
HAL Id: hal-01301597
https://hal.science/hal-01301597

Preprint submitted on 12 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate Agreement under Mobile Byzantine Faults
Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil

To cite this version:
Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil. Approximate Agree-
ment under Mobile Byzantine Faults. 2015. �hal-01301597�

https://hal.science/hal-01301597
https://hal.archives-ouvertes.fr

Approximate Agreement under Mobile Byzantine Faults

Silvia Bonomi⋆, Antonella Del Pozzo⋆†, Maria Potop-Butucaru†, Sébastien Tixeuil†

⋆Sapienza Università di Roma,Via Ariosto 25, 00185 Roma, Italy

{bonomi, delpozzo}@dis.uniroma1.it
†Sorbonne Universités, UPMC, LIP6-CNRS 7606 – 4, Place Jussieu, Paris, France

{maria.potop-butucaru, sebastien.tixeuil}@lip6.fr

Abstract

In this paper we address Approximate Agreement problem in the Mobile Byzantine faults model.

Our contribution is three-fold. First, we propose the the first mapping from the existing variants of

Mobile Byzantine models to the Mixed-Mode faults model.This mapping further help us to prove the

correctness of class MSR (Mean-Subsequence-Reduce) Approximate Agreement algorithms in the Mo-

bile Byzantine fault model, and is of independent interest. Secondly, we prove lower bounds for solving

Approximate Agreement under all existing Mobile Byzantine faults models. Interestingly, these lower

bounds are different from the static bounds. Finally, we propose matching upper bounds.

Our paper is the first to link the Mobile Byzantine Faults models and the Mixed-Mode Faults models,

and we advocate that a similar approach can be adopted in order to prove the correctness of other classical

distributed building blocks (e.g. agreement, clock synchronization, interactive consistency etc) under

Mobile Byzantine Faults model.

1 Introduction

The emergent area of sensor networks or mobile robot networks revived recently the research on one of the

most studied building blocks of distributed computing: Approximate Agreement [4, 5, 7, 15, 23, 24, 25, 26,

27]. Indeed, gathering environmental data such as temperature or atmospheric pressure, or synchronizing

clocks in large scale sensor networks, typically do not require perfect agreement between participating

nodes. Also, requiring autonomous mobile robots to gather at some specific location e.g. to communicate

or to setup a new task tolerates a difference in the final robot positions after gathering. This is due to the

robots physical size. Accepting a predetermined difference in the agreement process permits to avoid many

impossibility results occurring in the perfect agreement case.

The Approximate Agreement problem [8, 13, 16] is nevertheless complex to solve in systems prone

to Byzantine faults. In sensor networks, sensors may not transmit their values or may transmit erroneous

values due to permanent or temporary failures. In mobile autonomous robot networks, some robots may

move in the opposite direction as the one intended due to hardware malfunction of buggy software. In

both cases the signals (transmitted data, or perceived position) sent by the faulty participants may have a

tremendous impact on the approximated value that is computed by the correct ones. The main criterium for

evaluating the complexity of Approximate Agreement in a particular setting is by providing the maximum

proportion of participants that may exhibit arbitrary behavior in any system execution (w.r.t. the total number

of participants). The other participants are considered to never deviate from their specification.

1

The problem becomes even more difficult to solve when faults are mobile. That is, when the faulty

behavior may impact different participants over time. For example, in sensor or mobile robot networks, the

possibility of intermittent external perturbations (e.g. magnetic fields) may affect different processes of the

network at various moments during system execution. Participants that are located in such affected areas

may exhibit Byzantine behavior. Obviously, in these systems the definition of a ”correct” and ”corrupted”

process is not trivial since a correct process may be corrupted temporarily afterwards, while a corrupted

process may behave again according to its specifications, once the external perturbation ceased. When faults

are mobile, every process may exhibit Byzantine behavior in a given system execution. So, complexity

criteria that were valid for the static case must be redesigned from scratch in systems with dynamically

evolving faults.

Our Contribution. This paper considers the Approximate Agreement problem, where processes start with

real values from some interval, and are required to converge, after a sequence of voting rounds, to a set of

values that are within ǫ of each other, where ǫ denotes a (strictly) positive real number. When the envi-

ronment is prone to Byzantine faults, faulty processes may exhibit arbitrary behavior and in particular may

play against the correct ones in order to prevent their convergence. We address the Approximate Agree-

ment problem under the Mobile Byzantine Faults model, where an adversary controls Byzantine agents and

moves them from one process to another. When such an agent is located at a process, this process may

behave arbitrarily (and even maliciously). We consider a round-based synchronous computational model

where the movements of the agents are synchronized with the change of rounds. This paper studies condi-

tions to achieve Approximate Agreement in the four existing synchronous Mobile Byzantine Faults models,

that differ in the diagnosis capabilities of processes, e.g., when processes can diagnose their failure state (that

is, they are aware that the mobile agent has left them), and when processes cannot self-diagnose. We prove

lower bounds (that are different from the static case) on the number of correct processes, n, that is necessary

to achieve Approximate Agreement in the presence of f Mobile Byzantine Faults (that is, f agents) for each

of the four models. Then we extend the correctness proof of the MSR (Mean-Subsequence-Reduce) class

of Approximate Agreement algorithms, [13], to the Mobile Byzantine faults model. Our correctness proof

makes use for the fist time in this context of a mapping between the Mobile Byzantine Faults models and

the Mixed-Mode Faults model [13] composed of asymmetric (classical Byzantine), symmetric and benign

static faults. The benign faults are self-incriminating (immediately self-evident to all non faulty processes).

