possibility of residual strains, which were subsequently accounted for by Ogden and Roxburgh [START_REF] Ogden | An energy-based model of the Mullins e!ect[END_REF].

The essence of the theory is that loading is described by an elastic strain-energy function and unloading by a di!erent strain-energy function. The switch between strain-energy functions is e!ected through incorporation of an additional (damage or softening) variable into the strain-energy function, which is then referred to as a pseudo-energy function. Thus, we write =(F, ), where F is the deformation gradient relative to the natural (undeformed, stress-free) con"guration of the material and is the additional variable, which may be either active or inactive. If it is inactive we set it to the constant value unity and write

= (F)"=(F, 1) (1) 
for the resulting strain-energy function. When it is active it is taken to depend on the deformation gradient (in general implicitly) and we write " ( (F) and de"ne the strain-energy function w by w(F)"=(F, ( (F)).

(

In [START_REF] Ogden | A pseudo-elastic model for the Mullins e!ect in "lled rubber[END_REF][START_REF] Ogden | An energy-based model of the Mullins e!ect[END_REF], was taken to be continuous and to be determined uniquely by F. This contrasts with the theory adopted by Lazopoulos and Ogden [START_REF] Lazopoulos | Nonlinear elasticity theory with discontinuous internal variables[END_REF][START_REF] Lazopoulos | Spherically-symmetric solutions for a spherical shell in "nite pseudo-elasticity[END_REF] in which was related to F implicitly and allowed to depend non-uniquely on F, thus allowing a discontinuity in at certain critical values of F. Such discontinuity is associated with a discontinuity in stress which in turn is related to discontinuous damage and, hence, a discontinuous change in material properties at the critical deformation. This theory was applied in [START_REF] Lazopoulos | Spherically-symmetric solutions for a spherical shell in "nite pseudo-elasticity[END_REF], for example, to describe the in#ation and de#ation cycle for a thick-walled spherical shell; a slightly di!erent pseudo-elastic model for the same problem was used by Ogden [START_REF] Ogden | Elastic and pseudo-elastic instability and bifurcation[END_REF][START_REF] Ogden | Non-smooth changes in elastic material properties under "nite deformation[END_REF].

In the applications of this theory of pseudoelasticity considered so far it has been assumed that the material response remains isotropic. In general, this cannot be the case, particularly if there is residual strain since the response relative to such a residually strained state will be anisotropic. The theory, however, can accommodate this changing material symmetry, as discussed in [START_REF] Ogden | Elastic and pseudo-elastic instability and bifurcation[END_REF], although in the present paper we retain the isotropy assumption for simplicity of illustration. For a general discussion of residual stress in a non-linearly elastic body we refer to Hoger [START_REF] Hoger | On the determination of residual stress in an elastic body[END_REF] and Johnson and Hoger [START_REF] Johnson | The use of strain energy to quantify the e!ect of residual stress on mechanical behaviour[END_REF] and the papers cited therein.

An alternative model for the Mullins e!ect has been developed by Beatty and colleagues in a series of papers and it has some features in common with the theory of pseudo-elasticity discussed here. For uniaxial deformations details can be found in [START_REF] Johnson | The Mullins e!ect in uniaxial extension and its in#uence on the transverse vibration of a rubber string[END_REF][START_REF] Johnson | A constitutive equation for the Mullins e!ect in stress controlled uniaxial extension experiments[END_REF] and for general deformations in, for example, [START_REF] Beatty | A theory of stress softening in incompressible isotropic elastic materials[END_REF][START_REF] Krishnaswamy | The Mullins e!ect in compressible solids[END_REF], which deal with incompressible and compressible materials, respectively.

The theory of pseudo-elasticity (that with continuous ) required here is summarized in Section 2. We apply the theory, with residual strains allowed for, to a problem involving non-homogeneous deformation. Speci"cally, we consider the azimuthal shear of a thick-walled circular cylindrical tube of incompressible initially isotropic material with restriction to plane strain. We formulate the boundary-value problem for a general incompressible pseudo-elastic material for both loading and unloading. The inner circular boundary is taken to be "xed and the outer boundary rotated relative to it at "xed radius by application of a suitable shearing stress (assumed for loading to be monotonically increasing with the angle of rotation).

