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SMOOTH FAMILY OF TORI AND LINEAR KÄHLER
GROUPS

BENOÎT CLAUDON

Abstract. This short note, meant as an addendum to [CCE14], en-
hances the results contained in loc. cit. In particular it is proven here
that a linear Kähler group is already the fundamental group of a smooth
complex projective variety. This is achieved studying the relative defor-
mation of the total space of a smooth family of tori in an equivariant
context.

1. Introduction

In his seminal paper on compact complex surfaces [Kod63], Kodaira proved
that a compact Kähler surface can be deformed to an algebraic one (The-
orem 16.1 in loc. cit.). However since the groundbreaking works of Voisin
[Voi04, Voi06] we know that this is specific to the surface case: in dimen-
sion at least 4, there exists compact Kähler manifolds which do not have
the cohomology algebra of a projective manifold (and in particular cannot
be deformed to such an algebraic manifold). The examples of Voisin being
bimeromorphic to a torus (or to a projective bundle over a torus), it leaves
open the following question concerning the fundamental groups of compact
Kähler manifolds (known as Kähler groups).

Question 1. Can any Kähler group be realized as the fundamental group of
a smooth complex projective variety? In other terms, is any Kähler group
already a projective one?

Going back to Kodaira’s Theorem, Buchdahl gave another proof of this
result in [Buc06, Buc08], providing by the way a useful criterion ensuring that
a compact Kähler manifold can be approximated by projective ones. This
criterion applies nicely to the case of smooth family1 of tori (this was already
observed in [CCE14]) and can even be used when the family is equivariant
under the action of a finite group.

Theorem 1.1.
Let f : X → B be a smooth family of tori whose total space is Kähler and let
us assume that f is equivariant with respect to the action of a finite group Γ
on both X and B. Then there exists a smooth family of tori of the form

X
π

−→ T ×B
p1
−→ T
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1As recalled in Paragraph 2.1, it is simply a holomorphic proper submersion whose
fibres are complex tori.
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2 BENOÎT CLAUDON

with T connected and a point t0 ∈ T such that the family Xt0 := (π◦pT )
−1(t0)

is (isomorphic to) the initial one. This family has moreover the following
properties:

(i) the group Γ acts on X ,
(ii) the projection π is equivariant with respect to this action on X and to

the action on T ×B induced by the trivial one on T ,
(iii) there exists a point t ∈ T such that Xt → B has a multisection and its

fibres are abelian varieties.

If the base B is compact (and thus Kähler) then the set Talg of points t ∈ T
such that Xt → B has a multisection and its fibres are abelian varieties is
dense near t0.

The last sentence means that the closure of Talg contains an open neigh-

bourhood of t0. Up to shrinking T we can assume that Talg is thus the whole
of T .

In particular, Theorem 1.1 shows that the problem of approximating com-
pact Kähler manifolds with projective ones has a positive answer in the case
of smooth tori families.

Corollary 1.2.
Let X be a compact Kähler manifold and let us assume that there is a finite
étale Galois cover X̃ → X which is the total space of a smooth family of tori
over a projective base (equivariant under the action of the Galois group).
Then X can be approximated by projective manifolds: it is the central fibre
of a smooth morphism (X ,X) → (T, t0) (with T smooth) and the set of t ∈ T
such that Xt is projective is dense near t0.

Proof. We can apply Theorem 1.1 to the smooth family of tori f : X̃ → B
and to action of Γ := Gal(X̃/X). We get a smooth deformation X̃ → T ×B
of the initial family (over t0) and we can assume the set of points t ∈ T such

that X̃t −→ B has a multisection and its fibres are abelian varieties is dense
in T . The manifolds X̃t having these properties are thus projective according
to [Cam81]. Since the action of Γ is free on X̃t0 we can assume that it is

also free on X̃ (up to shrinking T ). The family X := X̃ /Γ −→ T is thus a

smooth deformation of Xt0 ≃ X̃/Γ ≃ X and the set of points t ∈ T such
that Xt is projective is dense in T . �

Mixing Theorem 1.1 with the structure results obtained in [CCE15], we
get a definitive answer to Question 1 in the linear case.

Corollary 1.3.
A Kähler group which is linear is also a projective one: the fundamental
group of a compact Kähler manifold can be realised as the fundamental group
of a smooth projective variety if it is a linear group.

Proofs of Theorem 1.1 and Corollary 1.3 will be given in Paragraph 3.3.