The behavior of symmetric faults is perceived identically to all correct processes, while the asymmetric

faults have a totally arbitrary behavior. Our mapping is of independent interest and a similar approach can

be used to to prove the correctness of other classical distributed building blocks (e.g. agreement, clock

synchronization, interactive consistency etc) under Mobile Byzantine Faults model.

2 Related Works

The Byzantine Agreement problem, introduced first by Lamport et al. [14] is one of the most studied building

blocks in distributed computing and is specified as the conjunction of the following three properties [16]:

(Termination) All correct processes eventually decide; (Agreement) No two correct processes decide on

different values; (Validity) If all correct processes start with the same value v, then v is the only possible

decision value for a correct process.

In this paper we are interested in the Approximate Byzantine Agreement where processes start with

real numbers as inputs, and eventually decide a real number as output. The difference with the (exact)

Byzantine Agreement is that instead of agreeing exactly, processes are allowed to disagree within a small

2

positive margin ǫ. The specification of the Approximate Byzantine Agreement [16] has the same termination

property as the Byzantine Agreement. However, it has different agreement and validity properties: (ǫ-
Agreement) for any ǫ > 0, the decision values of any pair of correct processes are within ǫ of each other;

(Validity) any decision value for a correct process is in the range of the initial values of the correct processes.

2.1 Approximate Byzantine Agreement

The Approximate Byzantine Agreement problem has been studied since the eighties [8, 11]. Most of the

presented solutions are based on successive rounds of exchanges of the latest values each process stores

locally. Upon collecting each set of values, a correct process applies a function (e.g. average) and adopts as

next value the value returned by the function. The interested reader may refer to reference textbooks [16]

and references herein [9, 10].

Allowing different kinds of faults was investigated by Kieckhafer et al. [13], as they unify different algo-

rithms into the class of MSR-algorithms (Mean-Subsequence-Reduced), which compute the mean of a sub-

sequence of the reduced multi-set of values. The authors analyze the convergence rate and the fault-tolerance

of this class of algorithm in a so-called Mixed-Mode faults model. In this model faults are partitioned into

asymmetric (classical Byzantine), symmetric and benign. The benign faults are self-incriminating (immedi-

ately self-evident to all non faulty processes). The behavior of symmetric faults is perceived identically to

all correct processes, while the asymmetric faults have a totally arbitrary behavior. That is, the behavior of

processes being subject to asymmetric faults may be perceived differently by different correct processes.

Stolz et al. [22] recently proposed an Approximate Byzantine Agreement solution where processes have

to approximate the median value of the input values. Their algorithm achieves agreement for n > 3f + 1
within f+1 rounds, where f denotes the number of faulty (a.k.a. Byzantine) processes, while n denotes the

total number of processes. Their algorithm is not included in the MSR-class of [13] since they use a variant

of the King algorithm [2]. Multidimensional agreement has been investigated by Mendes et al. [17, 18],

where the authors also highlight the connexion between approximate agreement and convergence in mobile

autonomous robot networks [4, 5]. Li et al. [15] and Charron-Bost et al. [7] consider extensions to dynamic

networks. In a sustained line of work, Tseng et al. [23, 24, 25, 26, 27] investigate approximate agreement

problem within various faults models (link crash, process crash, byzantine) in multi-hop networks (both for

the directed and the undirected cases).

2.2 Mobile Byzantine Faults

As singled out by Yung [28], it is worth considering mobile adversaries (a.k.a. Byzantine mobile agents).

Mobile adversaries have been primarily introduced in the context of multi-party computation, to model an

attacker or an adversarial environment that is able to progressively compromise computational entities, but

only for a limited period of time. Therefore, tolerating Mobile Byzantine Faults is, in some sense, like

having a bounded number of compromised entities at any given time but the set of such entities evolves over

time.

From a theoretical point of view, mobile adversaries have been formalized for different Mobile Byzantine

Faults models [3, 6, 12, 21]. In Mobile Byzantine Faults models, there are two main research directions:

(i) Byzantines with constrained mobility, and (ii) Byzantines with unconstrained mobility. Byzantines with

constraint mobility were first studied by Buhrman et al. [6]. In their paper, they consider that Byzantine

agents move from one node to another only when protocol messages are sent (similarly to how viruses would

propagate). Buhrman et al. [6] studied the problem of Mobile Byzantine Agreement. They proved a tight

3

bound for the problem solvability (i.e., n > 3t, where t is the maximal number of simultaneously faulty

processes), and proposed a time optimal protocol that matches this bound.

In the case of unconstrained mobility the motion of Byzantine agents is not tied to protocol message

exchanges. Several authors investigated the agreement problem in further variants of this model [1, 3, 12,

19, 20, 21]. Reischuk [20] investigates the stability/stationarity of malicious agents for a given period of

time. Ostrovsky and Yung [19] introduce the notion of mobile virus and investigate an adversary that can

inject and distribute faults. Furthermore, they advocate that the unconstraint mobility model abstracts the

concept of insider threats (hacker, cracker, black hat) or attacks (DOS, Worms, viruses or Trojan horses).

Garay [12] and, more recently, Banu et al. [1], Sasaki et al. [21], and Bonnet et al. [3] consider, in

their models, that processes execute synchronous rounds composed of three phases: send, receive, compute.

Between two consecutive rounds, Byzantine agents can move from one node to another, hence the set of

faulty processes has a bounded size although its members can change from one round to the next. The

main difference between the aforementioned unconstrained models lies in the knowledge that processes that

have been affected by a Byzantine agent have. In Garay’s model, a process has the ability to detect its own

infection after the Byzantine agent left it. More precisely, during the first round following the leave of the

Byzantine agent, a process enters a state, called cured, during which it can take preventive actions to avoid

sending messages that are based on a corrupted state. Garay [12] proposed, in this model, an algorithm

that solves Byzantine Agreement provided that n > 6f (this requirement was later dropped to n > 4f
[1]). Bonnet et al. [3] investigated the same problem in a model where processes do not have the ability to

detect when Byzantine agents have moved. However, differently from Sasaki et al. [21], cured processes

have control on the messages they send. This subtle difference on the power of Byzantine agents has an

impact on the bounds for solving the agreement. If in the Sasaki’s model the bound on solving agreement is

n > 6f , in Bonnet’s model it decreases to n > 5f , and this bound is proven tight.

