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VARIATION OF THE HOLOMORPHIC DETERMINANT BUNDLE

JULIEN GRIVAUX

Abstract. In this paper, we prove that the Grothendieck-Riemann-Roch formula in Deligne co-
homology computing the determinant of the cohomology of a holomorphic vector bundle on the
fibers of a proper submersion between abstract complex manifolds is invariant by deformation
of the bundle.

1. Introduction

The Grothendieck-Riemann-Roch theorem is one of the cornerstones of modern algebraic geo-
metry, and can be stated in its initial form as follows:

Theorem 1.1. [8] For any smooth quasi-projective variety X over a field of characteristic zero,
the morphism F → ch(F ) Td(X) from the Grothendieck group K(X) of coherent sheaves on X
to the Chow ring CH(X) of X commutes with proper push-forward.

Since Serre’s fundamental papers on coherent sheaves [29] [28], it has become natural and
useful to translate results from algebraic to analytic geometry. Concerning the Grothendieck-
Riemann-Roch theorem, this has been the object of many researches from early sixties till eight-
ies, starting with the case of analytic immersions [2] and pursuing with the index theorem for
vector bundles and coherent analytic sheaves (see [3], [25], [33], [24]). The outcome of these
works is O’Brian-Toledo-Tong’s proof of the Grothendieck-Riemann-Roch theorem in Hodge
cohomology for arbitrary proper holomorphic maps between complex manifolds [23]. By com-
pletely different methods, Levy [22] succeeded in proving the analogous statement in De Rham
cohomology, where the Chern classes are constructed by means of locally-free resolutions in
the category of real-analytic coherent sheaves.

From the middle of the eighties, some new ideas about the Grothendieck-Riemann-Roch theo-
rem emerged after the seminal article of Quillen [26] introducing canonical hermitian metrics
on determinant bundles associated with the cohomology of a vector bundle on the fibers of a
holomorphic submersion (see [30, Chap. VI]). Building on initial results in the case of families
of curves (see [26], [5], [9]), Bismut, Gillet and Soulé [6] proved that, for locally Kähler fibra-
tions, the curvature of this determinant bundle is exactly given by the component of degree two
of the Grothendieck-Riemann-Roch theorem at the level of differential forms. This theorem
has been extended to all degrees in [7] provided that the higher direct images of the bundle are
locally free. Quite recently, Bismut succeeded in removing the kählerianity assumption on the
morphism and obtained the following result:

Theorem 1.2. [4, Thm 0.1.1] Let f : X → Y be a proper holomorphic submersion between
complex manifolds and E be a holomorphic vector bundle on X. Then the following identities
hold in the Bott-Chern cohomology ring of Y :

(i) cBC
1

[
det R f∗ E

]
=

(
f∗{chBC(E) tdBC(TX/Y)}

)(1,1)
in H1,1

BC(Y).

(ii) If all the sheaves Ri f∗ E are locally free, then chBC(R f∗ E) = f∗{chBC(E) tdBC(TX/Y)} in
⊕p≥0 Hp,p

BC(Y).

1
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On abstract complex manifolds, one of the finest known cohomology theory where Chern
classes exist for holomorphic vector bundles is Deligne-Beı̆linson cohomology. The ultimate
goal of our program would be to prove the Grothendieck-Riemann-Roch theorem in this coho-
mology. The statement does not immediately make sense even for holomorphic vector bundles,
because Chern classes must be defined for the direct images sheaves Ri f∗ E. The problem of
defining Chern classes of coherent sheaves in Deligne cohomology is solved on compact man-
ifolds in [14]. The corresponding Grothendieck-Riemann-Roch theorem is proved only for
projective morphisms between complex compact manifolds.

In this paper, we focus only on the component of degree two on the base of the Grothendieck-
Riemann-Roch theorem in Deligne cohomology for holomorphic vector bundles. Our main
result describes completely the variation of the determinant bundle, first in the rational Deligne
cohomology group H2

D(Y,Q(1)) and then in Pic (Y) under mild assumptions on Y:

Theorem 1.3. Let f : X → Y be a proper holomorphic submersion between complex manifolds
X, Y and let (Et)t∈∆ be a holomorphic family of holomorphic vector bundles on X parameterized
by the complex unit disc ∆.

