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1 Introduction.

Let ϕ be a strictly plurisubharmonic function of class C 2 in a domain Ω in C n . Let c ϕ (z) be the smallest eigenvalue of i∂ ∂ϕ(z), then ∀z ∈ Ω, c ϕ (z) > 0. We denote by L 2,c p,q (Ω, e ϕ ) the currents in L 2 p,q (Ω, e ϕ ) with compact support in Ω and H p (Ω, e -ϕ ) the space of all (p, 0), ∂ closed forms in L 2 (Ω, e -ϕ ).

In the case n = 1, H. Hedenmalm [START_REF] Hedenmalm | On Hörmander solution of the ∂-equation[END_REF] proved the following theorem Theorem 1.1 Let ω ∈ L 2 0,1 (C, e ϕ ) then there is u ∈ L 2 (C, c ϕ e ϕ ) such that ∂u = ω, and

u L 2 (C,cϕe ϕ ) ≤ C ω L 2 (C,e ϕ ) , provided that ω ⊥ H 0 (C, e -ϕ ).
As he prognosticated in his remark 1.3 in [START_REF] Hedenmalm | On Hörmander solution of the ∂-equation[END_REF] this theorem was generalised to Stein manifolds in [START_REF] Amar | Serre duality and Hörmander's solution of the ∂ -equation[END_REF], and for domains in C n we got :

Theorem 1.2 Let Ω be a pseudo convex domain in C n ; if ω ∈ L 2,c
p,q (Ω, e ϕ ) with ∂ω = 0 if q < n and ω ∈ L 2 p,q (Ω, e ϕ ) with ω ⊥ H n-p (Ω, e -ϕ ) if q = n, then there is u ∈ L 2 p,q-1 (Ω, c ϕ e ϕ ) such that ∂u = ω, and

u L 2 (Ω,cϕe ϕ ) ≤ C ω L 2 (Ω,e ϕ ) .
Still pushed by H. Hedenmalm in several e-mails, the aim is to improve this theorem in the special case of C n by removing the assumption on the compact support for ω. Precisely we shall prove the following Theorem 1.3 Let ω ∈ L 2 p,q (C n , e ϕ ) with ∂ω = 0 if q < n and with ω ⊥ H n-p (Ω, e -ϕ ) if q = n, then there is u ∈ L 2 p,q-1 (C n , c ϕ e ϕ ) such that ∂u = ω, and

u L 2 (C n ,cϕe ϕ ) ≤ C ω L 2 (C n ,e ϕ ) .
I don't know if this is still true for a proper pseudo convex domain Ω of C n ; the method I have works only for C n .

The proof is strongly based on theorem 1.2 via the theorem 2.1, which can be seen as an auto improvement of theorem 1.2.

Solutions with compact support.

The first aim is to prove the following theorem which is an improvement of theorem 1.2, because here the solution is also with compact support.

Theorem 2.1 Let Ω be a pseudo convex domain in C n and ϕ be a strictly plurisubharmonic

function of class C 2 in Ω. Let c ϕ (z) be the smallest eigenvalue of ∂ ∂ϕ(z). There is a constant C > 0 such that if q < n, ∀ω ∈ L 2,c p,q (Ω, e ϕ ), ∂ω = 0, ∃u ∈ L 2,c p,q-1 (Ω, c ϕ e ϕ ), ∂u = ω, u ≤ C ω . If q = n
, we make the hypothesis that ω ⊥ H n-p (Ω, e -ϕ ) and we still get :

∀ω ∈ L 2,c p,n (Ω, e ϕ ), ∃u ∈ L 2,c p,n-1 (Ω, c ϕ e ϕ ), ∂u = ω, u ≤ C ω .
Proof. The idea is the same we used in [START_REF] Amar | An Andreotti-Grauert theorem with L r estimates[END_REF]: we add a weight to force the solution to be small outside a fixed compact set, then we take a limit.

Let ω ∈ L 2,c p,q (Ω, e ϕ ) with ∂ω = 0 if q < n and ω ∈ L 2 p,q (Ω, e ϕ ) with ω ⊥ H n-p (Ω, e -ϕ ) if q = n. Take a p.c. domain D such that D ⊂ Ω, containing the support of ω and defined by a p.s.h. smooth function ρ, i.e. D := {z ∈ Ω :: ρ(z) < 0}. This is always possible because Ω is Stein. Fix ǫ > 0 and set D ǫ := {z ∈ Ω :: ρ(z) < ǫ}, then D ⊂ D ǫ . Let χ ∈ C ∞ (R) such that χ is increasing and convex and such that : ∀t ≤ 0, χ(t) = 0 ; ∀t > 0, χ ′ (t) > 0, χ"(t) > 0. The function σ := χ(ρ) is also p.s.h. and smooth. We have that σ > χ(ǫ) > 0 outside Dǫ so, with ψ k := ϕ + kσ we have that ∂ ∂ψ k = ∂ ∂ϕ + k∂ ∂σ is still positive definite, so ψ k is s.p.s.h. and "big" outside Dǫ . Moreover in D we have ψ k = ϕ. So we apply theorem 1.2 with ψ k and we get the existence of a solution