3 System Model and Problem Definition

We consider a distributed system composed of a set of n processes P = {p1, p2, . . . pn} each having a

unique integer identifier i ∈ [1, n].

Communication model and timing assumptions. Processes communicate through message passing. It is

assumed that processes in the distributed system may access a built-in communication abstraction used to

disseminate messages to all the other processes. We assume that communications are authenticated (i.e.,

given a message m, the identity of its sender cannot be forged) and reliable (i.e. messages are not created,

lost or duplicated).

The system is synchronous and evolves in sequential synchronous rounds r0, r1, . . . ri Every round

is divided in three phases: (i) send where processes send all the messages for the current round, (ii) receive

where processes receive all the messages sent at the beginning of the current round1 and (iii) computation

where processes process received messages and prepare those that are sent in the next round.

Failure model. Processes are affected by mobile Byzantine failures (MBF) [3, 12, 6, 21]. Informally, in

the mobile Byzantine failure model, faults are represented by powerful computationally unbounded agents

that move arbitrarily from a process to another. When the agent is on the process, it can corrupt its local

variables, forces it to send arbitrary messages (potentially different from process to process) etc... However,

the agent cannot corrupt the identity of the process. We assume that, in each round ri, at most f processes

1Let us note that, in round-based computations, all messages are delivered during the receive phase.

4

can be affected by a mobile Byzantine failure. When an agent occupies a process pi we say that pi is faulty.

If a process has been occupied by a Byzantine agent in the previous round then the process is said to be

cured. If a process is neither faulty nor cured then it is said to be correct. We assume, similar to previous

work [3, 12, 21], that each process has a tamper-proof memory where it safely stores the correct algorithm

code. When the agent leaves a process pi, it becomes cured and then can recover the correct algorithm

code from the tamper-proof memory. Concerning the assumptions on agent movements and the process

awareness on its cured state, different models have been defined. In this paper we consider all the variants

of mobile Byzantine failures [3, 12, 6, 21]:

• (M1) Garay’s model [12]. In this model, agents can move arbitrarily from a process to another at the

beginning of each round (i.e. before the send phase starts). When a process is in the cured state it is

aware of its condition and thus can remain silent for a round to prevent the dissemination of wrong

information.

• (M2) Bonnet et al.’s model [3] and (M3) Sasaki et al.’s model [21]. As in the previous model, agents

can move arbitrarily from a process to another at the beginning of each round (i.e. before the send

phase starts). Differently from the Garay’s model, in both models it is assumed that processes do not

know if they are correct or cured when the Byzantine agent moved. The main difference between

these two models is that in the [21] model a cured process still acts as a Byzantine one extra round.

• (M4) Buhrman’s model [6]. Differently from the previous models, agents move together with the

message (i.e., with the send or broadcast operation). However, when a process is in the cured state it

is aware of that.

Byzantine Approximate Agreement specification. The Byzantine Approximate Agreement problem has

been accurately specified in [16]. Processes start with real-valued inputs and eventually decide a real-valued

output. The only difference with the exact Byzantine Agreement is that instead of agreeing exactly, processes

are allowed to disagree within a small positive real-valued tolerance ǫ.

• Termination: All non faulty processes eventually decide;

• ǫ-Agreement: The decision value of any pair of non faulty processes are within ǫ of each other;

• Validity: Any decision value for a non faulty process is in the range of the initial values of the non

faulty processes.

Note that the specification proposed in [14] is similar (the termination properties being included in the

agreement properties).

4 Mapping Mobile Byzantine Faults to Mixed-model Faults Model

In this paper, we extend the analysis done in [13] for mixed-faults model and prove that the family of

Mean-Subsequence-Reduce (MRS) algorithms works also in the Mobile Byzantine Faults models.

In this section, we provide some background notions from [13] and propose an elegant mapping between

the Mobile Byzantine Faults model and the Mixed-Mode faults.

The work in [13] is focused on a specific family of Byzantine Approximate Agreement algorithms,

namely convergent voting algorithms, that start from an initial set of proposed values {v1, v2, . . . vn} and

guarantee that any process pi converges to a value vi satisfying the Byzantine Approximate Agreement

5

specification. More in details, any algorithm in this family proceeds in rounds and during any round rj ,
every process pi executes the following actions:

1. send-phase: pi sends its “voted” value to the others;

2. received-phase: pi aggregates values in a multiset Nrk ;

3. computation-phase: pi applies a deterministic function F(Nrk) to decide the value to vote in the next

round rk+1.

In [13] convergent voting algorithms are called Mean-Subsequence-Reduce (MSR). Their computation

function can be expressed in the general form:

FMSR(Nrk) = mean[Sel(Red(Nrk))]

where Sel is a selection function and Red is a reduction function used to filter values.

The correctness of MSR algorithms in the Mixed-mode faults model is guaranteed by the single-step

convergence property. Informally, at the end of each round rk, the range of values voted by correct processes

shrinks with respect to the beginning of the round. The failures considered in [13] are benign, symmetric

and asymmetric with the definitions below.

Definition 1 (Benign fault [13]) A process pi is said to be benign faulty if it exposes a self-incriminating,

or immediately self-evident fault to all non-faulty processes.

