, (c) fd; k; k à g f3; 2:5; 1:2g, tall (broad) curve for x 2 < 0> 0.

  there are ®ve sectors with transition (b) to (a) to (d) to (a) to (b).

5. 1 .

 1 Case A: 2b a c; 2b à a à c à Graphical results for a selection of values of d; k; k à and l=l à are given in Figs. 3±6. Figs. 3 and 4 are for the case with no pre-strain with d < 1 and d > 1, respectively. With reference to the slowness curve shown in Fig.

Fig. 3 .

 3 Fig. 3. Plots of jRj; jR H j; jR à j and jR ÃH j in (a), (b), (c) and (d), respectively, against h0 6 h 6 p=2 for 2b a c; 2b à a à c à with fd; k; k à g f0:6; 1; 1g and l=l à 1:5.

Fig. 4 .Fig. 5 .

 45 Fig. 4. Plots of jRj; jR H j; jR à j and jR ÃH j in (a), (b), (c) and (d), respectively, against h0 6 h 6 p=2 for 2b a c; 2b à a à c à with fd; k; k à g f3; 1; 1g and l=l à 2.

Fig. 1 (

 1 Fig.1(c) it is apparent that there are two interfacial waves in x 2 > 0 for 0 6 h 6 h c , where here h c is approximately 0:983. A transmitted wave is accompanied by an interfacial wave for h c 6 h 6 p=2. Fig. 6(a) shows that jRj 1 for 0 6 h 6 h c , while from Figs. 6(b) and (c) we see that each of jR H j and jR Ã j vanishes at one value of h. From (4.22) and (4.23) with (4.25) and (4.26) this value is calculated as 0:75 for jR H j and 0:763 for jR Ã j.In each of Figs. 3±6 there are no non-trivial results for grazing incidence since jRj 1 and R H R Ã R ÃH 0 when h 0. In each of Figs.3 and 6there is a critical angle associated with grazing transmission, approximately 0:685 and 0:983, respectively, where one of the interfacial waves changes to a transmitted wave (in x 2 > 0). In x 2 < 0 there is no such transition because there is only one re¯ected wave and one interfacial wave for each angle of incidence.

Fig. 6 .Fig. 8 .

 68 Fig.6. Plots of jRj; jR H j; jR à j and jR ÃH j in (a), (b), (c) and (d), respectively, against h0 6 h 6 p=2 for 2b a c; 2b à a à c à with fd; k; k à g f3; 1:2; 3g and l=l à 2.

Fig. 7 .

 7 Fig. 7. Plots of jRj; jR H j; jR à j and jR ÃH j in (a), (b), (c) and (d), respectively, against h0 6 h 6 p=2 for b ac p ; b à a à c à p with fd; k; k à g f6; 1:4; 2g and l=l à 3.

  

  01122 pt 1;11 À p ;1 A 02121 t 1;22 A 02121 À r 2 t 2;12 q t 1 ;

				2:10
	A 02222 À A 02211 pt 2;22 À p ;2 A 01212 t 2;11 A 02121 À r 2 t 1;12 q t 2 :	2:11
	By eliminating p from (2.10) and (2.11) and using (2.3) we obtain an equation for w; namely
	aw ;1111 2bw ;1122 cw ;2222 q w ;11	w ;22 ;	2:12
	where the material constants a; b; c are de®ned by
	a A 01212 ; c A 02121 ; 2b A 01111 A 02222 À 2A 01122 À 2A 01221 ;	2:13
	as, for example, in [13].		
	From (2.4), on use of (2.3), the shear and normal components of the incremental nominal
	traction R 21 ; R 22 on a plane x 2 constant are expressible in terms of w through
	R 21 cw ;22 À c À r 2 w ;11 ;			2:14
	ÀR 22;1 2b c À r 2 w ;112 cw ;222 À q	w ;2 ;	2:15

  where w à is the counterpart of w for x 2 > 0.The boundary conditions for continuous incremental traction on the interface are where R 21 ; R 22 are the traction components in x 2 < 0 and R à 21 ; R à 22 are those in x 2 > 0. From (2.14), (2.15) and the continuity condition r à 2 r 2 , the boundary condition (4.2) takes the forms in terms of w and w à , where, in order to obtain (4.4), the second equation in (4.2) has been replaced by R 22;1 R à 22;1 and use made of (2.15) and its counterpart for x 2 > 0. Notice that (4.3) and (4.4) are independent of the pre-stress r 2 .