(i) Rational variation formula
For any s and t in ∆,

cD
1
[
det R f∗ Es

]
− cD

1
[
det R f∗ Et

]
=

(
f∗

{
[chD(Es) − chD(Et)] tdD(TX/Y)

})(2)

in the rational Deligne cohomology group H2
D(Y,Q(1)).

(ii) Integral variation formula
If H1(Y,OY) is separated and if H1(Y,QY) is countable, then there exists a unique analytic
curve γ from ∆ to Pic0(Y) vanishing at 0 such that for any t in ∆,

cD
1 (γ(t)) =

(
f∗{[chD(Et) − chD(E0)] tdD(TX/Y)}

)(2)

in H2
D(Y,Q(1)). For any s and t in ∆,

[det R f∗ Es] − [det R f∗ Et] = γ(s) − γ(t)

Remark that since H1(Y,Q) is isomorphic to HomZ (H1(Y,Z),Q), it is sufficient to require that
the torsion-free part of H1(Y,Z) is finitely generated to ensure that H1(Y,Q) is countable. This
condition can be easier to check in concrete situations.

Even if Pic(Y) is not always a complex manifold, it is possible to give a precise definition of an
analytic curve with values in Pic(Y) that matches with the usual one when the image of H1(Y,Z)
is discrete in H1(Y,OY).

On the one hand, Theorem 1.3 is motivated by Teleman’s program on the classification of
class VII surfaces (see [31], [32]). On the other hand, it is a little step towards the general
Grothendieck-Rieman-Roch theorem in Deligne cohomology (which is currently out of reach
in full generality). For instance, we have the following result:

Theorem 1.4. Let Y and F be complex manifolds such that F is compact of complex dimension
n, and let p : Y × F → Y and q : Y × F → F be the two natural projections. Then, for any L in
Pic0(Y × F),

cD
1 [det Rp∗L] = p∗{cD

1 (L) q∗tdD
n (F)}

in the rational Deligne cohomology group H2
D(Y,Q(1)).
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The paper is organized as follows: in §2 we provide a short recollection of operations on derived
categories in the analytic setting. Then we recall the theory of determinants for coherent ana-
lytic sheaves (see [19], [20, Chap. 5 §6] and [6, §3]) and we prove in Proposition 2.4 a base
change formula for determinant bundles. We also prove a folklore result (Lemma 2.2) saying
that the first Chern class of a coherent sheaf in Hodge cohomology is the same as the first Chern
class of its determinant. In §3, we recall the basics of Deligne cohomology (see [11] and [34,
Chap. 12]). Proposition 3.1 is the main ingredient of the proof of Theorem 1.3. Then we discuss
analytic curves with values in the Picard group of a complex manifold. Lastly, §4 is devoted to
the proofs of Theorems 1.3 and 1.4.

Acknowledgments I wish to thank Andrei Teleman for suggesting the problem solved in this
paper and for many comments, and also Christophe Soulé for kindly explaining to me some of
the material of [6].

2. Derived categories and determinant bundles

2.1. Derived categories in the analytic setting. For generalities on sheaves and derived cat-
egories, we refer the reader to [17], [12] and [10]. For any connected complex manifold X, let
D+(X) (resp. D−(X), resp. Db(X)) denote the right-bounded (resp. left-bounded, resp. bounded)
derived category of analytic sheaves on X; and let Db

coh(X) be the full subcategory of Db(X) con-
sisting of bounded complexes with coherent cohomology. Recall that the category of sheaves
over any sheaf of rings has enough injectives and flat objects [17, Prop. 2.4.3 and 2.4.12]. Let
f : X → Y be a holomorphic map. Then there exists a derived pullback morphism

L f ∗ : D−(Y)→ D−(X)

given by L f ∗ F = f −1F
L
⊗f −1OY

OX, where
L
⊗ denotes the derived tensor product. If f is flat, we

write f ∗ instead of L f ∗. Since OX is quasi-isomorphic to a bounded complex of flat f −1OY-
modules, L f ∗ maps Db(Y) to Db(X). Besides, L f ∗ maps Db

coh(Y) to Db
coh(X). On the other hand,

there is a derived push-forward morphism

R f∗ : D+(X)→ D+(Y).