An example of benign fault is a crash failure or an omitted reply in a synchronous system. That is, in syn-

chronous systems if the reply is not delivered within the expected time then the process can be immediately

detected as faulty by every correct process .

Definition 2 (Symmetric fault [13]) A process pi is said to be symmetrically faulty if its behavior is per-

ceived identically by all non-faulty processes.

A symmetric fault is generally a malicious fault such as unexpected message broadcast to all processes.

Definition 3 (Asymmetric fault [13]) A process pi is said to be asymmetrically faulty if its behavior may

be perceived differently by different non-faulty processes.

An asymmetric fault is a classical arbitrary fault such as a broadcast where the sender can send different

values to different correct processes.

In [13], the authors proved that, given the number of benign faults b, the number of symmetric faults s
and the number of asymmetric faults a, the minimum number of processes n needed to solve the Byzantine

Approximate Agreement by an algorithm in the class MSR is n > 3a+ 2s+ b.
In the following, we propose a method to map the Mobile Byzantine faults model to the Mixed-mode

faults then prove that the MSR algorithms are correct under the Mobile Byzantine fault model. In addition,

we compute the number of processes n needed to tolerate f Mobile Byzantine faulty processes and solve

the Byzantine Approximate Agreement problem under Mobile Byzantine faults model.

Note that the behavior of mobile Byzantines concerns only the send/receive phases of the MSR algo-

rithms. Therefore, we focus on the behavior of the faulty processes during the execution of these phases. In

order to match our models the send-phase of MSR algorithms should be sightly modified in order to prevent

correct processes to participate to the communication as per the requirement of the M1 model.

6

Lemma 1 Let T brk be the set of cured processes at the beginning of round rk in model M1. If the send

phase

if (cured) nop; else send(vote) to all processes;

is executed by any pj ∈ T brk then the computation executed in round rk is equivalent to the computation

under Mixed-mode fault model with a = f and b = |T brk |.

Proof A cured process, in M1 is aware of its failure state thus if it is forced to skip the send phase then it is

detected by any correct process in round rk. 2Lemma 1

Lemma 2 Let T srk be the set of cured processes at the beginning of round rk in model M2. If the send

phase

send(vote) to all processes;

is executed by any pj ∈ T srk then the computation executed in round rk is equivalent to the computation

under Mixed-mode fault model executed with a = f and s = |T srk |.

Proof A cured process in M2 is not aware of its state, hence it sends its vote to every process in the system.

This value may be the result of a corrupted state. This is identical to the behavior of a process exhibiting a

symmetric fault. 2Lemma 3

Lemma 3 Let T ark be the set of cured processes at the beginning of round rk in model M3. If send phase

send(vote) to all processes;

is executed by any pj ∈ T ark then the computation executed in round rk is equivalent to the computation

under Mixed-mode fault model executed with a = f + |T ark |.

Proof A cured process in M3 is not aware of its state hence it sends its vote to every process in the system.

Moreover, Byzantine agent prepares the outgoing message queue (cf. [21]). Thus, a cured process executes

the sending phase as any correct process. However, differently from the correct processes it sends possibly

different values (left behind by the Byzantine agent) to every process in the system. This is identical to the

behavior of a process exhibiting an asymmetric fault. 2Lemma 3

Lemma 4 Let T crk be the set of cured processes at the beginning of round rk in model M4. If the send

phase

send(vote) to all processes;

is executed by any pj ∈ T crk then the computation executed in round rk is equivalent to the computation

under Mixed-mode fault model executed with a = f .

Proof In this failure model, Byzantine agents move along with the messages. Thus during the sending

phase there are no processes in T crk . 2Lemma 4

Table 1 summarizes the mapping results proven in Lemmas 1-4. Table 2 reports the required number of

replicas for each model.

7

M1 M2 M3 M4

Asymmetric faulty faulty faulty, cured faulty

Symmetric cured

Benign cured

Table 1: Mapping between the behavior of faulty processes in the Mixed-Mode faulty model and faulty and

cured processes in the four Mobile Byzantine faulty models.

nMi

M1 n > 3f + b = 4f

M2 n > 3f + 2s = 5f

M3 n > 3(f + a) = 6f

M4 n > 3f = 3f

Table 2: Number of required replicas in each failure model.

5 MSR under Mobile Byzantine Faults

In the following we prove that in presence of mobile Byzantine agents the MSR family of algorithms ver-

ifies the Byzantine Approximate Agreement specification. We first characterize configurations produced

by a MSR algorithm in presence of static Byzantine faulty nodes. Then, we prove that each configuration

produced in presence of mobile Byzantine agents has the same characterization. Hence, the mobility of

Byzantine agents does not affect the correctness of MSR family. Moreover, we prove that the necessary

condition over the number of replicas in [13] still holds in the Mobile Byzantine failures model with the

mapping defined in the previous section.

5.1 Preliminaries

In the following we recall some definitions from [8, 13] :

• min(V): min(r ∈ R : V (r) > 0) = v1; the minimum value of the elements in V ;

• max(V): max(r ∈ R : V (r) > 0) = vv; the maximum value of the elements in V ;

• ρ(V): [min(V),max(V)] = [v1, vv]; the real interval spanned by V. ρ(V) is called the range of V;

• δ(V): min(V)−max(V) = v1− vv; the difference between the maximum and the minimum values

of V . δ(V) is called the diameter of V;

• N i
rk

: the multiset of values received in a given round rk by non-faulty process i. Let U : be the subset

of N i
rk

, the values generated by non-faulty processes 2.

Now we can recall the important properties of FMSR() as proved in [13]. If n > 3a + 2s + b then the

following two properties hold:

P1 For each non faulty process pi, the computed value is in the range of non faulty values, i.e.,FMSR(N
i
rk
) ∈

ρ(U).