	w ;1 w à ;1 ; w ;2 w à ;2	on x 2 0;		4:1
	R 21 R Ã 21 ; R 22 R Ã 22	on x 2 0;		4:2
	cw ;22 À w ;11 c à w à ;22 À w à ;11 ;		4:3
	2b cw ;112 cw ;222 À q w ;2 2b à c à w à ;112 c à w à ;222 À q Ã	w à ;2 ;	4:4

  à is the transmission coecient and R ÃH is the analogue of R H for x 2 > 0. The transmitted wave has direction of propagation cos h à ; sin h à , wave number k à and speed c à , while k ÃH ; m à ; c ÃH are the counterparts of k H ; m; c H . Note that the interfacial wave decays as x 2 3 I provided m à has positive real part.According to Snell's law we have k cos h k H k à cos h à k ÃH or, equivalently, cos h=c 1=c H cos h à =c à 1=c ÃH :

	4:7

ÃH t; 4:6 where R

  and (4.11) then gives t 2 Dk 4 t 2 À k

	k 4 2w ;112 w ;222 À q	w ;2 d k Ã4 h	2w à ;112 w à ;222 À q Ã	w à ;2	i	;	4:18
	where d is de®ned by						
	d c à =c l à k 2 =lk Ã2 :						4:19

Ã4 

: 4:14

If D 1 this can only be satis®ed if k à k and it is then satis®ed for all angles of incidence. In this case it follows from (3.20) and (3.21) that d 1 and the shear wave speeds in the two materials are equal. If D T 1, then Eq. (4.14) may be written as

t 2 Dk 4 À À k Ã4 Á 1 À D: 4:15

Then, if D < 1 this yields a real angle of incidence provided Dk 4 > k Ã4 (and hence k à < k) and (4.11) has a real solution for the transmitted angle for all angles of incidence. If, on the other hand, D > 1, then (4.15) yields a real angle provided Dk 4 < k Ã4 (and hence k à > k). In this case there is a critical angle, given by (4.12), the solution of (4.15) being in the required range of values for the existence of a transmitted wave to be assured (i.e. t > t c ). Using (4.5) and (4.6) appropriately specialized in the boundary conditions (4.1), we obtain

1 R R H R à R ÃH ; 4:16 t1 À R À iR H t à R

à iR ÃH : 4:17 When (4.11) is replaced by (4.9), t à is replaced by im à in (4.15) with m à real and positive.With the specialization 2b a c; 2b à a à c à , the boundary condition (4.4) becomes Again with appropriate specialization, substitution of w and w à from (4.5) and (4.6) into (4.3) and (4.16) leads to

  R ÃH ; 4:21 with t à replaced by im à where necessary. Note that when d 0 Eqs. (4.20) and (4.21) reduce to equations given in[START_REF] Ogden | The eect of pre-stress on the propagation and re¯ection of plane waves in incompressible elastic solids[END_REF] for a single half-space with r 2 0.

	The solution of Eqs. (4.16), (4.17), (4.20) and (4.21) may be written
	R	t iF Àt t À iF t	;	R H À	2tG H t À iF t	;	4:22
	R Ã	2itt iG à t à À iF t	;	R ÃH À	2itt iG ÃH t à À iF t	;	4:23
	where F t; G					

H ; G Ã ; G ÃH are de®ned by

  4.15) in Case A. The coecients R; R H ; R Ã and R ÃH are determined by using the boundary conditions(4.

	d c à =c	l à kk 2 1 lk à k Ã2 1	:				4:45
	By substituting the values of w and w à from (4.5) and (4.6) in (4.1), (4.3) and (4.44) we obtain
	1 R R H R Ã R ÃH ;					4:46
							1), (4.3)
	and (4.4), with (4.4) taking the form			
	2k 2 1w ;112 w ;222 À q	w ;2 d 2k à 2 n	1w à ;112 w à ;222 À q Ã	w à ;2	o	4:44
	in this case, where				

  . (4.50)±(4.55) reduce to those in (4.22)±(4.24), (4.254) when both m and m à are set equal to 1. In Section 5.2 graphical results for the absolute values of R; R H ; R à and R ÃH are given for illustration.

	t Ã2 :	4:55

In these equations, for given t; m is obtained from Eq. (4.28) so as to have positive real part, t à from (4.35) and then m à from (4.34). Note that the same notation has been used as in (4.24)±(4.26) and that Eqs
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