In Section 3, we describe the equations for azimuthal shear and apply them "rst for an elastic material. We recall that there is an exact solution for this problem for the neo-Hookean form of strain-energy function. We then apply the theory of pseudo-elasticity and obtain equations for unloading in general form. Since the deformation is inhomogeneous the strain-energy function for unloading depends on the radius via the maximum value of the strain-energy function on loading and is therefore itself inhomogeneous. If is the maximum value of the shearing stress on the outer boundary achieved during loading, then there are two critical values of , denoted \ and > , such that the following results hold. Firstly, for ( \ there is no residual strain after unloading. Secondly, if \ ( ( > then there exists a radius, r say, with a(r (b, where a and b are the inner and outer radii of the tube, respectively, such that there is residual strain for a)r(r but no residual strain for r )r)b. In this latter region there is a (residual) rigid-body rotation. Thirdly, if ' > then there is a residual strain distribution for a)r)b.

By using a speci"c example for the constitutive model we calculate the residual strain explicitly. The resulting non-recoverable energy expended in a loading}unloading cycle is also calculated. For unloading paths associated with di!erent values of , the governing equation are solved numerically in order to determine the shear strain distributions and to illustrate the stress softening e!ect, that is the reduction in the shear stress relative to its value on loading at the same strain.

Pseudo-elasticity theory

The theory of pseudo-elasticity adopted here is based on the pseudo-energy function =(F, ) described in Section 1. For the relevant background on non-linear elasticity we refer to, for example, [13}15]. In this paper we restrict attention to incompressible materials, so that the constraint det F"1

is satis"ed. The nominal stress tensor associated with the strain energy (1) is denoted by S and is given by

S " *= *F (F)!p F\, (4) 
where p is the Lagrange multiplier arising from the constraint (3).

In [START_REF] Lazopoulos | Nonlinear elasticity theory with discontinuous internal variables[END_REF] a variational procedure was used to show that, where is active, and F are related, in general implicitly, through the equation

*= * (F, )"0. ( 5 
)
This equation, which identi"es stationary points of =(F, ) with respect to , de"nes a hypersurface in the 10-dimensional (F, )-space to which values of must be restricted, subject to the constraint (3). If (5) de"nes uniquely in terms of F then we may write formally " ( (F), [START_REF] Ogden | Non-smooth changes in elastic material properties under "nite deformation[END_REF] as indicated in Section 1, and we introduce the notation w for the resulting strain-energy function, de"ned by [START_REF] Ogden | An energy-based model of the Mullins e!ect[END_REF]. In view of ( 5), the nominal stress tensor S associated with w(F) is simply

S" *w *F (F)!pF\" *= *F (F, )!pF\, (7) 
where the right-hand side is evaluated for given by ( 6) and p is the counterpart of p when is active. Note that for an incompressible material the Cauchy stress tensors, denoted by and for inactive and active , respectively, are related to S and S, respectively, by "FS , "FS.

The criterion for switching on or o!, i.e. the criterion for a change in material properties, depends on the particular application and hence, on the speci"c model used with the framework of the dependence of = on . In the application to stress softening associated with the Mullins e!ect [START_REF] Ogden | A pseudo-elastic model for the Mullins e!ect in "lled rubber[END_REF][START_REF] Ogden | An energy-based model of the Mullins e!ect[END_REF] is taken to be inactive during loading and to switch on during unloading (with loading and unloading being well de"ned relative to the energy expended during a deformation path). In this case, the energy = (F) changes continuously from its value =(F, 1) to =(F, ) with decreasing from the value 1 as unloading proceeds. The corresponding nominal stress also changes continuously, with S evaluated from [START_REF] Hoger | On the determination of residual stress in an elastic body[END_REF] for "1 equal to S . We require to be an objective scalar variable and that =(F, ) satis"es the usual objectivity condition =(QF, )"=(F, ) for all proper orthogonal Q.