Before presenting the ingredients involved in these proofs, let us give a
word of explanation on the relative deformation constructed in Theorem
1.1 (the reader is advised to consult [Ser06, §3.4.2, p. 191] for the notions
concerning relative deformations). The infinitesimal relative deformations of
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a smooth morphism f : X → B are described by the space H1(X,TX|B) (cf.
Lemma 3.4.7 in loc. cit.) and the Leray spectral sequence for TX|B and f
gives a piece of exact sequence:

(1) 0 −→ H1(B, f∗TX|B) −→ H1(X,TX|B) −→ H0(B,R1f∗TX|B).

In our situation (smooth families of tori), both sides of (1) corresponds to
a different type of relative deformation. The left-hand side parametrizes
relative deformation using translations in the fibres of f (see the content
of Proposition 2.4) whereas the right-hand side has to do with deformation
of the variation of Hodge structures induced by f (these deformations are
identified in Paragraph 3.2). In a sense, the strategy of the proof is thus
dictated by the terms appearing in (1).

2. Smooth family of tori

We recall here some basic facts about smooth families of tori: their de-
scription as torsors and their deformations. We then put this study in an
equivariant framework. Some facts recalled in Paragraph 2.1 already appear
in [Nak99, §2]. Our reference concerning Hodge theory is [Voi02]. For more
advanced stuffs on Jacobian fibrations, the reader is referred to [Sch12, BP13]
and to the references therein.

2.1. Jacobian fibrations. Let f : X → B be a proper submersion between
complex manifolds. We assume moreover that the fibres of f are complex
tori. We shall call such a fibration a smooth family of tori. This fibration
determines2 a variation of Hodge structures H (vhs for short) of weight -1
and rank 2g where g := dim(f) is the relative dimension of f : the underlying
local system is

HZ := Hom(R1f∗ZX ,ZB),

the Hodge filtration being given by

F := Hom(R1f∗OX ,OB) ⊂ HZ ⊗OB .

Let us remark that the duality

R1f∗ZX ⊗R2g−1f∗ZX −→ R2gf∗ZX ≃ ZB

shows that HZ is isomorphic to R2g−1f∗ZX .
With these data we can associate a particular family of tori. Let us con-

sider the injection

HZ →֒ E := HZ ⊗OB/F ≃ f∗TX|B

to this end. It can be used to define an action of HZ on the total space of E
and the quotient gives rise to a smooth family of tori which will be denoted

p : J(H) −→ B

and called the Jacobian fibration associated with H. This fibration comes
endowed with a natural section (the image of the zero section of E) and
using it as the origins of the fibres we can define an abelian group law on

2Since in the sequel we will have to change the Hodge structure keeping the local system
fixed, we will use calligraphic letters when referring to a vhs and straight ones to denote
the underlying local system.
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the sections of p. We have thus a short exact sequence of sheaves of abelian
groups:

(2) 0 −→ HZ −→ E −→ J (H) −→ 0.

Let us say a word about polarizations (inspired from [Nak99, p. 15-17]).
A real polarization of H is a flat non degenerate skew-symmetric bilinear
form

q : HR ×HR −→ RB

satisfying the Hodge-Riemann relations:

q(F ,F) = 0 and ∀ 0 6= x ∈ F , iq(x, x̄) > 0.

The polarization is said to be rational if it defined on HQ (with values in QB).
If such a rational polarization exists, we shall say that H is Q-polarizable.
In this case, the corresponding tori are abelian varieties.

Once such a polarization is fixed, the period domain of (HZ, q) can be
identified with the Siegel half space

Hg :=
{

τ ∈ Mg(C) | τ
t = τ andℑm(τ) > 0

}

and the representation associated with the local system has its value in the
symplectic group

π1(B) −→ Spg(Z).

This can then be used to define an action of π1(B) ⋉ Z2g on B̃ × Cg, the
resulting quotient being another realization of the Jacobian fibration. In
this case, the Jacobian fibration is endowed with a relative Kähler form ωq:
its restriction to any fiber is a Kähler metric. If q is rational, the fibration
J(H) → B is then a locally projective morphism.

In the reverse direction, starting from a smooth family of tori f : X → B
inducing H, it is obvious that a (relative) Kähler metric ω on X induces a
real polarization qω on HR.

2.2. Smooth families of tori as torsors. Now it is well known that the
initial family f : X → B can be seen as a torsor under the Jacobian fibration
and as such can be described by an element

η(f) ∈ H1(B,J (H)).