If f is a proper holomorphic map, thanks to Grauert’s finiteness theorem [13], R f∗ maps Db
coh(X)

to Db
coh(Y). The derived pullback and push forward functors are related via the projection for-

mula: if F and G are elements of Db
coh(Y) and Db

coh(X) respectively and if f is proper, there is a
canonical isomorphism in Db

coh(Y):

(1) R f∗G
L
⊗
OY
F ' R f∗

(
G

L
⊗
OX

L f ∗F
)
.

This isomorphism is called the projection formula. We refer the reader to the proof of [17, Prop.
2.6.6] which is valid in this context.

2.2. Determinants for coherent sheaves. Let F be a coherent analytic sheaf on a connected
complex manifold X. The determinant of F , denoted by detF , is a holomorphic line bundle on
X defined as follows:
– If F is torsion-free, there exists a Zariski-open subset U of X such that F is locally free on U
and X\U has codimension at least two in X. Then the top exterior power of F|U is a holomorphic
line bundle on U, which extends uniquely to a line bundle detF on X.
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– If F is a torsion sheaf, let Z be the maximal closed hypersurface contained in suppF , let
(Zi)i∈I be the irreducible components of Z, and let Ii be the ideal sheaf defining Zi. For any
integer k, the sheaf Ik

iF /I
k+1
i F is the push-forward of a coherent sheaf on Zi, we denote its

generic rank by ri(k). If mi =
∑

k ri(k), then the determinant of F is given by the formula

detF =
⊗

i

OX(miZi).

– If F is arbitrary and Ftors is its maximal torsion subsheaf, then F /Ftors is torsion-free and

detF = det (F /Ftors) ⊗ detFtors.

Recall that it is also possible to construct determinants of coherent sheaves using local free
resolutions, we refer the reader to [20, Chap. 5 §6] for this approach. The main property of
determinants is the following [20, Chap. 5 Prop. 6.9]: for any bounded complexK• of coherent
sheaves on X, using additive notation for line bundles, we have a canonical isomorphism∑

i

(−1)i detK i '
∑

i

(−1)i detH i(K•).

For any bounded complexK• on X with coherent cohomology, the determinant ofK• is defined
by the formula detK• =

∑
i(−1)i det H i(K•). Two quasi-isomorphic bounded complexes with

coherent cohomology have canonically isomorphic determinants. Therefore, the determinant
of an object in Db

coh(X) is well-defined, and two isomorphic objects have the same determinant.
Besides, the determinant map factorizes through the Grothendieck group K(X) of the category
of coherent sheaves on X.

Lemma 2.1. Let ϕ : X → Y be a holomorphic map between connected complex manifolds.
Then for any element K in Db

coh(Y), ϕ∗ detK ' det (Lϕ∗K).

Proof. It is enough to prove the lemma when K is a single coherent sheaf in degree zero. For
any Stein subset U of Y , let E• be a locally free resolution of K|U . Then we have canonical
isomorphisms

ϕ∗detK|U ' ϕ∗
∑

i

(−1)i det (Ei)

 =
∑

i

(−1)i det (ϕ∗Ei) = det
(
Lϕ∗K|U

)
which can be glued together by a standart procedure (see e.g. [20, p. 163–165]) to give a global
isomorphism on X between ϕ∗detK and det (Lϕ∗K). �

For any coherent sheaf F on X, we denote by cH
i (F ) the Chern classes of F in H i(X,Ωi

X) and
by chH(F ) its Chern character in the total Hodge cohomology ring of X.

Lemma 2.2. For any complex manifold X and any coherent analytic sheaf F on X, we have
cH

1 (F ) = cH
1 (detF ) in H 1(X,Ω1

X).