(9)

The requirement on then ensures that the dependence of on F determined from ( 5) is objective, and objectivity of w in (2) then follows. Note that objectivity of =(F, ) with respect to F in general guarantees that determined from ( 5) is objective with respect to F by the implicit function theorem since F may be replaced by QF in (5) through [START_REF] Johnson | The Mullins e!ect in uniaxial extension and its in#uence on the transverse vibration of a rubber string[END_REF]. By contrast, objectivity of = (F) does not guarantee that of =(F, ). By the same token, any material symmetry ascribed to = (F) is not in general inherited by =(F, ). See [START_REF] Ogden | Elastic and pseudo-elastic instability and bifurcation[END_REF] for further discussion of these points.

Isotropy

For an isotropic material we write the pseudoenergy function in the form

= M ( , , , ), (10) 
where , , , the principal stretches of the deformation, are subject to the incompressibility constraint "1.

Eq. ( 5) specializes to

*= M * "0 (12) 
and the principal Cauchy stresses are given by

G " G *= M * G !p, i"1, 2, 3. ( 13 
)
We now write

=( , , ),= M ( , , \ \ , ) (14) 
so that [START_REF] Krishnaswamy | The Mullins e!ect in compressible solids[END_REF] becomes

*= * ( , , )"0. (15) 
Accordingly, Eq. ( 6) may be specialized to give

" ( ( , )" ( ( , ), (16) 
the symmetry in and being noted. Eq. ( 13) are combined, on elimination of p, to give

! " *= * , ! " *= * . ( 17 
)
Note that in order to avoid undue proliferation of notation we are now using the same notation = for the pseudo-energy function as in Section 1, but with the dependence now on the two independent stretches , and . Similarly, the notation for the function ( has been retained.

Appropriate specializations of Eqs. ( 15) and (17) for simple tension and pure shear are discussed in [START_REF] Ogden | A pseudo-elastic model for the Mullins e!ect in "lled rubber[END_REF][START_REF] Ogden | An energy-based model of the Mullins e!ect[END_REF] and we refer to these papers for details and for applications to the modelling of the Mullins stresssoftening e!ect for homogeneous deformations.

As in [START_REF] Ogden | A pseudo-elastic model for the Mullins e!ect in "lled rubber[END_REF][START_REF] Ogden | An energy-based model of the Mullins e!ect[END_REF] we model a loading path in ( , )space using "1 so that

= ( , ),=( , , 1) (18) 
with loading de"ned by = increasing. On unloading is active, = is decreasing, and is given by [START_REF] Jiang | On azimuthal shear of a circular cylindrical tube of compressible elastic material[END_REF]. Thus, in parallel with (2) we de"ne the modi-"ed strain-energy function w by w( ,

)"=( , , ( ( , )). (19) 
For loading, the Cauchy stress di!erences are given by

? ! " ? *= * ? , "1, 2, (20) 
and for unloading by

? ! " ? *w * ? " ? *= * ? , "1, 2. ( 21 
)

A plane strain example: simple shear

At this point we specialize to plane strain and set "1 and use the notation

" , " \. ( 22 
)
We de"ne the pseudo-energy function in terms of by

= K ( , ),=( , \, ), (23) 
so that Eqs. ( 17) and [START_REF] Beatty | Topics in "nite elasticity: hyperelasticity of rubber, elastomers and biological tissues * with examples[END_REF], respectively, may be specialized to

! " = K H , = K E "0, (24) 
where the subscripts denote partial derivatives.

In preparation for the discussion, in Section 3, of the azimuthal shear deformation (which is locally a simple shear) we now specialize further by considering the simple shear deformation, for which the amount of shear, denoted , is given in terms of by

" ! \, (25) 
where, without loss of generality, we have taken *1 to correspond to *0. To represent the pseudo-energy function in terms of we use the notation = I de"ned by

= I ( , ),= K ( , ). (26) 
Then, with the direction of shear taken as the X direction in the (1, 2)-plane the (uniform) shear stress has the form

"= I A ( , ) (27) 
and we also have the universal relation

! " . ( 28 
)
The second equation in (24) becomes

= I E ( , )"0, (29) 
which, in general implicitly, gives in terms of when is active, in which case we write " ( ( ) as the specialization of ( 16) for simple shear. The precise form of this function will depend on the way in which the pseudo-energy function is chosen to depend on . A simple example of the form of ( will be discussed in Section 3.

