
HAL Id: hal-01301297
https://hal.science/hal-01301297

Preprint submitted on 12 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-adaptive inference of the optimal treatment rule
and its mean reward. The masked bandit
Antoine Chambaz, Wenjing Zheng, Mark J. van Der Laan

To cite this version:
Antoine Chambaz, Wenjing Zheng, Mark J. van Der Laan. Data-adaptive inference of the optimal
treatment rule and its mean reward. The masked bandit. 2016. �hal-01301297�

https://hal.science/hal-01301297
https://hal.archives-ouvertes.fr


Data-adaptive inference of the optimal treatment rule and its

mean reward.

The masked bandit

A. Chambaz1, W. Zheng2, M. J. van der Laan2

1 Modal’X, Université Paris Ouest Nanterre
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Abstract

This article studies the data-adaptive inference of an optimal treatment rule. A
treatment rule is an individualized treatment strategy in which treatment assignment
for a patient is based on her measured baseline covariates. Eventually, a reward is
measured on the patient. We also infer the mean reward under the optimal treatment
rule. We do so in the so called non-exceptional case, i.e., assuming that there is no
stratum of the baseline covariates where treatment is neither beneficial nor harmful,
and under a companion margin assumption.

Our pivotal estimator, whose definition hinges on the targeted minimum loss esti-
mation (TMLE) principle, actually infers the mean reward under the current estimate
of the optimal treatment rule. This data-adaptive statistical parameter is worthy of
interest on its own. Our main result is a central limit theorem which enables the
construction of confidence intervals on both mean rewards under the current estimate
of the optimal treatment rule and under the optimal treatment rule itself. The asymp-
totic variance of the estimator takes the form of the variance of an efficient influence
curve at a limiting distribution, allowing to discuss the efficiency of inference.

As a by product, we also derive confidence intervals on two cumulated pseudo-
regrets, a key notion in the study of bandits problems. Seen as two additional data-
adaptive statistical parameters, they compare the sum of the rewards actually received
during the course of the experiment with, either the sum of the means of the rewards,
or the counterfactual rewards we would have obtained if we had used from the start
the current estimate of the optimal treatment rule to assign treatment.

A simulation study illustrates the procedure. One of the cornerstones of the theo-
retical study is a new maximal inequality for martingales with respect to the uniform
entropy integral.

Keywords: bandits; optimal treatment rule; pseudo-regret; targeted minimum loss
estimation (TMLE)
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1 Introduction

This article studies the data-adaptive inference of an optimal treatment rule. A treatment
rule is an individualized treatment strategy in which treatment assignment for a patient
is based on her measured baseline covariates. Eventually, a reward is measured on the
patient. We also infer the mean reward under the optimal treatment rule.

The authors of [4] present an excellent unified overview on the estimation of optimal
treatment rules, with a special interest in dynamic rules (where treatment assignment
consists in successive assignments at successive time points). The estimation of the optimal
treatment rule from independent and identically distributed (i.i.d.) observations has been
studied extensively, with a recent interest in the use of machine learning algorithms to reach
this goal [20, 31, 32, 29, 30, 23, 17]. Here, we estimate the optimal treatment rule (and
its mean reward) based on sequentially sampled dependent observations by empirical risk
minimization over sample-size-dependent classes of candidate estimates with a complexity
controlled in terms of uniform entropy integral.

The estimation of the mean reward under the optimal treatment rule is more chal-
lenging than that of the optimal treatment rule. In [31, 32], the theoretical risk bound
evaluating the statistical performance of the estimator of the optimal treatment rule can
also be interpreted in terms of a measure of statistical performance of the resulting esti-
mator of the mean reward under the optimal treatment rule. However, it does not yield
confidence intervals.

Constructing confidence intervals for the mean reward under the optimal treatment
rule is known to be more difficult when there exists a stratum of the baseline covariates
where treatment is neither beneficial nor harmful [21]. In this so called “exceptional”
case, the definition of the optimal treatment rule has to be disambiguated. Assuming
non-exceptionality, confidence intervals are obtained in [29] for the mean reward under
the (sub-) optimal treatment rule defined as the optimal treatment rule over a parametric
class of candidate treatment rules, and in [15] for the actual mean reward under the
optimal treatment rule. In the more general case where exceptionality can occur, different
approaches have been considered [5, 11, 14, 16]. Here, we focus on the non-exceptional
case under a companion margin assumption [18].