Here is a simple description of the class η(f). If (Ui) is an open cover of B
such that f−1(Ui) → Ui has a section σi then the quantity ηij := σi − σj
is a perfectly well defined cocycle with values in J (H). Reciprocally, given
a cohomology class η represented by a cocycle (ηij), we can look at the
isomorphisms induced by the sections ηij (translations in the fibres):

tr(ηij) : p
−1(Uij)

∼
−→ p−1(Uij)

define by the formulas:

tr(ηij)(x) = x+ ηij(p(x))

(the addition referring to the one in J(H)). The isomorphisms tr(ηij) satisfy
a cocyle relation and we can use them to glue the fibrations p−1(Ui) → Ui

into a new family of tori J(H)η → B (and both mechanisms are inverse one
to each other).
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Proposition 2.1.
There is a one-to-one correspondence between smooth families of tori f :
X → B inducing H and the cohomology classes η ∈ H1(B,J (H)). In partic-
ular, if f : X → B and g : Y → B are smooth families of tori inducing the
same vhs on B, we can glue them over B to get a new family h : Z → B
such that η(h) = η(f) + η(g).

With this mind it is obvious that there always exist an étale morphism

J(H)η → J(H)m·η

for η ∈ H1(B,J (H)) and m ≥ 1 an integer (obtained by gluing the multi-
plication by m defined on the Jacobian fibration). In particular, this proves
at least one implication of the following proposition.

Proposition 2.2.
Let f : X → B be a smooth family of tori (inducing the vhs H). The class
η(f) is torsion in H1(B,J (H)) if and only if f has a multisection. If it is
the case, the multisection can be chosen étale over B.

Remark 2.3. Using relative Deligne groups (as in [Nak99, §2]), we can give
an intrinsic definition of the class η(f) associated with a family of tori f :
X → B. Let us look at the following complex:

(3) Z•
D(X/B) : 0 −→ ZX −→ OX

dX|B
−→ Ω1

X|B

dX|B
−→ . . .

dX|B
−→ Ωg−1

X|B

where dX|B denotes the relative differential. The complex (3) sits obviously
in the exact sequence

(4) 0 −→ Ω≤g−1

X|B [−1] −→ Z•
D(X/B) −→ ZX −→ 0

where the last term is the complex given by the constant sheaf concentrated
in degree 0. Taking derived direct image of (4) yields a triangle:

(5) Rf∗Ω
≤g−1

X|B [−1] −→ Rf∗Z
•
D(X/B) −→ Rf∗ZX

+1
−→ .

On the other hand, we also have another triangle:

(6) Rf∗Ω
≥g
X|B −→ Rf∗Ω

•
X|B −→ Rf∗Ω

≤g−1

X|B

+1
−→

and the long exact sequence of cohomology associated with (6) shows that

(7) Hk Rf∗Ω
≤g−1

X|B ≃
(

Rkf∗CX ⊗OB

)

/F g

where F g is the gth-step of the Hodge filtration on the vhs Rkf∗CX . Now
looking at the long exact sequence associated with (5), we get:

R2g−1f∗ZX → H2g−1 Rf∗Ω
≤g−1

X|B → H2g Rf∗Z
•
D(X/B) → R2gf∗ZX → 0.

We can identify several terms in the sequence above: R2gf∗ZX is the constant
sheaf ZB and R2g−1f∗ZX is nothing but HZ. Using the isomorphism (7), the
last piece of exact sequence reads as:

(8) 0 −→ J (H) −→ D0(X/B) := H2g Rf∗Z
•
D(X/B) −→ ZB −→ 0

which is nothing but a relative version of [Voi02, cor. 12.27, p. 285]. So we
have just associated with f : X → B an extension of the sheaf J (H) by ZB
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and it is fairly clear that the cohomology class η(f) is obtained as the image
of 1 under the connecting morphism

δf : H0(B,ZB) −→ H1(B,J (H))

coming from (8).
As the name suggests, the sheaf D0(X/B) should be thought as a sheaf

of relative 0-cycles of X/B. With this mind, we see that a multisection of
f determines a global section of D0(X/B) which is sent to some non zero
integer in H0(B,ZB) (the relative degree of the corresponding cycle) and
description of η(f) we got above implies that this class should be a torsion
one, thus proving the second implication in Proposition 2.2.

Now we can use the exact sequence (2) to define a topological invariant of
a smooth family of tori. The long exact sequence associated with (2) reads
as

H1(B, E)
exp
−→ H1(B,J (H))

c
−→ H2(B,HZ).

The following was first observed by Kodaira in his study of elliptic surfaces
[Kod63, Theorem 11.3].

Proposition 2.4.
Let us fix η a class in H1(B,J (H)). Then any finite dimensional vector
space V ⊂ H1(B, E) appears as the base space of a smooth deformation

π : X η
V → V ×B

such that if v ∈ V the smooth family of tori

πv : X η
v := π−1({v} ×B) → B

is such that η(πv) = exp(v) + η.
In particular, if c(η) is torsion, J(H)η can be deformed (over B) to a

smooth family of tori having a multisection.