When is inactive we set 

= I ( )"= I ( , 1), (30) 
= I AA (0)" '0, (33) 
where is the shear modulus in the natural con"guration.

Note that when is active it follows from (29) that

= I AE #= I EE d d "0 (34) 
with " ( ( ). Thus, d /d '0 ((0) according as = I AE has the opposite sign to (same sign as) = I EE .

A simple model

The speci"c model used in [START_REF] Ogden | A pseudo-elastic model for the Mullins e!ect in "lled rubber[END_REF][START_REF] Ogden | An energy-based model of the Mullins e!ect[END_REF] has the form

=( , , )" = ( , )#( ) (35) 
with

(1)"0 (36)

for incompressible isotropic elasticity. Eq. ( 15) then leads to

( )"!= ( , ) (37) 
and is taken to satisfy the inequality

( )(0. ( 38 
)
This inequality ensures that in a simple tension test or in simple shear, for example, decreases monotonically with the magnitude of the deformation during unloading. From Eqs. ( 20) and ( 21) we obtain

? ! " ( ? ! ) ( 39 
)
in respect of (35). Let ( , ) be the values of ( , ) at the start of unloading and let = "= ( , ). Then

(1)"!= , (40) 
which, implicitly, requires that the function depends on the point at which unloading begins. This function is referred to as a damage or softening function and provides a measure of the non-recoverable part of the energy in a loading}unloading cycle, as described below.

If is restricted to being positive then the stress vanishes on unloading only when the original natural con"guration is reached. Then, if is the value of at this point, it follows from (37) that (

)"0, which de"nes uniquely. The value (

) is the non-recoverable part of the energy (per unit volume). If, on the other hand, is not so restricted then the stress may vanish on unloading at the point where "0 before the natural con"guration is reached. Let = be the value of = at this point. Since depends on = then so does = and we have (0)"!= . There is then a residual deformation, given by the stretches ( , ) say, such that = ( , )"= and in this case (0) is the non-recoverable part of the energy (per unit volume).

For simple shear the model (35) leads, in the notation of Section 2.2, to

" " = I ( ) , ! " ( ! )" = I ( ). (41) 
Hence "0 gives "0, " , but equally "0 leads to the same conclusion and to a residual value of , say, such that

= I ( )"!(0). ( 42 
)
For the azimuthal shear problem discussed in Section 3 this is a local condition with depending on the radius.

Azimuthal shear

Here, we describe the (pure) azimuthal shear deformation of a circular cylindrical thick-walled tube under the assumption of plane strain. The tube cross-section is de"ned by

A)R)B, 0) )2 (43)
in polar coordinates (R, ) in the reference con"guration. Let (r, ) be the corresponding polar coordinates in the deformed con"guration. Then, pure azimuthal shear is the isochoric deformation de-

"ned by r"R, " #g(R), (44) 
where g(r)"g(R) is obtained by the solution of the equilibrium equations. We use r as the independent variable and set a"A, b"B so that a)r)b.

The deformation is locally a simple shear of amount depending on r according to

"rg(r), (45) 
where the prime signi"es di!erentiation with respect to r. The direction of shear is locally the azimuthal ( ) direction and the radial direction is normal to the planes of shear. For full discussion of the background analysis for azimuthal shear we refer to, for example, Ogden [START_REF] Ogden | Non-linear Elastic Deformations[END_REF].

With reference to Eqs. ( 27) and (28) we may identify locally the ( , r) axes with the (1, 2) axes with increasing counterclockwise. Thus, the stress components are PF " , PP " , FF " . Hence,

PF "= I A ( , ), FF ! PP " PF . ( 46 
)
For the azimuthal shear problem there are two independent equilibrium equations. The radial equation has the form

r d PP dr " FF ! PP " = I P ( , ), (47) 
and the azimuthal equation is

d dr (r PF )"0. ( 48 
)
The latter integrates on use of the "rst equation of (46) to give

= I A ( , )" b/r, ( 49 
)
where is a constant equal to the value of PF on r"b.

In principle the azimuthal equation determines and hence the function g, while the radial equation serves to determine PP (or, equivalently, the Lagrange multiplier p) and hence the stress distribution. We impose on g the boundary conditions

g(a)"0, g(b)" , (50) 
so that the inner boundary of the tube is "xed and the outer boundary rotated through a prescribed angle . We assume that is a monotonic increasing function of and we use as the control parameter rather that .