2Since the communication graph is fully connected then this set is equal for any correct process

8

P2 For each pair of non faulty processes, pi and pj , the difference between their computed values is

strictly less than the diameter of the submultiset of non faulty values received, i.e., |FMSR(N
i
rk
) −

FMSR(N
j
rk)| < δ(U).

In the following virk denotes the value obtained at the end of round rk (computation phase) by process pi,
applying the MSR function vector N i

rk
.

Definition 4 (correct value) Given a value virk ← FMSR(N
i
rk
), virk is said to be correct if it respects the

two FMSR() function properties P1 and P2.

Lemma 5 Let T ∗rk be the set of cured processes at the beginning of round rk in the models M1-M4. If

n > nMi and every pj ∈ T ∗rk executes computation-phase of a MSR-algorithm then at the end of rk we

have |T ∗rk | = 0.

Proof The proof is done by induction. During the first round r0 no Byzantine agent moved yet. Thus, at the

end of r0 trivially |T ∗r0 | = 0. In the next round r1 Byzantine agents move thus affecting up to f processes.

Therefore, at the beginning of r1 there are up to f cured processes, |T ∗r1 | ≤ f . If we substitute, for each

model M1-M4 (cf. Table 1), values in n > 3a+ 2s + b if follows that despite agents movement, n > nMi

still holds. Thus, for the definition of FMSR() the value that each process computes at computation-phase

is correct. Hence, at the end of round r1 we have |T ∗r1 | = 0. For each further rk the reasoning is similar.

2Lemma 5

From Lemma 5 it follows that during each round there are not cured processes related to the previous

round but only the ones due to the last Byzantine agents movement, hence the corollary below.

Corollary 1 Let Trk be the set of cured processes at the beginning of round rk. ∀rk, |Trk | ≤ f .

Definition 5 (configuration Crk) Let configuration Crk be a set of n tuples 〈failure state, proposing value〉i
representing the state of each process pi at round rk. Note that processes, depending on the failure model,

may or may not be aware of their failure state.

Definition 6 (AArk) LetAA be a generic instance of the MSR family and let AArk be the rk−th execution

of the protocol AA at round rk, such that Crk ← AArk(Crk−1). It takes as input Crk−1 and returns Crk .

Definition 7 (static computation) A sequence of k AA executions, such that Crk ← AArk−1(AArk−2(. . .
AAr1(Cr0)) . . .) is said a static computation if in every configuration Cr1 , ..., Crk , there exists a subset of

at least n− (3a+ 2s+ b) correct processes that are correct during the whole computation.

Note that with fixed a,s and b, the relation n > 3a + 2s + b always holds in a static computation of a

MSR algorithm ([13]).

Definition 8 (mobile computation) A sequence of kAA executions, such that Crk ← AArk−1(AArk−2(. . .
AAr1(Cr0)) . . .) is said to be a mobile computation if for any two subsequent configurations Crk , Crk+1,

any process may change the failure state but the relation n > 3a+ 2s+ b holds at each round.

Definition 9 (configurations equivalence) A configuration Crk is said to be equivalent to a configuration

C̄rk if:

9

• Crk and C̄rk produce the same U ;

• ∀k, Crk has at least the same number of tuples 〈correct, correct value 〉 as C̄rk .

Note that in a static computation a correct process is correct for the whole computation, while in a mobile

one is correct with respect to the observed round.

Definition 10 (correct computation) A computation Cr0 , . . . , Crk is a correct computation if it is possible

to build a static computation C̄r0 , . . . , C̄rk such that, ∀j ∈ [0, k], Crj is equivalent to C̄rj .

Observation 1 [13] Given a static computation C̄r0 , . . . , C̄rk of an algorithm in the MSR class, if n >
3a+ 2s+ b, then each configuration C̄rj , j ∈ [0, k], is characterized as follows:

• up to a asymmetric Byzantine processes;

• up to s symmetric Byzantine processes;

• up to b benign faults;

• at least n− (a+ s+ b) correct processes such that each pj of them computes a correct value v
rj
j .

The first three points are due to the failures static nature. The last one is given by the failures static

nature plus the correctness of the algorithm in the static case (as proven in [13]).

5.2 MSR correctness under Mobile Byzantine fault model

In the following we prove that despite Byzantines mobility, the MSR family of algorithms verifies the Ap-

proximate Agreement specification. In the presence of mobile Byzantine agents, each round is characterized

by correct, cured and faulty processes. As we showed previously, depending on the failure model considered,

cured processes behave accordingly to a different kind of fault (asymmetric, symmetric or benign).

The following theorem proves the mapping between the Mobile Byzantine faults model and the Mixed-

mode fault model. Let us start proving that if n > nMi then a mobile computation is also a correct compu-

tation, as defined in subsection 5.1.

Theorem 1 Let us consider a mobile computation C0, . . . , Ck,∀k ∈ N of an algorithm AA in the class

MSR. If in each round n > nMi (cf. Table 2) then the sequence C0, . . . , Ck is a correct computation.

Proof We have to show that for each iteration of AA we can build a static computation equivalent to the

dynamic one. The proof is done by induction. Let us denote by C, T ∗ and B the set of correct, cured and

Byzantine processes respectively and let t∗ denote the cardinality of T ∗. Let us denote, in the static case,

by C′, T ′, and B′ the set of correct, non correct (which may be asymmetric, symmetric, or benign), and

asymmetric faulty processes, respectively, and let t′∗ denote the cardinality of T ′.