Proof. There is a tautological vector bundle EV which is an extension:

0 −→ E −→ EV −→ V −→ 0

where V is the trivial vector bundle. Its extension class is given by

IdV ∈ End(V ) ⊂ V ∗ ⊗H1(B, E) ≃ H1(B,V ∗ ⊗ E).

The local system HZ acts on the total space of EV by translations and we
can form the quotient. The manifold Y we obtained has a natural projection
to the total space of V . This is thus a smooth family of tori

ρ : Y −→ V ×B

and over a point v ∈ V we get from the construction that η(ρv) := exp(v).
Now we can glue the trivial family V ×X → V × B and Y → V × B over
V ×B to get the sought family

π : X −→ V ×B.

If c(η) is torsion then there exists an integer m ≥ 1 such that m·η = exp(v)
for some v ∈ H1(B, E). The latter being a vector space we can rewrite this
equality as m · (η − exp(v/m)) = 0. The construction explained above with
C·v ⊂ H1(B, E) gives a smooth family of tori X → C×B such that η(X0) = η
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and η(X−1/m) is torsion. The family X−1/m → B has thus a multisection
according to Proposition 2.2. �

Let us remark that the situation corresponding to the second part of the
preceding proposition occurs in the Kähler case.

Proposition 2.5.
Let f : X → B be a smooth family of tori inducing H. If X is Kähler, the
class c(η(f)) is torsion in H2(B,HZ).

Proof. Using the description of the class η(f) given in Remark 2.3, we readily
infer that there is a commutative diagram

(9) H0(B,ZB = R2gf∗ZX)

δf **UUU
U

U

U

U

U

U

U

U

U

U

U

U

U

U

d2 // H2(B,R2g−1f∗ZX = HZ)

H1(B,J (H))

c

OO

where d2 is the differential appearing in the Leray spectral sequence asso-
ciated with f and ZX . But it is well known that this spectral sequence
degenerates at E2 for a Kähler morphism and when it is computed using
real coefficients [Del68, Prop. 2.4] (see also [Voi02, Th. 16.15, p. 379]). The
diagram (9) is translated into the equality

c(η(f)) = c(δf (1)) = d2(1)

and the vanishing of d2,R exactly means that c(η(f)) is torsion. �

Remark 2.6. Obviously a relative Kähler class is enough to get the same
conclusion as above. It is quite surprising that c(η) being torsion is in fact
equivalent to the fibration J(H)η → B being cohomologically Kähler (mean-
ing that there is a class of degree 2 on J(H)η whose restriction to the fibres
is a Kähler class). This is the content of [Nak99, Proposition 2.17].

2.3. Equivariant cohomology. In this paragraph, we intend to recall some
facts about equivariant cohomology with respect to the action of a (finite)
group Γ. This formalism was also used in the study of elliptic surfaces
[Kod63, §13-14]. Here are the settings: we consider a finite group Γ acting
on a complex manifold B and we look at sheaves of abelian groups F over B
endowed3 with an action of Γ compatible with the one on B: it means that
for any γ ∈ Γ, there exists an isomorphism

iγ : γ∗F
∼

−→ F

or, even more concretely, for any open subset U ⊂ B, there is an isomorphism

iγ : H0(U,F)
∼
−→ H0(γ−1(U),F).

The collection of these isomorphisms have to satisfy the cocycle relation:

iγg = iγ ◦ (γ∗ig).

3This is equivalent to giving an action on the étalé space F associated with F such that
the natural projection F → B is Γ-equivariant.
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If F is such a Γ-sheaf, the group Γ acts on the space of global sections and
we can define the following functor:

FΓ :

{

ShΓ(B) −→ Ab
F 7→ H0(B,F)Γ

from the category of Γ-sheaves (of abelian groups) to the category of abelian
groups.

Definition 2.7.
The equivariant cohomology groups of a Γ-sheaf F are defined using the
(right) derived functors of FΓ:

Hi
Γ(B,F) := RiFΓ(F).

The functor FΓ being expressed as the composition of two functors (taking
first the global sections and then the invariants under Γ), the equivariant co-
homology groups can be computed using the spectral sequence of a composed
functor (see [Voi02, th. 16.9, p. 371]).

Proposition 2.8.
For any Γ-sheaf F , there is a spectral sequence

(10) Ep,q
2 := Hp(Γ,Hq(B,F)) =⇒ Hp+q

Γ (B,F)

abutting to the equivariant cohomology of F .

Remark 2.9. It is well known that the higher cohomology groups Hp(Γ,M)
are torsion groups for any Γ-module M and for any p > 0 when is Γ finite
(see [Bro82, Chapter III, Corollary 10.2]). In particular, if M is in addition
a vector space, then the groups Hi(Γ,M) vanish for p > 0. It applies for
instance when M = Hq(B,F) for F a Γ-sheaf which is at the same time
a coherent sheaf. In this case, the spectral sequence from the preceding
proposition degenerates and the equivariant cohomology is nothing but the
invariants:

Hi
Γ(B,F) = Hq(B,F)Γ.