u k ∈ L 2 p,q-1 (Ω, c ψ k e ψ k ) of ∂u k = ω, with u k L 2 (Ω,c ψ k e ψ k ) ≤ C ω L 2 (Ω,e ϕ ) , (2.1) 
because on Supp ω we have ∀k ∈ N, ψ k = ϕ. But, because σ is p.s.h., we have that c ψ k ≥ c ϕ and ∀z / ∈ D, e ψ k (z) = e kσ(z) e ϕ(z) with σ(z) > 0, this means that u k must be small in Dc ǫ .

Now we proceed as in [START_REF] Amar | An Andreotti-Grauert theorem with L r estimates[END_REF]. We have by (2.1) :

Ω |u k | 2 c ϕ e ψ k dm ≤ C ω L 2 (Ω,e ϕ )
because c ψ k ≥ c ϕ . Then, by e ψ k = e kσ e ϕ ≥ e kχ(ǫ) e ϕ on D c ǫ , we get that e kχ(ǫ)

Ω\Dǫ |u k | 2 c ϕ e ϕ dm ≤ Ω\Dǫ |u k | 2 c ϕ e ϕ e kσ dm ≤ C ω 2 L 2 (Ω,e ϕ ) hence Ω\Dǫ |u k | 2 c ϕ e ϕ dm ≤ Ce -kχ(ǫ) ω 2 L 2 (Ω,e ϕ ) . (2.2) 
On the other hand we have

Ω |u k | 2 c ϕ e ϕ dm ≤ C ω L 2 (Ω,e ϕ )
hence the sequence {u k } k∈N is uniformly bounded in L 2 (p,q-1) (Ω, c ϕ e ϕ ). So there is a subsequence, still denoted {u k } k∈N , converging weakly to u ∈ L 2 (p,q-1) (Ω, c ϕ e ϕ ), i.e. ∀f ∈ L 2 n-p,n-q+1 (Ω, c ϕ e ϕ ), u k , f → u, f . To see that this form u is 0 a.e. on Ω\D ǫ let us take a component u I,J of it ; it is the weak limit of the sequence of functions {u k,I,J } which means, with the notations v := u I,J , v k := u k,I,J , dµ := c ϕ e ϕ dm,

∀g ∈ L 2 (Ω, c ϕ e ϕ ), Ω vgdµ = lim k→∞ Ω v k gdµ.
As usual take g :

= v |v| 1 E where E := {|v| > 0} ∩ (Ω\D ǫ ) then we get Ω vgdµ = E |v| dµ = lim k→∞ Ω v k gdµ = lim k→∞ E v k v |v| dµ. (2.3) 
Now we have by Cauchy-Schwarz

E v k v |v| dµ ≤ v k L 2 (E,dµ) 1 E L 2 (E,dµ) . But v k 2 L 2 (E,dµ) ≤ Ω\Dǫ |u k | 2 dµ ≤ Ce -kχ(ǫ) ω 2 L 2 (Ω,e ϕ ) by (2.2) because χ(ǫ) > 0. Hence, by (2.3), E |v| dµ 2 ≤ C 1 E L 2 (E,dµ) lim k→∞ e -kχ(ǫ) ω 2 L 2 (Ω,e ϕ ) = 0 which implies µ(E) = m(E) = 0 because on E, |v| > 0.
This being true for all components of u, we get that the form u is 0 a.e. on Ω\D ǫ i.e. Supp u ⊂ D ǫ . So we get ∀ϕ ∈ D n-p,n-q (Ω), (-1) p+q-1 ω, ϕ = u k , ∂ϕ → u, ∂ϕ ⇒ u, ∂ϕ = (-1) p+q-1 ω, ϕ hence ∂u = ω as distributions.

We proved that : ∃C > 0, ∀ǫ > 0, ∃u ǫ ∈ L 2 (p,q-1) (Ω, c ϕ e ϕ ) :: ∂u ǫ = ω, u ǫ L 2 (Ω,cϕe ϕ ) ≤ C ω 2 L 2 (Ω,e ϕ ) , and Supp u ǫ ⊂ D ǫ . Because C is independent of ǫ, we can take again a subsequence to get finally that

B c k |ω| 2 e ϕ dm ≤ 1/k + 1. (3.6) Take χ k ∈ C ∞ c (B k ) such that χ k = 1 in B k-1 .
Consider the form ω k := χ k ω ; we have: ω -ω k ≤ 1/k by (3.6). And ∂ω k = ∂χ k ∧ ω. Clearly we can choose χ k such that ∂χ k ∞ ≤ 1 and this is the place where