• Rounds 0 → 1: At the begining of round 0, Byzantine agents never move. Thus, the configuration is

as follows:

– C: ∀i ∈ C, 〈correct, viniti 〉i, |C| ≥ n− (f);

– B: ∀j ∈ B, 〈faulty,⊥ 3 〉j , |B| ≤ f .

3We use ⊥ to indicate that it can be any value

10

The protocol executes its first iteration. Processes exchange their value and each non Byzantine

process pi updates its state: 〈failure state, proposing value ← v0i = FMSR(V
0)〉 . At this point

the situation is as follow:

– C: ∀i ∈ C, 〈correct, v0i 〉i, |C| ≥ n− (f);

– B: ∀j ∈ B, 〈faulty,⊥〉j , |B| ≤ f .

Up to now, the same happens in a static computation. At the begining of round 1, at most f Byzantine

agents move affecting other processes. Thus there are up to t∗ = f cured processes storing a non

correct value (e.g., v0 /∈ ρ(N0)).

– C: ∀i ∈ C, 〈correct, viniti 〉i, |C| ≥ n− (f + t∗);

– T : ∀k ∈ T , 〈cured,⊥〉k , |T | ≤ t∗;

– B: ∀j ∈ B, 〈faulty,⊥〉j , |B| ≤ f .

At the begining of round 1, there are at least n − (f + t∗) correct processes. If we map it to the

Mixed-mode failures model (cf. Table 1), this is equivalent to a static configuration where there are f
asymmetric processes and t∗ non correct that may be asymmetric, symmetric or benign:

– C′: ∀i ∈ C′, 〈correct, viniti 〉i, |C
′| ≥ n− (f + t′∗);

– T ′: ∀k ∈ T ′, 〈∗,⊥〉k , |T ′| ≤ t′∗;

– B′: ∀j ∈ B′, 〈asymmetric,⊥〉j , |B′| ≤ f .

The mobile and static configurations are equivalent (cf. Observation 1). Thus the current mobile

configuration (and the mobile computation up to now) is correct.

• Rounds 1→ 2: From the previous point, the configuration at the beginning of round 1 is correct. The

second iteration of the protocol takes place. Processes exchange their value and each non Byzantine

process pi updates its state: 〈failure state, proposing value ← v1i = FMSR(N
1
i)〉. At this point, for

Lemma 5, each process in T ∗ becomes correct. In other words, there are up to f Byzantine processes

and at least n− f correct processes. We are in the same situation as at the end of previous round 0.

At the beginning of next round, at most f Byzantine agents can move to other processes, leaving up to

t∗ = f cured processes with non correct value. Thus there are at least n− (f + t∗) correct processes

at the begining of round 2. The mobile and static configurations are equivalent (cf. Observation 1).

Thus the current mobile configuration (and the mobile computation up to now) is correct.

• Rounds i→ i+1: generalizing, for each round starting with a correct configuration we can apply the

previous reasoning ending in a subsequent round characterized by a correct configuration.

2Theorem 1

In the following we prove the correctness of any algorithm in the class MSR under Mobile Byzantine

failure model.

Lemma 6 (Termination) Let AA be an algorithm in the class MSR. If n > nMi, AA under Mobile Byzan-

tine fault model verifies the Termination property of the Byzantine Approximation Agreement.

11

Proof From Theorem 1, if n > nMi then algorithm AA generates a sequence of correct configurations, i.e.,

a sequence of converging values exactly as in [8, 13], thus the Termination property is satisfied in the same

way this is satisfied by the [8, 13] solutions. 2Lemma 6

Lemma 7 (ǫ-Agreement) Let AA be an algorithm in the class MSR. If n > nMi, AA under Mobile Byzan-

tine fault model verifies the ǫ-Agreement property of the Byzantine Approximation Agreement.

Proof From Theorem 1, if n > nMi then algorithm AA generates a sequence of correct configurations,

i.e., a sequence of converging values exactly as in [8, 13]. Thus, the ǫ-Agreement property is satisfied in the

same way this is satisfied by the [8, 13] solutions.

In the following we prove that once ǫ-Agreement is achieved among the currently non faulty processors,

it is preserved among the (possible different) uninfected processors. Let us consider an arbitrarily long

mobile computation C0, . . . , Ck. If ǫ-Agreement is achieved then there exists a round ra, a ∈ [0, k] where

all non faulty processes agree on values that are ǫ close to each other. Considering that n > nMi then

from Theorem 1 the whole mobile computation C0, . . . , Ck is correct. Thus from round to round the two

properties P1 and P2 hold and correct processes values can not diverge from each other.

2Lemma 7

Lemma 8 (Validity) Let AA be an algorithm in the class MSR. If n > nMi, AA under Mobile Byzantine

fault model verifies the Validity property of the Byzantine Approximation Agreement.

Proof From Theorem 1, if n > nMi then algorithm AA generates a sequence of correct configurations, i.e.,

a sequence of converging values exactly as in the validity proof in [8, 13]. 2Lemma 8

The three above lemmas provide the proof of the theorem below.

Theorem 2 If n > nMi
then the class MSR verifies the Byzantine Approximate Agreement specification.

6 Lower Bounds

In order to formulate the strongest impossibility results related to Approximate Agreement in the Mobile

Byzantine faults model we examine a weaker version of this problem referred in [11] as Simple Approximate

Agreement. Each correct node has a real value from [0, 1] as input and chooses a real value. Correct behav-

iors must satisfy the following properties: Agreement: The maximum difference between values chosen by

correct nodes must be strictly smaller than the maximum difference between the inputs, or be equal to the

latter difference if it is zero. Validity: Each correct node chooses a value in the range of the inputs of the

nodes.