We rely on the targeted minimum loss estimation (TMLE) principle [26, 25]. We
can build upon previous studies on the construction and statistical analysis of targeted,
covariate-adjusted, response-adaptive trials also based on TMLE [6, 33, 7]. One of the
cornerstones of the theoretical study is a new maximal inequality for martingales with
respect to (wrt) the uniform entropy integral, proved by decoupling [8], symmetrization
and chaining, which allows us to control several empirical processes indexed by random
functions.

Our pivotal TMLE estimator is actually constructed as an estimator of the mean
reward under the current estimate of the optimal treatment rule. Worthy of interest on
its own, this data-adaptive statistical parameter (or similar ones) has also been considered
in [5, 13, 14, 15, 16]. Our main result is a central limit theorem for our TMLE estimator.
The asymptotic variance takes the form of the variance of an efficient influence curve at a
limiting distribution, allowing to discuss the efficiency of inference.

We use our TMLE estimator to infer the mean rewards under the current estimate of
the optimal treatment rule and under the optimal treatment rule itself. Moreover, we use
it to infer two additional data-adaptive statistical parameters. The first one compares the
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sum of the rewards actually received during the course of the experiment with the sum of
the means of the rewards we would have obtained if we had used from the start the current
estimate of the optimal treatment rule to assign treatment. The second one compares the
sum of the rewards actually received during the course of the experiment with the sum
of the counterfactual rewards we would have obtained if we had used from the start the
current estimate of the optimal treatment rule to assign treatment.

Both additional data-adaptive statistical parameters are “cumulated pseudo-regrets”.
We borrow this expression from the literature on bandits. Bandits have raised a consider-
able interest in the machine learning community as relevant models for interactive learning
schemes or recommender systems. Many articles define efficient strategies to minimize the
expected cumulated pseudo-regret (also known as the “cumulated regret”), see [3] for a
survey. Sometimes, the objective is to identify the arm with the largest mean reward (the
best arm) as fast and accurately as possible, regardless of the number of times a sub-
optimal arm is played, see [10] for an in-depth analysis of the so called fixed-confidence
setting where one looks for a strategy guaranteeing that the probability of wrongly iden-
tifying the best arm at some stopping time is no more than a fixed maximal risk while
minimizing the stopping time’s expectation. Here, we derive confidence intervals on the
cumulated pseudo-regrets as by products of the confidence intervals that we build for the
mean rewards under the current estimate of the optimal treatment rule and under the
optimal treatment rule itself. Thus, the most relevant comparison is with the so called
“contextual bandit problems”, see [12, Chapter 4] for an excellent overview.

Organization

Section 2 presents our targeted, data-adaptive sampling scheme and our pivotal estimator.
Section 3 studies the convergence of the sampling scheme, i.e., how the sequences of
stochastic and treatment rules converge, assuming that a function of the conditional mean
of the reward given treatment and baseline covariate is consistently estimated. Section 4
is devoted to the presentation of our main result, a central limit theorem for our pivotal
estimator, to the comment of its assumptions and to an example. Section 5 builds upon
the previous section to build confidence intervals for the mean rewards under the current
estimate of the optimal treatment rule and under the optimal treatment rule itself, as well
as confidence intervals for the two cumulated pseudo-regrets evoked in the introduction.
Section 6 presents the results of a simulation study. Section 7 closes the article with a
brief discussion. All proofs are given in Appendix A. Technical lemmas are gathered in
Appendix B and C.

2 Targeting the optimal treatment rule and its mean reward

2.1 Statistical setting

At sample size n, we will have observed the ordered vector On ≡ (O1, . . . , On), with
convention O0 ≡ ∅. For every 1 ≤ i ≤ n, the data structure Oi writes as Oi ≡ (Wi, Ai, Yi).
Here, Wi ∈ W consists of the baseline covariates (some of which may be continuous) of
the ith patient, Ai ∈ A ≡ {0, 1} is the binary treatment of interest assigned to her, and
Yi ∈ Y is her primary outcome of interest. We interpret Y as a reward: the larger is Y ,
the better. We assume that the reward space O ≡ W ×A× Y is bounded. Without loss
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of generality, we may then assume that Y ≡ (0, 1), i.e., that the rewards are between and
bounded away from 0 and 1. Interestingly, the content of this article would still hold up
to minor modifications if we assumed instead Y ≡ {0, 1}.