2.4. Smooth family of tori endowed with a group action. We now aim
at applying results from the previous paragraph to the following situation:
f : X → B is smooth family of tori endowed with an action of a finite group
Γ. The fibration f is equivariant with respect to both actions of Γ on X and
B. In particular, all the natural objects arising in this situation (the local
system HZ, the vhs, the Jacobian fibration as well as its sheaf of sections)
are endowed with compatible actions of Γ. In particular, the sequence (2) is
an exact sequence of Γ-sheaves and using Remark 2.9 the long exact sequence
reads now as:

(11) H1(B, E)Γ
exp
−→ H1

Γ(B,J (H))
cΓ−→ H2

Γ(B,HZ) . . .

As in Paragraph 2.1, we can naturally identify a Γ-equivariant smooth family
of tori f : X → B with its cohomology class

ηΓ(f) ∈ H1
Γ(B,J (H)).

This can be done as in Kodaira’s work [Kod63, Theorem 14.1] or using
relative Deligne groups. The exact sequence

0 −→ J (H) −→ D0(X/B) −→ ZB −→ 0
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is indeed an exact sequence of Γ-sheaves and the connecting morphism

δΓf : H0(B,ZB)
Γ = Z −→ H1

Γ(B,J (H))

enables us to define ηΓ(f) := δΓf (1) in the group H1
Γ(B,J (H)).

We can now promote Propositions 2.4 and 2.5 to the Γ-equivariant realm.
The proof of Proposition 2.4 applies verbatim to give the following result.

Proposition 2.10.
Let us fix η a class in H1

Γ(B,J (H)). Then any finite dimensional vector space
V ⊂ H1(B, E)Γ appears then as the base space of a smooth Γ-equivariant
deformation

π : X η
V → V ×B.

Precisely: the group Γ acts on X and the morphism π is equivariant for the
trivial action of Γ on V . If v ∈ V the smooth family of tori

πv : X η
v := π−1({v} ×B) → B

has the following cohomology class

ηΓ(πv) = exp(v) + η ∈ H1
Γ(B,J (H)).

Proposition 2.11.
Let f : X → B be a Γ-equivariant smooth family of tori and let us assume
that X is Kähler. Then the class

cΓ(ηΓ(f)) ∈ H2
Γ(B,HZ)

is torsion and f : X → B can be deformed (over B) to another smooth family
of tori having a multisection and acting on by Γ.

Proof. Since the E0,2
∞ coming from the spectral sequence (10) is a subgroup

of E0,2
2 , we have a natural morphism:

H2
Γ(B,HZ)

π0,2

−→ H2(B,HZ)
Γ.

The following relation is clear:

π0,2(cΓ(ηΓ(f))) = c(η(f))

and consists in ignoring the Γ-action. Now we can use Proposition 2.5 to
infer that π0,2(cΓ(ηΓ(f))) is torsion. Finally the kernel of π0,2 is an extension

of E2,0
∞ by E1,1

∞ and these groups are torsion according to Remark 2.9. It is
enough to conclude that cΓ(ηΓ(f)) is a torsion class in H2

Γ(B,HZ).
Since cΓ(ηΓ(f)) is torsion, we can mimic the proof of Proposition 2.4: it

produces a deformation

X −→ C×B −→ C

endowed with an action of Γ, the group acting fibrewise over C. Moreover
there is a point in the base space t ∈ C such that

ηΓ(Xt → B) ∈ H1
Γ(B,J (H))

is torsion and it implies that Xt → B has a multisection (look at the natural
projection H1

Γ(B,J (H)) −→ H1(B,J (H))Γ). �
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3. From Kähler fibrations to projective ones

3.1. Deforming the vhs. In this section we show how to deform a smooth
family of tori once a deformation of the vhs is fixed. Let us make this more
precise. We consider f : X → B a smooth family of tori and as before we
denote by H the vhs induced on the local system HZ. We aim at considering
small deformation of H in the following sense.

Definition 3.1.
A small deformation of H is a vhs HU on HZ seen as a local system on
U × B where U is a polydisk around o ∈ U and such that the restriction of
HU to {o} ×B ≃ B is the given H. We shall denote by EU the holomorphic

vector bundle HU/H
1,0
U .

With this definition we have the following deformation process.

Proposition 3.2.
Let f : X → B be a smooth family of tori inducing H and HU a small
deformation of H. If c(η(f)) is torsion (in particular if X is Kähler) then
there exists

XU
πU−→ U ×B

p1
−→ U

a smooth family of tori over U ×B inducing HU and such that the family of
tori (πU ◦ p1)

−1(o) → B is isomorphic to X → B.