We prove lower bounds for each Mobile Byzantine faults models: Garay’s (M1), Bonnet’s(M2), Sasaki’s

(M3) and Burhman’s (M4). The bounds for the models (M3) and (M4) result from the classical bounds

proved in [11] and the mapping defined in Section 3. In the case of models (M1) and (M2), since the

behavior of cured processes cannot be totally controlled by the Byzantine adversary, specific proofs are

needed.

Observation 2 Note that the lower bounds below do not concern the class of algorithms whose compu-

tations end before the end of the first round and that start in a configuration where there are f Byzantine

processes and no cured ones. It is trivial that for this class of algorithms the lower bounds are the same as

those proven in [11] (i.e., n ≥ 3f + 1).

12

Theorem 3 (Lower bound for Garay’s model) There is no algorithm that solves Simple Approximate Agree-

ment in the Garay’s model (M1) under the Mobile Byzantine faults model if n ≤ 4f .

Proof The proof goes by contradiction. Suppose that there exists an algorithm A verifying the Simple

Approximate Agreement properties in the (M1) Mobile Byzantine faults model with n ≤ 4f . Consider

w.l.g. a system with four processes and one Byzantine mobile agent. The generalization of the proof can be

done by replacing any process with a group of f processes.

Consider the system with four processes denoted p0, p1, p2, p3 and consider that p0 is occupied by the

Byzantine agent while p1 is cured and p2 and p3 are correct processes. Note that the cured process in (M1)

model is silent. Consider three executions of A denoted E1, E2 and E3 constructed as follows. In E1 the

correct processes propose both the value 0. It follows, from the Agreement and Validy properties of A, that

the value chosen by p1, p2 and p3 should be 0 (independently of the value sent by the Byzantine process,

assume it 1). In E2 the correct processes propose both 1. It follows, from the Agreement and Validity

properties ofA, that the value chosen by p1, p2 and p3 is 1 (independently of the value sent by the Byzantine

process, assume it 0).

The E3 brings the contradiction: some correct processes choose 1 while others choose 0, which contra-

dicts the Agreement property of A. The execution E3 is as follows: the process occupied by the Byzantine

agent sends 0 to process p2 and 1 to process p3. Let us consider only the processes p2 and p3. The multiset

held by p2 is {0,0,1}. This multiset is identical with the one p2 gathered in E1, hence its choice in E3
should be 0 (identical to the one in E1). The multiset gathered by p3 in E3 is {1,0,1} and identical with the

one p3 gathered in E2. Thus, p3 should choose 1 in E3. Execution E3 violates the Agreement property of

Simple Approximate Agreement. This contradicts the assumption that A verifies the Simple Approximate

Agreement properties. 2Theorem 6

Theorem 4 (Lower bound for Bonnet’s model) There is no algorithm that solves Simple Approximate

Agreement in the Bonnet’s model (M2) under the Mobile Byzantine faults model if n ≤ 5f .

Proof The proof follows the same general idea as the proof of Theorem . Suppose that exists an algorithm

A verifying Simple Approximate Agreement properties in Mobile Byzantine model (M2) with n ≤ 5f . In

all of them we consider five processes p0, p1, p2, p3 and p4, where p0 is occupied by a Byzantine agent while

p1 is cured (its state may be corrupted) and p2, p3 and p4 are correct processes.

Consider three executions: E1, E2 and E3. Execution E1 starts in a configuration where p2, p3 and p4
propose 0 while p1 proposes 1. Assume p0 sends 1 to all processes. Each non faulty process gathers in E1
the multi-set {1,1,0,0,0} and following the Agreement and Validity properties ofA , they have all to choose

0 in E1.

Execution E2 starts in a configuration where p2, p3 and p4 propose 1 while p1 proposes 0. Assume p0
sends 0 to all processes. Each non faulty process gathers in E2 the multi-set {0,0,1,1,1} and following the

Agreement and Validity properties of A , they have all to choose 1 in E2.

Execution E3 brings the contradiction. Assume that in E3 p0 sends 0 to p2 and 1 to p3. p2 gathers

the multiset {1,1,0,0,0} hence it has the same multi-set as in E1. p2 then chooses 0. p3 gathers the multi-

set {0,0,1,1,1} and since this multi-set is identical with the one gathered in E2, p3 has to make the same

choice, namely 1. Execution E3 violates the Agreement property, hence A do not implement the Simple

Approximate Agreement. 2Theorem 4

Theorem 5 (Lower bound for Sasaki’s model) There is no algorithm that solves Simple Approximate Agree-

ment in the Sasaki’s model (M3) under the Mobile Byzantine faults model if n ≤ 6f .

13

Proof The proof follows directly from the lower bound for the Simple Approximate Agreement [11] and the

mapping defined in Section 3. Note that in the Sasaski’s model the number of processes with asymmetric

behavior is 2f where f is the number of Byzantine agents. 2Theorem 5

Theorem 6 (Lower bound for Burhman’s model) There is no algorithm that solves Simple Approximate

Agreement in the Burhman’s model (M4) under the Mobile Byzantine faults model if n ≤ 3f .

Proof The proof follows directly from the lower bound for Simple Approximate Agreement [11] and the

mapping defined in Section 4. Note that in the Burhman’s model in each round there are exactly f asym-

metric faulty processes. 2Theorem 6

7 Conclusions

This paper proves lower and upper bounds for achieving Approximate Agreement in the Mobile Byzantine

faults model. Our core technique is the first mapping between variants of Mobile Byzantine faults models,

and the Mixed-mode faults model [13]. Our mapping then permitted to prove that the class of MSR (Mean-

Subsequence-Reduce) Approximate Agreement algorithms are correct in the Mobile Byzantine faults model.

We believe that our technique can be reused for other classical problems in Byzantine fault tolerance (e.g.

agreement, clock synchronization, interactive consistency etc).