Let µW be a measure on W equipped with a σ-field, µA = Dirac(0) + Dirac(1) be a
measure on A equipped with its σ-field, and µY be the Lebesgue measure on Y equipped
with the Borel σ-field. Define µ ≡ µW ⊗ µA ⊗ µY , a measure on O equipped with the
product of the above σ-fields. The unknown, true likelihood of On wrt µ⊗n is given by
the following factorization of the density of On wrt µ⊗n:

LQ0,gn(On) ≡
n∏
i=1

QW,0(Wi)× (Aigi(1|Wi) + (1−Ai)gi(0|Wi))×QY,0(Yi|Ai,Wi)

=
n∏
i=1

QW,0(Wi)× gi(Ai|Wi)×QY,0(Yi|Ai,Wi), (1)

where (i) w 7→ QW,0(w) is the density wrt µW of a true, unknown law on W (that
we assume being dominated by µW ), (ii) {y 7→ QY,0(y|a,w) : (a,w) ∈ A × W} is the
collection of the conditional densities y 7→ QY,0(y|a,w) wrt µY of true, unknown laws
on Y indexed by (a,w) (that we assume being all dominated by µY ), (iii) gi(1|Wi) is
the known conditional probability that Ai = 1 given Wi, and (iv) gn ≡ (g1, . . . , gn), the
ordered vector of the n first stochastic rules. One reads in (1) (i) that W1, . . . ,Wn are
independently sampled from QW,0dµW , (ii) that Y1, . . . , Yn are conditionally sampled from
QY,0(·|A1,W1)dµY , . . . , QY,0(·|An,Wn)dµY , respectively, and (iii) that each Ai is drawn
conditionally on Wi from the Bernoulli distribution with known parameter gi(1|Wi).

We introduce the semiparametric collection Q of all elements of the form

Q = (QWdµW , QY (·|a,w), (a,w) ∈ A×W), or

Q =

(
QW

K∑
k=1

Dirac(wk), QY (·|a,w), (a,w) ∈ A×W

)

with {w1, . . . , wK} ⊂ W. Here, QW is a density wrt either µW or a discrete measure∑K
k=1 Dirac(wk) (thus, we can take the empirical measure of W as first component of Q).

Each QY (·|a,w) is a density wrt µY . In particular, Q0 ≡ (QW,0dµW , QY,0(·|a,w), (a,w) ∈
A × W) ∈ Q. In light of (1) define, for every Q ∈ Q, LQ,gn(On) ≡

∏n
i=1QW (Wi) ×

gi(Ai|Wi) × QY (Yi|Ai,Wi). The set {LQ,gn : Q ∈ Q} is a semiparametric model for the
likelihood of On. It contains the true, unknown likelihood LQ0,gn .

Fix arbitrarily Q ∈ Q. The conditional expectation of Y given (A,W ) under Q is
denoted QY (A,W ) ≡

∫
yQY (y|A,W )dµY (y). To alleviate notation, we introduce the so

called “blip function” qY characterized by qY (W ) = QY (1,W )−QY (0,W ). If qY (W ) ≥ 0
(respectively, qY (W ) < 0), then assigning treatment A = 1 (respectively, A = 0) guaran-
tees that the patient receives the superior treatment in the sense that her mean reward is
larger in this arm than in the other one. If qY (W ) = 0, then the mean rewards are equal.
This characterizes an optimal stochastic rule r(QY ) given by

r(QY )(W ) ≡ 1{qY (W ) ≥ 0}. (2)

It is degenerate because, given W , the assignment is deterministic. Such degenerate
stochastic rules are usually referred to as treatment rules in the causal inference literature.
When Q = Q0, we denote QY ≡ QY,0, qY ≡ qY,0, and r(QY ) ≡ r0.
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The parameter of interest is the mean reward under the optimal treatment rule,

ψ0 ≡ EQ0 (QY,0(r0(W ),W )) =

∫
QY,0(r0(w), w)QW,0(w)dµW (w).

Let G be the semiparametric collection of all stochastic treatment rules g, which satisfy
g(1|W ) = 1 − g(0|W ) ∈ (0, 1). From now on, for each (Q, g) ∈ Q × G, we denote PQ,g
the distribution of O = (W,A, Y ) obtained by drawing W from QW , then A from the
Bernoulli distribution with parameter g(1|W ), then Y from the conditional distribution
QY (·|A,W )dµY . Let M≡ {PQ,g : Q ∈ Q, g ∈ G}. We actually see ψ0 as the value at any
PQ0,g (g ∈ G) of the mapping Ψ :M→ [0, 1] characterized by

Ψ(PQ,g) ≡ EQ (QY (r(QY )(W ),W )) .