Proof. We can assume without loss of generality that F is either a torsion sheaf or a torsion-free
sheaf. Thanks to the vanishing theorem for local cohomology [8, Thm 3.6], for any analytic set
W of codimension at least two in X, the natural map from H1(X,Ω1

X) to H1(X \ W, Ω1
X\W) is

injective. Thus, if U is a Zariski open subset of X such that codimX(X \ U) ≥ 2, it is enough to
prove that cH

1 (F|U) = cH
1 (detF|U) . Now we have to deal with two different cases:

– First case: the sheaf F is a torsion sheaf whose support is a smooth hypersurface. Since
F =

∑
k I

k
ZF /I

k+1
Z F in K(X), we can assume without loss of generality that IZF = 0. After
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removing again an analytic subset of X of codimension at least two, we can even assume that
F is the push-forward of a locally-free sheaf of rank r on Z. This implies detF = OX(rZ).
Then, using the Grothendieck-Riemann-Roch theorem in Hodge cohomology for immersions
[23], we get cH

1 (F ) = r[Z]H = cH
1 (OX(rZ)) = cH

1 (detF ).
– Second case: the sheaf F is locally free. Then it is well-know that cH

1 (F ) = cH
1 (detF ). �

2.3. Base change. Let f : X → Y be a proper holomorphic submersion between two connected
complex manifolds X and Y, and let E be a locally free sheaf on X.

Definition 2.3. The determinant of the cohomology1 λ(E, f ) attached to the couple (E, f ) is the
class of det (R f∗ E) in Pic(Y).

We now state and prove a base change theorem for the determinant of the cohomology. Let T be
a complex manifold and u : T → Y be a closed immersion of complex manifolds, and consider
the cartesian diagram

Z

�

v //

g
��

X
f
��

T u
// Y

Proposition 2.4. For any vector bundle E on X, u∗λ(E, f ) = λ(v∗E, g) in Pic (T ).

Proof. Since f and g are holomorphic submersions, they are flat morphisms. Using the projec-
tion formula (1) twice, we have in Db

coh(Y)

u∗(Lu∗ R f∗E) ' R f∗ E
L
⊗
OY

u∗OT ' R f∗ (E
L
⊗
OX

f ∗u∗OT ) ' R f∗ (E
L
⊗
OX

v∗ g∗OT )

' R f∗ Rv∗ (v∗E
L
⊗
OZ

g∗OT ) ' Ru∗ Rg∗ (v∗E
L
⊗
OZ

g∗OT ) ' u∗[Rg∗ (v∗E)].

This proves that for any integer i,

H i (Lu∗ R f∗E) ' Rig∗(v∗E).

Then we can conclude using Lemma 2.1. �

3. Deligne cohomology and Picard group

3.1. Deligne classes of degree 2. For any complex manifold X and any nonnegative integer p,
the Deligne complex ZD,X(p) is the complex

ZX
(2iπ)p

// OX
∂ // Ω1

X
∂ // · · ·

∂ // Ω
p−1
X ,

where the constant sheaf ZX sits in degree zero. The integral Deligne cohomology groups
of X are defined by the formula Hk

D(X,Z(p)) = Hk(X,ZD,X(p)). Similar definitions hold for
the rational Deligne complex QD,X(p) as well as for the rational Deligne cohomology groups
Hk

D(X,Q(p)). For any locally-free sheaf E on X, we will denote by cD
i (E) the rational Chern

classes of E in H2i
D(X,Q(i)), and by chD(E) the Chern character of E.

1It is also called Knudsen-Mumford determinant in the literature.



6 JULIEN GRIVAUX

Let Pic(X) be the Picard group of X classifying isomorphism classes of line bundles on X,
it is isomorphic to H1(X,O∗X). Since ZD,X(1) is quasi-isomorphic to O∗X[−1], H2

D(X,Z(1)) is
isomorphic to Pic(X). Note that the kernel of

(2) cD
1 : Pic(X) ' H2

D(X,Z(1))→ H2
D(X,Q(1))

is exactly the maximal torsion subgroup of Pic(X).