References

[1] Z. Bouzid, M. G. Potop-Butucaru, and S. Tixeuil, “Byzantine convergence in robot networks: The

price of asynchrony,” in Principles of Distributed Systems, 13th International Conference, OPODIS

2009, Nı̂mes, France, December 15-18, 2009. Proceedings, ser. Lecture Notes in Computer Science,

T. F. Abdelzaher, M. Raynal, and N. Santoro, Eds., vol. 5923. Springer, 2009, pp. 54–70. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-10877-8 7

[2] ——, “Optimal byzantine-resilient convergence in uni-dimensional robot networks,” Theor. Comput.

Sci., vol. 411, no. 34-36, pp. 3154–3168, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.

2010.05.006

[3] B. Charron-Bost, M. Függer, and T. Nowak, “Approximate consensus in highly dynamic networks:

The role of averaging algorithms,” in Automata, Languages, and Programming - 42nd International

Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, 2015, pp. 528–539.

[4] C. Li, M. Hurfin, and Y. Wang, “Approximate byzantine consensus in sparse, mobile ad-hoc networks,”

J. Parallel Distrib. Comput., vol. 74, no. 9, pp. 2860–2871, 2014.

[5] L. Su and N. H. Vaidya, “Reaching approximate byzantine consensus with multi-hop communication,”

in Stabilization, Safety, and Security of Distributed Systems - 17th International Symposium, SSS 2015,

Edmonton, AB, Canada, August 18-21, 2015, Proceedings, 2015, pp. 21–35.

[6] L. Tseng and N. H. Vaidya, “Iterative approximate byzantine consensus under a generalized fault

model,” in Distributed Computing and Networking, 14th International Conference, ICDCN 2013,

Mumbai, India, January 3-6, 2013. Proceedings, 2013, pp. 72–86.

14

[7] ——, “Asynchronous convex hull consensus in the presence of crash faults,” in ACM Symposium on

Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, 2014, pp. 396–405.

[8] ——, “Iterative approximate consensus in the presence of byzantine link failures,” in Networked Sys-

tems - Second International Conference, NETYS 2014, Marrakech, Morocco, May 15-17, 2014. Re-

vised Selected Papers, 2014, pp. 84–98.

[9] N. H. Vaidya, L. Tseng, and G. Liang, “Iterative approximate byzantine consensus in arbitrary directed

graphs,” in ACM Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira,

Portugal, July 16-18, 2012, 2012, pp. 365–374.

[10] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, “Reaching approximate agreement

in the presence of faults,” Journal of the ACM (JACM), vol. 33, no. 3, pp. 499–516, 1986.

[11] R. M. Kieckhafer and M. H. Azadmanesh, “Reaching approximate agreement with mixed-mode

faults,” Parallel and Distributed Systems, IEEE Transactions on, vol. 5, no. 1, pp. 53–63, 1994.

[12] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[13] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals problem,” ACM Trans. Program.

Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[14] M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility proofs for distributed consensus prob-

lems,” Distributed Computing, vol. 1, no. 1, pp. 26–39, 1986.

[15] A. D. Fekete, “Asymptotically optimal algorithms for approximate agreement,” Distributed Comput-

ing, vol. 4, pp. 9–29, 1990.

[16] ——, “Asynchronous approximate agreement,” Inf. Comput., vol. 115, no. 1, pp. 95–124, 1994.

[17] D. Stolz and R. Wattenhofer, “Byzantine approximate agreement with median validity,” in to appear

OPODIS’15, 2015.

[18] P. Berman, J. A. Garay, and K. J. Perry, “Towards optimal distributed consensus (extended abstract),”

in 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Car-

olina, USA, 30 October - 1 November 1989, 1989, pp. 410–415.

[19] H. Mendes and M. Herlihy, “Multidimensional approximate agreement in byzantine asynchronous

systems,” in Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June

1-4, 2013, 2013, pp. 391–400.

[20] H. Mendes, M. Herlihy, N. H. Vaidya, and V. K. Garg, “Multidimensional agreement in byzantine

systems,” Distributed Computing, vol. 28, no. 6, pp. 423–441, 2015.

[21] M. Yung, “The mobile adversary paradigm in distributed computation and systems,” in Proceedings of

the 2015 ACM Symposium on Principles of Distributed Computing. ACM, 2015, pp. 171–172.

[22] F. Bonnet, X. Défago, T. D. Nguyen, and M. Potop-Butucaru, “Tight bound on mobile byzantine

agreement,” in Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA,

October 12-15, 2014. Proceedings, 2014, pp. 76–90.

15

[23] H. Buhrman, J. A. Garay, and J.-H. Hoepman, “Optimal resiliency against mobile faults,” in Proceed-

ings of the 25th International Symposium on Fault-Tolerant Computing (FTCS’95), 1995, pp. 83–88.

[24] J. A. Garay, “Reaching (and maintaining) agreement in the presence of mobile faults,” in Proceedings

of the 8th International Workshop on Distributed Algorithms, vol. 857, 1994, pp. 253–264.

[25] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita, “Mobile byzantine agreement on arbitrary

network,” in Proceedings of the 17th International Conference on Principles of Distributed Systems

(OPODIS’13), December 2013, pp. 236–250.

[26] N. Banu, S. Souissi, T. Izumi, and K. Wada, “An improved byzantine agreement algorithm for syn-

chronous systems with mobile faults,” International Journal of Computer Applications, vol. 43, no. 22,

pp. 1–7, April 2012.

[27] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks (extended abstract),” in Proceed-

ings of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC’91), 1991,

pp. 51–59.

[28] R. Reischuk, “A new solution for the byzantine generals problem,” Information and Control, vol. 64,

no. 1-3, pp. 23–42, January-March 1985.

16