Obviously, the parameter Ψ(PQ,g) does not depend on g. It depends linearly on the
marginal distribution QWdµW , but in a more subtle way on the conditional expectation
QY .

We have not specified yet what is precisely gn ≡ (g1, . . . , gn). Our targeted sampling
scheme “targets” the optimal treatment rule r0 and ψ0. By targeting r0, we mean esti-
mating QY,0 based on past observations, and relying on the resulting estimator to collect
the next block of data, as seen in (1), and to estimate ψ0. Targeting ψ0 refers to our ef-
forts to build an estimator of ψ0 which allows the construction of valid, narrow confidence
intervals.

2.2 Targeted, data-adaptive sampling and inference

Let {tn}n≥1 and {ξn}n≥1 be two user-supplied, non-increasing sequences with t1 ≤ 1/2,
limn tn ≡ t∞ > 0 and limn ξn ≡ ξ∞ > 0. For every n ≥ 1, introduce the function Gn
characterized over [−1, 1] by

Gn(x) = tn1{x ≤ −ξn}

+

(
−1/2− tn

2ξ3
n

x3 +
1/2− tn

2ξn/3
x+

1

2

)
1{−ξn ≤ x ≤ ξn}

+(1− tn)1{x ≥ ξn}.

For convenience, we also introduce G∞ ≡ Gn1 where n1 ≥ 1 is chosen large enough so
that tn1 = t∞ and ξn1 = ξ∞. Function Gn is non-decreasing and cn-Lipschitz with

cn ≡
1/2− tn

2ξn/3
≤ 1/2− t∞

2ξ∞/3
≡ c∞.

This particular choice of Gn is one among many. Any other non-decreasing function G̃n
such that G̃n(x) = tn for x ≤ −ξn, G̃n(x) = 1 − tn for x ≥ ξn, and G̃n κn-Lipschitz with
κn upper-bounded by a finite κ∞ could be chosen as well.

Loss functions and working models. Let gb ∈ G be the balanced stochastic rule
wherein each arm is assigned with probability 1/2 regardless of baseline covariates. Let
gref ∈ G be a stochastic rule, bounded away from 0 and 1 by choice, that serves as a
reference. In addition, let L be a loss function for QY,0 and Q1,n be a working model

Q1,n ≡ {QY,β : β ∈ Bn} ⊂ QY ≡ {QY : Q ∈ Q}
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consisting of functions QY,β mapping A ×W to [0, 1] (in the above display, QY denotes
the conditional expectation of Y given (A,W ) under Q ∈ Q). One choice of L is the quasi
negative-log-likelihood loss function Lkl. For any QY ∈ QY bounded away from 0 and 1,
Lkl(QY ) satisfies

−Lkl(QY )(O) ≡ Y log(QY (A,W )) + (1− Y ) log (1−QY (A,W )) .

Another interesting loss function L for QY,0 is the least-square loss function Lls. It is
characterized at any QY ∈ QY by

Lls(QY )(O) ≡ (Y −QY (A,W ))2.

Completing the description of the sampling scheme. We initialize the sampling
scheme by setting g1 ≡ gb. Consider 1 < i ≤ n. Since

QY,0 = arg min
QY ∈QY

EQ0,g(L(QY )(O)),

we naturally define

βi ∈ arg min
β∈Bi

1

i− 1

i−1∑
j=1

L(QY,β)(Oj)
gref(Aj |Wj)

gj(Aj |Wj)
(3)

and use QY,βi as an estimator of QY,0 based on Oi−1. It gives rise to qY,βi and ri such that

qY,βi(W ) ≡ QY,βi(1,W )−QY,βi(0,W ), (4)

ri(W ) ≡ 1{qY,βi(W ) ≥ 0},

two substitution estimators of the blip function qY,0 and optimal treatment rule r0, re-
spectively.

For smaller sample sizes i, setting gi equal to ri would be hazardous. Indeed, there
is no guarantee that qY,βi estimates well qY,0. Say, for instance, that qY,βi(w) is large by
mere chance for all w ∈ Di ⊂ W. If we used gi = ri, then future patients with W ∈ Di

would systematically be assigned to treatment arm a = 1 and the poor estimation of qY,0
on Di could not be corrected, if needed. Thus, we characterize gi by setting

gi(1|W ) ≡ Gi(qY,βi(W )).