There is a natural cup-product in Deligne cohomology (cf [11]). Besides, for any nonnegative
integer p, the morphism ∂ : Ω

p−1
X → Ω

p
X induces a morphism from QD,X(p) to Ω

p
X[−p]. Hence

for any nonnegative integer k, we obtain a natural map from Hk+p
D (X,Q(p)) to Hk(X,Ωp

X) which
is compatible with cup-products on both sides.

Let us now give the key ingredient of the proof of Theorem 1.3.

Proposition 3.1. Let ∆ be the complex unit disc, let X be a complex manifold and let α be a
class in H2

D(X × ∆,Q(1)). The class α maps to 0 via the morphism

H2
D(X × ∆,Q(1))→ H1(X × ∆,Ω1

X×∆)→ H1(X × ∆,OX �Ω1
∆)

if and only if there exists a class β in H2
D(X,Q(1)) such that α = pr∗1 β.

Proof. Let p : X × ∆→ X be the first projection. By the projection formula,

Rp∗{p−1QD,X(1)} ' QD,X(1)
L
⊗QX Rp∗QX×∆ ' QD,X(1)

so that we obtain the isomorphisms

RΓ(X × ∆, p−1QD,X(1)) ' RΓ(X,Rp∗{p−1QD,X(1)}) ' RΓ(X,QD,X(1)).

We have a natural exact sequence of complexes

0 −→ p−1QD,X(1)
p∗
−→ QD,X×∆(1) −→ OX �Ω1

∆[−1] −→ 0.

which is given by the isomorphism p−1QX
∼
−→ QX×∆ in degree zero and by the sequence

0 −→ p−1OX −→ OX×∆

dt
−→ OX �Ω1

∆ −→ 0

in degree one. Writing down the long cohomology exact sequence, we get the following short
exact sequence:

H2
D(X,Q(1))

p∗
−→ H2

D(X × ∆,Q(1)) −→ H1(X × ∆,OX �Ω1
∆)

This gives the result. �

Remark 3.2.
(i) Proposition 3.1 is also valid for integral Deligne cohomogy.
(ii) It possible to prove Proposition 3.1 by a purely geometric argument. We can assume without
loss of generality that α is the class of a vector bundle L in Pic (X × ∆). The vanishing of the
relative Atiyah class of L in H1(X × ∆,OX �Ω1

∆
) means that there exists a relative holomorphic

connection ∇ : L → L ⊗ pr∗2 Ω1
∆

on L. This relative connexion defines a true holomorphic
connexion on each slice {x} × ∆ which is automatically flat; so that the restriction of L to this
slice is canonically trivial. This proves that L is globally isomorphic to p∗L|X×{0}, and we take
for β the class of L|X×{0} in Pic (X).

(iii) For a geometric interpretation of (i) using analytic curves with values in the Picard group,
we refer the reader to Proposition 3.5 (iii).
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3.2. Analytic curves in the Picard group. In this section, we discuss the notion of analytic
curve with values in the Picard group of a complex manifold. This problem must be dealt with
great care. Let us first recall that there is an exact sequence

(3) 0 −→ Pic0(X) −→ Pic(X)
c1
−→ H2(X,Z)

where Pic0(X) = H1(X,OX)/ 2iπH1(X,Z) ' H1(X,OX)/H1(X,Z), the last isomorphism being
given by α → α/2iπ. Remark that H1(X,OX) carries a natural topology from its representation
using Dolbeault cohomology. Let us put the discrete topology on H2(X,Z). Then we can en-
dow Pic(X) with a canonical topology, which is defined by requiring that all arrows in (3) are
continuous.

If X is compact, the group H1(X,OX)/H1(X,ZX) is a genuine complex Lie group. Indeed, if
α is a De Rham representative of a cohomology class in H1(X,R), then α0,1 is a Dolbeault
representative of the image of [α] in H1(X,OX). Therefore, if α0,1 = ∂ f where f = u + iv is a
smooth complex-valued function on X, then α = du + dcv. It follows that ddcv = 0 and since X
is compact, v is constant. Hence H1(X,R) injects in H1(X,OX). Since H1(X,R) and H1(X,OX)
are finite-dimensional, H1(X,Z) is a discrete subgroup of H1(X,OX).