Loading

For loading we take to be inactive so that Eq. (49) specializes to

= I ( )" b/r. ( 51 
)
To ensure that this equation yields a unique solution for as a function of r for all *0 we assume that = I ( )'0, = I ( )PR as PR.

For incompressible and compressible isotropic elastic materials the azimuthal shear problem has been considered by several authors and we refer to the recent paper by Jiang and Ogden [START_REF] Jiang | On azimuthal shear of a circular cylindrical tube of compressible elastic material[END_REF] for full discussion and references. In the incompressible case there is a well-known exact solution for the neo-Hookean material, which, for the deformation considered here, has the form.

= I ( )" , (53) 
where is as de"ned in (33).

Eq. ( 51) with ( 53) and (45) gives the solution

" b r , g(r)" b 2 1 a ! 1 r . ( 54 
)
The angle of rotation of the outer surface relative to the inner one is given by the linear relationship

"g(b)" b 2 1 a ! 1 b ( 55 
)
between and . The total energy, E say, in the material due to the deformation (per unit length normal to the considered plane) is given by

E" @ ? r dr" b 2 1 a ! 1 b . ( 56 
)
In this paper we assume for simplicity that loading is governed by the neo-Hookean strain energy so that the explicit solution (54) is available. Let be the maximum value of reached on loading and let be the corresponding value of , so that

= I ( )"b /r. (57) 
We set

= I "= I ( ), (58) 
which, of course, depends on r and . For the neo-Hookean material we have

= I " , "b / r. ( 59 
)

Unloading

We now consider unloading with active so that the identity

= I E ( , )"0 (60) 
gives in terms of . The azimuthal equation ( 49) is written as

= I A ( , )"b /r, ) , (61) 
which matches (51) at " , "1 (for all r). The radial equation is (47).

When " ( ( ) is determined from (60) the solution of (61) for describes the unloading deforma-tion path as reduces from to 0. When "0 we must have

= I A ( , )"0, (62) 
which is solved locally with (60) to give a pair of values ( , ) at each radius r through the tube. As is illustrated below this may yield the trivial solution "0 for all r, in which case there is no residual strain, or "0 for some range of values of r, in which case there is a residual value of for the remaining values of r, or O0 for all r, so that there is residual strain for all r.

The equation

= I A ( , ( ( ))"0 (63) 
then yields the residual value of (which depends on r through = I

). Thus, either "0 or " , the latter depending on = I . We now illustrate the results for the model (35), which, when specialized for azimuthal shear, gives

= I ( , )" = I ( )#( ), (64) 
and we have 

( )"!= I ( ), (1) 
In view of the properties (31) and (32) it follows that when "0 either "0 or "0. When "0, the "rst equation of (65) gives

= I ( )"!(0), (67) 
which (locally) determines uniquely the residual value of . Since , and hence ( ( ), depends on r through = I the resulting unloading strain energy obtained from ( 64) is inhomogeneous because it depends explicitly on r as well as on .

To illustrate the theory further we now select a speci"c form of . For simplicity, we take to be quadratic in so that (65) and (38) are satis"ed. Thus,

( )"! ( !1)!= I ( !1), (68) 
where is a positive (dimensionless) material constant whose interpretation will be discussed below.

The "rst equation of (65) then gives ( !1)"= I ( )

!= I . ( 69 
)
For unloading, the pseudo-energy =( , ) becomes the strain energy = I ( , ( ( )),= I ( )#(= I ( )!= I )/ (70) as a function of , and this shows explicitly its dependence on = I and hence on r. For the neo-Hookean material Eq. (69) reduces to

" ( ( ),1#( ! )/ , (71) 
and Eq. ( 66) becomes

[1#( ! )/ ] "b / r, ) . ( 72 
)

Residual strains

When "0 we deduce from (69) that

= I ( )"= I ! , (73) 
and from the properties of = I ( ) it follows that for there to be a solution of this equation (locally) for we must have

= I ' . ( 74 
)
If the inequality (74) does not hold then there is no residual strain and the solution "0 applies when "0.