Proof. The vhs HU being fixed we can consider the Jacobian fibration

J (HU ) → U ×B

associated with it and the corresponding long exact sequences:
(12)

H1(U ×B, EU )
exp //

��

H1(U ×B,J (HU ))
c //

��

H2(U ×B,HZ) // H2(U ×B, EU)

H1(B, E)
exp // H1(B,J (H))

c // H2(B,HZ)

The vertical arrows in the preceding diagram are induced by the restriction
to B ≃ {0} × B. Since c(η(f)) is torsion, its image in the vector space
H2(U×B, EU ) vanishes and thus there exists a class η1 ∈ H1(U×B,J (HU ))
whose restriction to B satisfies c(η1|B) = c(η(f)). It means that there exists

a class α ∈ H1(B, E) such that η1|B−η(f) = exp(α). To conclude it is enough

to observe that the first vertical arrow is surjective and if αU ∈ H1(U×B, EU)
is such that (αU )|B = α then the class ηU := η1 − exp(αU ) restricts to B
as the given η(f). The class ηU corresponds thus to a smooth family of tori
over U × B inducing HU and whose restriction to B is isomorphic to the
fibration f : X → B we started with. �

Remark 3.3. The last proposition holds also in the equivariant setting (we
wrote down the proof without a group acting to keep the notation read-
able). It is enough to use equivariant cohomology and it gives the following
conclusion.
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Proposition 3.4.
Let f : X → B be a smooth family of tori equivariant under the action of
a finite group Γ on both X and B. Let us moreover consider HU a small
deformation of H which at the the same time a Γ-vhs for the action on
U ×B given by the trivial one on U . If cΓ(η(f)) is torsion (in particular if
X is Kähler) then there exists

XU
πU−→ U ×B

p1
−→ U

a smooth family of tori over U×B as in Proposition 3.2 such that Γ is acting
on XU and πU is equivariant for the trivial action on U .

3.2. Buchdahl’s criterion for family of tori. We now recall the relative
Buchdahl criterion we obtained in [CCE14, Th. 1.1] and explain how to
make it equivariant (adapting Graf’s arguments from [Gra16, §9]).

Proposition 3.5.
Let H be a weight −1 and rank 2g vhs over B (whose underlying local system
is denoted HZ). Let us assume moreover that H admits a real polarization
q. Then there exists a small deformation HV of H such that the set

{v ∈ V | HV,v admits a rational polarization}

is dense near o ∈ V : its closure contains an open neighbourhood of o.

Since we need to check that the construction of [CCE14] can be made in
an equivariant framework, we recall how the proof goes.

Sketch of proof. Let us consider the R-algebra

AR := H0(B,End(HR)).

The vhs H is nothing but an element I ∈ AR such that I2 = −1 and as
such determines a complex structure on AR. This structure can be enriched
as follows. Let us consider the decomposition

AR = AI ⊕A−I

where AI (resp. A−I) consists in elements of AR commuting with I (resp.
anti-commuting with I). Multiplication by I respects the decomposition and
thus induces a complex structure on each piece. If we let

A−I
C := A1−1

C ⊕A−1,1
C ,

we then have a weight 0 Hodge structure on AR whose (0, 0) part is just AI .
Let G be the group of invertible elements of AR: it acts on AR by con-

jugation. The orbit through I is G/G◦ where G◦ is the group of invertible
elements commuting with I. The space G/G◦ inherits a complex structure
from the local diffeomorphism

G/G◦ −→ GC/G
◦
C.

Let us consider V a small neighbourhood of o the class of the identity in
G/G◦: it is the base of a tautological family of complex structures on HR,
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i.e. it carries a small deformation HV of H. Now we can consider the
following4 weight 2 vhs on V : the local system is given by

WQ := H0(B,Λ2H∨
Q)

and the Hodge structure on Wv is induced by Hv for v ∈ V . Now we aim at
applying [Voi02, Proposition 17.20] and we first remark that the polarization

can be seen as an element q ∈ W1,1
o . Moreover such an element induces in

particular an morphism (of bidegree (1, 1)) of Hodge structure

q ◦ · : AR −→ Wo

which is clearly surjective (q is an isomorphism between H and H∨). It
implies that the following component of the differential of the period map

(13) ∇̄o(q) : TV,o = A−I = AR ∩
(

A1,−1
C ⊕A−1,1

C

)

−→ W0,2
o

is surjective. The statement of [Voi02, Proposition 17.20] ensures that the
set of v ∈ V such that Hv is Q-polarizable is dense in V . �

From the proof we get the following equivariant version.