If X is not compact the natural topology on Pic(X) is not Hausdorff in general. This comes from
the fact that the Dolbeault cohomology groups of a complex manifold are no longer separated.
For instance, there is a counterexample due to Rossi [27] of a 2-dimensional complex manifold
X such that H1(X,OX) is not separated (see [21] for more details on this topic). And of course,
even if H1(X,OX) is separated, the image of H1(X,Z) is not a priori discrete in H1(X,OX) 2.

Let ∆ denote the complex unit disk. We make the following definition, which is intuitively very
natural:

Definition 3.3. For any complex manifold X, a curve γ : ∆ → Pic (X) is analytic if there exists
an element α in Pic (X × ∆) such that for all t in ∆, γ(t) = α|X×{t}.

This definition is of little use if H1(X,OX) is not separated, we will avoid this pathological case.
In what follows, we will use a little bit of the theory of holomorphic functions of one complex
variable with values in a Fréchet space. We refer the interested reader to the papers [15] and [16]
for a complete account of this theory. If X is compact, these subtleties are no longer needed.

Proposition 3.4. Let X be a complex manifold, assume that H1(X,OX) is separated, and let
γ : ∆→ Pic (X) be a curve.

(i) The curve γ is analytic if and only if γ−γ(0) can be lifted to an holomorphic curve with
values in the Fréchet space H1(X,OX).

(ii) Assume that H1(X,Q) is countable. If γ is analytic, it is entirely determined by γ(0) and
by the curve cD

1 ◦ γ from ∆ to H2
D(X,Q(1)), where cD

1 is given by (2).

Proof. (i) Since H1(X,OX) is separated, we can apply the Künneth formula for Fréchet spaces
(cf. [18] and [1, exposé 24]): we obtain that H1(X × ∆,OX×∆) = H1(X,OX) ⊗̂ O(∆), where
⊗̂ denotes the topological tensor product. Besides, thanks to [16, §7.1 Prop. 6], the natural
map from H1(X,OX)⊗O(∆) to O {∆,H1(X,OX)} given by α ⊗ f → {t → f (t)α} extends to
an isomorphism between H1(X,OX) ⊗̂ O(∆) and O {∆,H1(X,OX)}. Therefore, we get a natural
isomorphism between H1(X×∆,OX×∆) and O {∆,H1(X,OX)} obtained by attaching to each class
β in H1(X × ∆,OX×∆) the function t → β | X×{t}. It is easy to conclude from there: if γ − γ(0)

2The author was told by M. Verbitsky that a well-chosen nilmanifold would probably provide such an example.
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can be lifted to an holomorphic curve with values in H1(X,OX), then there exists a class β in
H1(X × ∆,OX×∆) such that for all t in ∆, the curve t → β | X×{t} lifts γ − γ(0). Therefore the curve
γ comes from the class β + pr∗1γ(0), so it is analytic. The converse implication is proved in the
same way.
(ii) Assume that γ is analytic, that γ(0) = 0, and that for any t in ∆, the image of γ(t) in
H2

D(X,Q(1)) vanishes. If γ̃ is a holomorphic lift of γ from ∆ to H1(X,OX) vanishing at the
origin, then γ̃(∆) lies in the image of H1(X,QX) in H1(X,OX). Therefore γ̃ vanishes since it is
continuous with values in a Hausdorff space and has countable image. �

We can define the derivative of an analytic curve with values in Pic (X), it is a holomorphic
curve with values in H1(X,OX). Also not used elsewhere in the paper, the next proposition will
provide another geometric interpretation of Proposition 3.1.

Proposition 3.5. Let X be a complex manifold and assume that H1(X,OX) is separated and that
H1(X,Q) is countable. Let γ : ∆→ Pic(X) be an analytic curve given by a class α in Pic(X ×∆)
and let γ̂ be a holomorphic lift of γ − γ(0) in H1(X,OX). For any t, we define γ ′(t) in H1(X,OX)
by putting γ ′(t) = γ̂ ′(t). Then:

(i) The derivative of γ is independant of γ̂.
(ii) For any t in ∆, γ ′(t) is the image of α by the composition

H2
D(X × ∆,Q(1)) −→ H1(X × ∆,Ω1

X×∆) −→ H1(X × ∆,OX �Ω1
∆) −→ H1(X × {t},OX).