Henceforth, for illustration, we restrict attention to the neo-Hookean strain energy so that is given by (71) on unloading and by (72). Then, by setting "0 and " in (71), we obtain " ! .

This has a real solution for O0 only if ' locally. The resulting residual strain distribution can then be calculated and the corresponding stresses are PF "0, PP " FF . We may think of as a critical value of . If ) for all r then "0 is the only solution when "0, in which case there is no residual strain anywhere in the material, but there is a stress softening e!ect on unloading since (1. This will be discussed later. (77)

We consider separately three cases.

(i) (a)) and ) a/b, \ ; this de-"nes the notation \ . In this case there is no residual strain, "0 for all r, and g(r)"0.

(ii) (b)) ) (a). Then \ ) ) , >
, which de"nes the notation > . In this case let r (a)r )b) be the value of r such that (r )" . Then,

"b / r " r/r , (78) 
and hence, ) for r )r)b, * for a)r)r .

(79) (iii) (b)* and * > . In this case there is a residual strain for all r.

In (ii) the solution for corresponding to "0 is

"0 for r )r)b, " "( ! for a)r)r , ( 80 
)
and from (78) we see that is given in terms of r by " (r !r/r.

On the use of (45) the solution for the residual value of g(r), denoted g (r), is then found to be g (r)"c for r )r)b, (82)

g (r)"c# 2 cos\ r r ! 1 r (r !r for a)r)r , ( 83 
)
where c is a constant. With the boundary conditions (43) it follows from (83) that c" 2

1 a (r !a!cos\ a r , ( 84 
)
and this is precisely the residual value of . The local value of the damage function after unloading is given as follows. Where "0 we have " "1! / , and then, from (68), we obtain

( )" /4 . ( 87 
)
On the other hand, where "0, we have

(0)" (2 ! )/4. ( 88 
)
The total residual energy, denoted E , is calculated (per unit length in the direction normal to the considered plane) as 

It is easy to check in each case that dE /d '0 for the relevant range of values of , bearing in mind that for case (ii) we have the connection (78) between r and . The expressions for E in Eqs. (92)}(94) may be compared with the energy for loading given by (56) with " .

Numerical results

Fig. 1 shows a plot of the function

f ( / )"[1#( ! )/ ] / , (95) 
which corresponds to the left-hand side of Eq. (72) divided by the factor , for each of the cases

Fig. 1 .

 1 Fig. 1. Plot of the function f ( / ) given by (95) for / "0.7, 1, 1.2 (unloading) and the line f ( / )" / (loading).
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. Also shown is the straight line f( / )" / corresponding to loading. Note that the middle curve separates the region where there is no (non-zero) residual value of from that where the intercept of the curve for ' with the horizontal axis gives the residual value of identi"ed by (75).

For a representative value of the tube wall thickness (such that b/a"2) we show, in Fig. 2, a plot of the distribution through the wall of the ratio / for three di!erent values of the ratio / and in each case the result for loading is compared with that for unloading at the intermediate point at which " /2. The upper curves correspond to unloading so that it is clear that a larger deformation is associated with a given applied stress on unloading as compared with loading. Note that the nature of the results is governed by the ratio / and not by the speci"c value of . The three cases (a)}(c) in Fig. 2 correspond, respectively, to cases (i)}(iii) identi"ed in Section 3.3. It should be observed that the strain decreases monotonically as the radius increases for both loading and unloading. In Fig. 3 the stress-softening e!ect is illustrated for three di!erent values of / , the shear stress on r"b, PF for loading (the straight lines) and PF for unloading, each scaled by division by and plotted against / (again for b/a"2). It is clear that the stress softening on unloading increases signi"cantly with the extent of loading. It can be shown from ( 71) and (72) that increases monotonically with r for "xed so that the shear stress-softening e!ect shown in Fig. 3 increases as r decreases and is maximal at the inner boundary r"a, where the strain is greatest. Note that (a) and (b) in Fig. 3 correspond to case (ii) in Section 3.3 and (c) to (iii). An illustration of case (i) is not included since the stress softening on r"b is not signi"cant. Indeed, even for (a) the e!ect if quite small.