This completes the definition of the likelihood function, hence the characterization of our
sampling scheme.

Note that choosing t1 = . . . = tn0 = 1/2 for a limit sample size n0 would yield
g1 = . . . = gn0 = gb, the balanced stochastic rule. Furthermore, the definitions of Gn and
gn entail straightforwardly the following lemma:

Lemma 1. Set n ≥ 1. It holds that

inf
w∈W

gn(rn(w)|w) ≥ 1/2, (5)

inf
w∈W

gn(1− rn(w)|w) ≥ tn. (6)

Lemma 1 illustrates the so called exploration/exploitation trade-off, i.e., the ability
of the sampling scheme to exploit the accrued information (5) while keeping exploring in
search of potential discordant new piece of information (6). From a different perspective,
(5) shows that treatment rule rn meets the positivity assumption.
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Targeted minimum loss estimator. Let R be the set of all treatment rules, i.e., the
set of all functions mapping W to {0, 1}. For each g ∈ G and ρ ∈ R, we define a function
Hρ(g) mapping O to R by setting

Hρ(g)(O) ≡ 1{A = ρ(W )}
g(A|W )

. (7)

Introduce the following one-dimensional parametric model for QY,0:

{QY,βn,gn,rn(ε) ≡ expit (logit(QY,βn) + εHrn(gn)) : ε ∈ E} , (8)

where E ⊂ R is a closed, bounded interval containing 0 in its interior. We characterize an
optimal fluctuation parameter by setting

εn ∈ arg min
ε∈E

1

n

n∑
i=1

Lkl(QY,βn,gn,rn(ε))(Oi)
gn(Ai|Wi)

gi(Ai|Wi)
. (9)

Define Q∗Y,βn,gn,rn ≡ QY,βn,gn,rn(εn) and

ψ∗n ≡
1

n

n∑
i=1

Q∗Y,βn,gn,rn(rn(Wi),Wi). (10)

Funded on the TMLE principle, ψ∗n is our pivotal estimator.

3 Convergence

For every p ≥ 1 and measurable f :W → R, let ‖f‖p be the seminorm given by

‖f‖pp ≡
∫
|qY,0| × |f |pQW,0dµW .

We introduce g0 ∈ G given by

g0(1|W ) ≡ G∞(qY,0(W )). (11)

The stochastic rule g0 approximates the treatment rule r0 in the following sense:

|g0(1|W )− r0(W )| ≤ t∞1{|qY,0(W )| ≥ ξ∞}+ 1
21{|qY,0(W )| < ξ∞}. (12)

Therefore, if t∞ is small and if |qY,0(W )| ≥ ξ∞, then drawingA from g0 does not differ much
from drawing A from r0. Rigorously, the distance in total variation between the Bernoulli
laws with parameters g0(1|W ) and r0(W ) equals 2t∞. On the contrary, if |qY,0(W )| < ξ∞,
then the conditional laws of A given W under g0 or r0 may be very different. However, if
ξ∞ is small, then assigning randomly A = 1 or A = 0 has little impact on the mean value
of the reward Y .

We now study the convergence of rn to r0 and that of gn to g0. In each case, the
convergence is relative to two measures of discrepancy. For rn, we consider the seminorm
‖rn − r0‖p (any p ≥ 1) and

∆(rn, r0) ≡ |EQ0,rn(QY,0(A,W ))− EQ0,r0(QY,0(A,W ))|. (13)
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By analogy, the measures of discrepancy for gn are

‖gn − g0‖p ≡ ‖gn(1|·)− g0(1|·)‖p, (14)

∆(gn, g0) ≡ |EQ0,gn(QY,0(A,W ))− EQ0,g0(QY,0(A,W ))|. (15)

Note that ∆(rn, r0) and ∆(gn, g0) are the absolute values of the differences between the
mean rewards under the treatment rules rn and r0 and the stochastic rules gn and g0,
respectively. As such, they are targeted toward our end result, i.e., the inference of ψ0, as
shown in the following lemma:

Lemma 2. Set n ≥ 1. It holds that

0 ≤ ψ0 − EQ0,rn(QY,0(A,W )) = ∆(rn, r0) ≤ ‖rn − r0‖1, (16)

0 ≤ ψ0 − EQ0,gn(QY,0(A,W )) ≤ ∆(gn, g0) + t∞ + ξ∞. (17)

The next lemma shows that the convergence of qY,βn to qY,0 implies that of rn to r0.