Corollary 3.6.
Let us assume that a finite group Γ acts on B and that the vhs H is a Γ-vhs.
Then there exists a small deformation HU of H on U × B which is at the
same time a Γ-vhs over U × B for the trivial action on U and such that
the set of points u ∈ U corresponding to Q-polarizable complex structures is
dense in U .

Proof. Let us consider the small deformation HV constructed in the above
proof. It is obvious from the construction that Γ acts on V and that HV is
a Γ-vhs for the diagonal action of Γ on V ×B. Now let us restrict it to the
set U := V Γ of fixed points of Γ in V . Since we saw that the space V can be

identify with an open neighbourhood of 0 ∈ AR∩
(

A1,−1

C ⊕A−1,1
C

)

and since

Γ acts linearly on the latter vector space, we see that U is smooth5 near the
point o. Replacing the polarization q with its average over the group Γ we
can assume that q is Γ-invariant. Finally, since we are dealing with vector
spaces, taking the invariants under the group Γ preserves surjectivity in (13):

∇̄o(q)
Γ : TΓ

V,o = TU,o −→
(

W0,2
o

)Γ
.

The use of [Voi02, Proposition 17.20] in this invariant context (we apply it to
the vhs WΓ) shows that we can endowed HU := (HV )|U with a Γ-invariant

4Here a remark is in order. Usually to be able to endow the cohomology of a vhs with
a Hodge structure, the base manifold needs to be compact Kähler or at least a Zariski
open subset of a compact Kähler manifold (in the latter case we end up with a mixed
Hodge structure). But in our situation we only have to handle Hodge structure coming
from weight one vhs. Since the complex structure I commutes with the monodromy
of the underlying local system, the Hodge decompositions induced on tensor products
are compatible with the action of the monodromy group and these decompositions are
preserved when taking the invariants. That is the reason why no assumption is needed on
B in our study.

5It is a general fact: the set of fixed points XΓ of a finite group acting on a complex
manifold is smooth, see [Car57].
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polarization qU such that qu is a rational polarization of Hu for a dense set
of points u ∈ U . �

3.3. Proofs of main statements. We will use the following lemma in the
proof of Theorem 1.1.

Lemma 3.7.
Let VR be a local system underlying to a vhs V of weight w defined on a
compact Kähler manifold B. Then for any k ≥ 0, the natural map

Hk(B,VR) −→ Hk(B,V/F 1)

induced by VR → VC → V → V/F 1 is surjective.

Proof. The vector space Hk(B,VR) carries a natural Hodge structure of
weight k + w. This is Deligne’s construction explained in [Zuc79, Theorem
2.9] (see also [Még10, §4.3]). From the construction itself, the (P,Q) part of
this Hodge structure is given the hypercohomology of a certain complex

Hk(B,VC)
P,Q = Hk(K•

P,Q).

It happens that when (P,Q) = (0, k + w) this complex reduces to the Dol-
beault complex

K•
0,k+w = A0,•(V0,w)

and its hypercohomology is thus the usual one of the holomorphic vector
bundle V0,w = V/F 1. The (0, k + w) part of this Hodge structure is then
given by

Hk(B,VC)
0,k+w ≃ Hk(B,V/F 1).

Now it is an easy observation that the real vector space underlying a weight
n Hodge structure always surjects onto its (0, n) Hodge component. �

Since the case when the base is compact needs special attention, we post-
pone it a little and begin with the proof of the general case.

Proof of Theorem 1.1. Let f : X → B be a smooth family of tori with X
Kähler and assumed to be equivariant under the action of a finite group
Γ. We denote by H the vhs induced on the local system HZ. We first
apply Corollary 3.6: it produces a small deformation HU (over a polydisk
U) of H as a Γ-vhs and such that the vhs Hu is Q-polarizable for a dense
subset of U . Since X is Kähler, we can apply Proposition 3.4: there exists a
smooth family of tori fU : XU −→ U ×B inducing HU and such that Γ acts
equivariantly on XU −→ U ×B (with the trivial action on U). The invariant
cΓ(ηΓ(fU )) being equal to cΓ(ηΓ(f)) it is still torsion in H2

Γ(U ×B,HZ) and
we can resort to Proposition 2.11 to get a new family

f c
U : X −→ C× U ×B

such that X0 −→ {0} × U × B is the family XU → U × B and such that
there exists a point t ∈ C with the property that Xt −→ {t} × U × B has
a multisection. This new family is naturally endowed with a Γ-action. To
conclude, we choose u ∈ U a point such that Hu is Q-polarizable and the
corresponding deformation

Xt,u −→ {t} × {u} ×B

has both a multisection and abelian varieties as fibres. �
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We finally come to the case of a compact base.