(iii) If γ ′ vanishes identically then γ is constant.

Proof. The argument of the proof of Proposition 3.4 (ii) shows that two holomorphic lifts of γ
differ by a constant. This gives the statement of point (i). Point (ii) results of the isomorphism
between H1(X×∆,OX×∆) and H1(X,OX) ⊗̂ O(∆). For the point (iii), we use this last isomorphism
to conclude that the vanishing of γ ′ implies that the image of α in H1(X × ∆,OX � Ω1

∆
) is zero.

Then we can apply Proposition 3.1 for integral Deligne cohomology. �

4. Proof of the main results

4.1. Proof of Theorem 1.3. Let us consider the line bundle λ(E, f̂ ) on Y×∆, where f̂ = f × id.
By Proposition 2.4, its restriction to a slice Y × {t} is λ(Et, f ). Therefore the curve t → λ(Et, f )
is analytic. Let α be the class in H2

D(Y × ∆,Q(1)) defined by

α = cD
1 (λ(E, f̂ )) −

(
f̂∗
[
chD(E) tdD(TX×∆/Y×∆)

])(2)
.

By Lemma 2.2,
cH

1 (λ(E, f̂ )) =
∑

p

(−1)p cH
1 (Rp f̂∗ E)

in H1(Y × ∆,Ω1
Y×∆

). Therefore, thanks to the Grothendieck-Riemann-Roch theorem in Hodge
cohomology [23], α maps to zero in H1(Y ×∆,Ω1

Y×∆
). By Proposition 3.1, we obtain that for all

t in ∆, α|Y×{t} doesn’t depend on t.
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It remains to compute α|Y×{t}. If we denote by [ . ]D the Deligne cohomology class of an analytic
cycle, for any class β in the rational Deligne cohomology ring of X × ∆, we have 3

{ f̂∗ β}|Y×{t} = pr1∗{ f̂∗ β . [Y × {t}]D} = pr1∗ f̂∗{β . f̂ ∗ [Y × {t}]D}

= f∗ pr1∗{β . [X × {t}]D} = f∗
(
β|X×{t}

)
.

Then α|Y×{t} = cD
1 (λ(Et, f )) −

(
f∗{chD(Et) tdD(TX/Y)}

)(2)
. This gives (i). Remark now that for all t

in ∆, we have

cD
1 (λ(Et, f )) − cD

1 (λ(E0, f )) =
(

f∗
{
[chD(Et) − chD(E0)] tdD(TX/Y)

})(2)
.

Thus the curve t →
(

f∗
(
[chD(Et) − chD(E0)] tdD(TX/Y)

))(2)
in H2

D(Y,Q(1)) can be lifted to the
analytic curve γ : t → λ(Et, f ) − λ(E0, f ) in Pic0(Y). Thanks to Proposition 3.4 (ii), this lift is
unique.

�

4.2. Proof of Theorem 1.4. Since L lies in Pic0(Y × F), cD
1 (L)i = 0 for i ≥ 2 so that

p∗{cD
1 (L) q∗tdD

n (F)} =
(
p∗{chD(L) tdD(TY×F/Y)}

)(2)
.

Then we can conclude using Theorem 1.3. Indeed, since the line bundle L lies in Pic0(Y × F),
there exists a holomorphic family of holomorphic line bundles joining OY×F to L. Thanks to
Theorem 1.3, we are reduced to the caseL = OY×F . In this case, Theorem 1.4 is straightforward
since

det Rp∗(OY×F) ' det [OY
L
⊗
CY

RΓ(F,OF)] ' OY .

�

3This computation is a particular case of a base-change type formula in Deligne cohomology, which is currently
not available in the literature for arbitrary base change morphisms.
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