Lemma 3. Set p ≥ 1. If ‖qY,βn−qY,0‖2 = oP (1), then ‖rn−r0‖p = oP (1) hence ∆(rn, r0) =
oP (1).

Similarly, the convergence of qY,βn to qY,0 implies that of gn to g0.

Lemma 4. Set p ≥ 1. It holds that 0 ≤ ∆(gn, g0) ≤ ‖gn − g0‖p. Moreover, if ‖qY,βn −
qY,0‖2 = oP (1), then ‖gn − g0‖p = oP (1) hence ∆(gn, g0) = oP (1).

4 Asymptotia

4.1 Notation

Consider a class F of functions mapping a measured space X to R and φ : R→ R. Recall
that F is said separable if there exists a countable collection F ′ of functions such that
each element of F is the pointwise limit of a sequence of elements of F ′. If φ ◦ f is well
defined for each f ∈ F , then we note φ(F) ≡ {φ ◦ f : f ∈ F}. In particular, we introduce
the sets G1,n ≡ {Gn(qY ) : QY ∈ Q1,n}, r(Q1,n) ≡ {r(QY ) : QY ∈ Q1,n} (all n ≥ 1) and
G1 ≡ ∪n≥1G1,n.

Set δ > 0, µ a probability measure on X , and let F be an envelope function for F , i.e.,
a function such that |f(x)| ≤ F (x) for every f ∈ F , x ∈ X . We denote N(δ,F , ‖ · ‖2,µ) the
δ-covering number of F wrt ‖ · ‖2,µ, i.e., the minimum number of L2(µ)-balls of radius δ
needed to cover F . The corresponding uniform entropy integral wrt F for F evaluated at

δ is JF (δ,F) ≡
∫ δ

0

√
log supµN(ε‖F‖2,µ,F , ‖ · ‖2,µ)dε, where the supremum is taken over

all probability measures µ on the measured space X for which ‖F‖2,µ > 0.

In general, given a known g ∈ G and an observation O drawn from PQ0,g, Z ≡ g(A|W )
is a deterministic function of g and O. Note that Z should be interpreted as a weight
associated with O and will be used as such. Therefore, we can augment O with Z, i.e.,
substitute (O,Z) for O, while still denoting (O,Z) ∼ PQ0,g. In particular, during the
course of our trial, conditionally on Oi−1, the stochastic rule gi is known and we can
substitute (Oi, Zi) = (Oi, gi(Ai|Wi)) ∼ PQ0,gi for Oi drawn from PQ0,gi . The inverse
weights 1/gi(Ai|Wi) are bounded because G1 is uniformly bounded away from 0 and 1.
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The empirical distribution of On is denoted Pn. For a measurable function f : O ×
[0, 1] → Rd, we use the notation Pnf ≡ n−1

∑n
i=1 f(Oi, Zi). Likewise, for any fixed

PQ,g ∈M, PQ,gf ≡ EQ,g(f(O,Z)) and, for each i = 1, . . . , n,

PQ0,gif ≡ EQ0,gi [f(Oi, Zi)|Oi−1],

PQ0,gnf ≡ 1

n

n∑
i=1

EQ0,gi [f(Oi, Zi)|Oi−1].

The supremum norm of a function f : O × [0, 1] → Rd is denoted ‖f‖∞. When
d = 1, we denote ‖f‖22,P

Q0,g
ref
≡ PQ0,greff

2. If f is only a function of W , then ‖f‖2 =∥∥|qY,0|1/2f∥∥2,P
Q0,g

ref
.

For every QY,β ∈ Q1 ≡ ∪n≥1Q1,n, the blip function QY,β(1, ·) − QY,β(0, ·) is denoted
qY,β by analogy with (4). We will often deal with seminorms ‖f‖2 with f = QY − QY,β0
for some QY ∈ QY and QY,β0 ∈ Q1. A consequence of the trivial inequality (a − b)2 ≤
2(ua2 + (1 − u)b2)/min(u, 1 − u) (valid for all a, b ∈ R, 0 < u < 1), the following bound
will prove useful:

‖qY − qY,β0‖2 ≤ 2
∥∥∥|qY,0|1/2/gref

∥∥∥
∞
× ‖QY −QY,β0‖2,PQ0,g

ref

≤ 2‖1/gref‖∞ × ‖QY −QY,β0‖2,PQ0,g
ref
. (18)

The constant 2‖1/gref‖∞ is minimized at gref = gb, with 2‖1/gb‖∞ = 4.