Proof of Theorem 1.1 when the base B is compact. Let us first observe that
if B is compact then X has to be so and B has then to be Kähler as the
target of a smooth morphism f : X → B from a compact Kähler manifold
[Var84].

We can also proceed as above to get a family fU : XU −→ U ×B endowed
with a Γ-action and such that XU,u → {u}×B has abelian fibres for a dense
set of points u ∈ U . Now we need to use a bigger space of deformation than
in the previous proof to get the density statement. First we apply Lemma
3.7 to infer that

H1(B,HR) −→ H1(B, E)

is surjective. Since we want to use it as a space of deformation for the family
fU , we look at the following commutative diagram:

H1(U ×B,HR) // H1(U ×B, EU )

����
H1(B,HR) // // H1(B, E).

We can remark that taking the invariants yields a diagram of the same shape:

H1(U ×B,HR)
Γ // H1(U ×B, EU )

Γ

����
H1(B,HR)

Γ // // H1(B, E)Γ.

Let us consider V the image of H1(B,HR)
Γ in H1(U ×B, EU)

Γ. We can use
it in Proposition 2.10 to construct a Γ-equivariant deformation:

fU,V : XV,U −→ V × U ×B

such that XU,0 −→ {0} × U × B is the previous fU . Moreover, up to a

translation, the points of VQ the image of H1(B,HQ)
Γ corresponds to torsion

points in
H1

Γ(U ×B,J (HU ))

and thus to smooth families of tori with multisections. Finally if we denote
by Ualg the set of points u ∈ U such that Hu is Q-polarizable, the set

Talg := VQ × Ualg ⊂ T := V × U

is dense in T and parametrizes (up to a translation in the first factor) families
Xv,u having multisections and abelian varieties as fibres. �

Proof of Corollary 1.3. In [CCE15, Théorème 4] we proved the following
structure result for linear representations of the fundamental group of a
compact Kähler manifold X. If ρ : π1(X) → GLN (C) is a representation
then let us choose H < π1(X) a finite index subgroup such that the image
ρ(H) is torsion free (such a subgroup exists thanks to Selberg’s lemma). This
subgroup corresponds to a finite étale cover Y → X which can be assumed
Galois, its Galois group to be denoted Γ. Then (up to bimeromorphic trans-
formation), the base of the Shafarevich morphism shρ : Y → Shρ(Y ) := W
is such that the Iitaka fibration of W is a smooth fibration f : W → B (onto
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a projective manifold). From now on let us assume that ρ is injective. We
make the following observations:

(1) the Shafarevich and Iitaka fibrations being functorial, the group Γ
acts on W , B and the fibration f is equivariant to both actions. Let
us note however that the action is in general no longer free on both
W and B.

(2) the fundamental group of W is isomorphic to the one of Y .

The last assertion is a consequence of the torsion freeness of π1(Y ). We have
indeed an exact sequence

1 −→ π1(F )Y −→ π1(Y ) −→ πorb
1 (W ) −→ 1

where F is the general fibre of shρ and the orbifold structure on W is induced
by the fibration shρ. The defining property of F being the finiteness of
π1(F )Y , we infer that this group is trivial. Finally the orbifold fundamental
group πorb

1 (W ) is an extension

1 −→ K −→ πorb
1 (W ) −→ π1(W ) −→ 1

where K is a group generated by torsion elements. As before, it implies that
K = 1 and that π1(Y ) ≃ π1(W ).

We can now apply Theorem 1.1: W can be deformed to a projective man-
ifold Walg on which the group Γ acts. To deal with the lack of freeness of
the action of Γ on Walg, let us introduce a simply connected projective man-
ifold P on which Γ acts freely: such a manifold exists according to [Ser58]
(see also [Sha13, Chapter IX, §4.2]). We can finally consider the quotient
Xalg := (Walg × P) /Γ. This is a smooth projective variety whose fundamen-
tal group is the extension

(14) 1 −→ π1(Walg) −→ π1(Xalg) −→ Γ −→ 1.

Using the isomorphisms π1(Walg) ≃ π1(W ) ≃ π1(Y ), we infer that π1(Xalg) ≃
π1(X). It is indeed quite easy to see that the group extension (14) and the
one corresponding to the Galois étale cover Y → X are isomorphic. For
instance we can look at the Γ-equivariant morphism shρ : Y → W (inducing
an isomorphism between fundamental groups). Taking the product with P

and then the quotient under the action of Γ, the map

(shρ × idP)/Γ : (Y × P)/Γ −→ (W × P)/Γ

also induces an isomorphism at the level of fundamental groups. This is the
sought isomorphism between π1(Xalg) and π1(X) and it ends the proof of
Corollary 1.3. �
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