C n is required. Hence ∂ω k 2 = B k \B k-1 ∂χ k 2 |ω| 2 e ϕ ≤ B k \B k-1 |ω| 2 e ϕ ≤ 1 k .
By (3.5) we have that there exists

u k ∈ L 2,c p,q (C n , c ϕ e ϕ ), ∂u k = ∂ω k with u k ≤ C/k. Now set: µ k := ω k -u k ; we have ∂µ k = 0 and ω -µ k ≤ 1 + C k because ω -µ k = ω -ω k + u k .
Moreover we have that µ k is compactly supported. So there is

v k ∈ L 2,c p,q-1 (C n , c ϕ e ϕ ), ∂v k = µ k and v k ≤ C µ k ≤ C( ω + 1 + C k ).
Because the norm of v k in L 2 p,q-1 (C n , c ϕ e ϕ ) is uniformly bounded, we have a weakly converging sub sequence :

∃v ∈ L 2 p,q-1 (C n , c ϕ e ϕ ) :: ∀f ∈ L 2 n-p,n-q+1 (C n , c ϕ e ϕ ), lim v k , f = v, f . Now choose f := ∂ϕ, with ϕ ∈ D n-p,n-q (C n ) then v k , ∂ϕ = (-1) p+q ∂v k , ϕ = (-1) p+q µ k , ϕ → v, ∂ϕ = (-1) p+q ∂v, ϕ .

But µ k = ω + e k , with e k ≤ 1 + C k hence µ k , ϕ = ω, ϕ + e k , ϕ → ω, ϕ so ∂v, ϕ = ω, ϕ which means that ∂v = ω in the distributions sense.

∃u ∈ L 2 (p,q-1) (Ω, c ϕ e ϕ ) :: ∂u = ω, u L 2 (Ω,cϕe ϕ ) ≤ C ω 2 L 2 (Ω,e ϕ ) , Supp u ⊂ D, and the theorem is proved.

We have a finer control of the support (see [START_REF] Amar | An Andreotti-Grauert theorem with L r estimates[END_REF], theorem 2.13).

Theorem 2.2 Let Ω be a pseudo convex domain in C n and ϕ be a strictly plurisubharmonic function of class C 2 in Ω. Let c ϕ (z) be the smallest eigenvalue of ∂ ∂ϕ(z).

Let ω ∈ L 2,c p,q (Ω, e ϕ ) with ∂ω = 0 if q < n and ω ⊥ H n-p (Ω, e -ϕ ) if q = n, and with support in Ω\C where C is also a pseudo convex domain, then there is a u ∈ L 2,c p,n-1 (Ω, c ϕ e ϕ ), ∂u = ω, u ≤ C ω with support in Ω\ Ū , where U is any open set relatively compact in C, provided that q ≥ 2.

Proof.

Let ω be a (p, q) form with compact support in Ω\C then ∃v ∈ L 2,c p,q-1 (Ω, c ϕ e ϕ ), ∂v = ω, with compact support in Ω, by theorem 2.1. Because ω has its support outside C we have ω = 0 in C ; this means that ∂v = 0 in C. On the support of v we have, because ϕ is s.p.s.h. and of class C 2 ,

. By Hörmander we have, because C is Stein and bounded, that ∃h ∈ L 2 p,q-2 (C) :: ∂h = v in C. Let U be open and such that Ū ⊂ C. Let χ be a smooth function such that χ = 1 in U and χ = 0 near ∂C ; then set

p,q-1 (Ω) ; moreover u = 0 in Ū because χ = 1 in U hence ∂χ = 0 there. Finally ∂u = ∂v -∂2 (χh) = ω. Because of (2.4) u ∈ L 2 p,q-1 (Ω) implies u ∈ L 2 p,q-1 (Ω, c ϕ e ϕ ) and we are done. If Ω and C are, for instance, pseudo-convex in C n then Ω\C is no longer pseudo-convex in general, so this theorem improves actually the control of the support.

3 Approximation procedure.

p,q (C n , e ϕ ) with ∂ω = 0 if q < n and ω ⊥ H n-p (Ω, e -ϕ ) if q = n, then there is u ∈ L 2 p,q-1 (C n , c ϕ e ϕ ) such that ∂u = ω, and

This is theorem 1.2 of [START_REF] Amar | Serre duality and Hörmander's solution of the ∂ -equation[END_REF] where the assumption of the compact support for ω is removed.

Proof. The idea is to proceed by approximation. So by theorem 2.1 we have the following result:

p,q (C n , e ϕ ), ∃u ∈ L 2,c p,q-1 (C n , c ϕ e ϕ ), ∂u = ω, u ≤ C ω .

(3.5)

Now let ω ∈ L 2 p,q (C n , e ϕ ) then there exists B k = B(0, r k ), r k ≥ r k-1 + 1 → ∞, a sequence of balls in C n such that