4.2 Central limit theorem

Our main result is a central limit theorem for ψ∗n. It relies on the following assumptions,
upon which we comment in Section 4.3.

A1. The conditional distribution of Y given (A,W ) under Q0 is not degenerated. More-
over, PQ0(|qY,0(W )| > 0) = 1.

Existence and convergence of projections.

A2. For each n ≥ 1, there exists QY,βn,0 ∈ Q1,n satisfying

PQ0,grefL(QY,βn,0) = inf
QY,β∈Q1,n

PQ0,grefL(QY,β).

Moreover, there exists QY,β0 ∈ Q1 such that, for all δ > 0,

PQ0,grefL(QY,β0) < inf{
QY ∈Q1:‖QY −QY,β0‖2,PQ0,g

ref
≥δ
}PQ0,grefL(QY ).

Finally, it holds that qY,β0 = qY,0.

A3. For all ρ ∈ R and ε ∈ E , introduce

QY,β0,g0,ρ(ε) ≡ expit (logit(QY,β0) + εHρ(g0)) , (19)

where Hρ(g0) is given by (7) with g = g0. For every ρ ∈ R, there exists a unique
ε0(ρ) ∈ E such that

ε0(ρ) ∈ arg min
ε∈E

PQ0,g0L
kl(QY,β0,g0,ρ(ε)). (20)
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Reasoned complexity.

A4. The classes Q1,n, L(Q1,n) and r(Q1,n) are separable. Moreover, the following entropy
conditions hold: J1(1,Q1,n) = o(

√
n), J1(1, r(Q1,n)) = o(

√
n), JFn(1, L(Q1,n)) =

o(
√
n), where each Fn is an envelope function for L(Q1,n).

A4*. Let {δn}n≥1 be a sequence of positive numbers. If δn = o(1), then J1(δn,Q1,n) =
o(1) and J1(δn, r(Q1,n)) = o(1).

Margin condition.

A5. There exist γ1, γ2 > 0 such that, for all t ≥ 0,

PQ0 (0 < |qY,0(W )| ≤ t) ≤ γ1t
γ2 .

We first focus on the convergence of the sequences of stochastic rules gn and empirical
treatment rule rn. By Lemmas 3 and 4, it suffices to consider the convergence of qY,βn .
By (18), we may consider the convergence of QY,βn .

Proposition 1. Under A2 and A4, both ‖QY,βn −QY,β0‖2,PQ0,g
ref

= oP (1) and ‖qY,βn −
qY,0‖2 = oP (1). Hence, for any p ≥ 1, ‖rn−r0‖p = oP (1), ‖gn−g0‖p = oP (1), ∆(rn, r0) =
oP (1), ∆(gn, g0) = oP (1) by Lemmas 3 and 4. If A1 and A5 are also met, then ‖rn −
r0‖2,P

Q0,g
ref

= oP (1) and ‖gn − g0‖2,P
Q0,g

ref
= oP (1) as well.

Define now the data-adaptive parameter

ψrn,0 ≡ EQ0 (QY,0(rn(W ),W )) = EQ0,rn (QY,0(A,W )) . (21)

By (16) in Lemma 2 and Lemma 3, we have the following corollary to Proposition 1:

Corollary 1. Under A2 and A4, 0 ≤ ψ0 − ψrn,0 = oP (1).

We now turn to the convergence of ψ∗n. Its asymptotic behavior can be summarized in
these terms:

Theorem 1. Suppose that A1, A2, A3, A4, A4* and A5 are met. It holds that ψ∗n −
ψrn,0 = oP (1). Thus, by Corollary 1, ψ∗n − ψ0 = oP (1) as well. Moreover,

√
n/Σn(ψ∗n −

ψrn,0) is approximately standard normally distributed, where Σn is the explicit estimator
given in (30).

Theorem 1 is a toned down version of Theorem 2 that we state and comment on in
Section 4.5. Section 4.3 discusses their assumptions and Section 4.4 presents an example.
Theorems 1 and 2 allow the construction of confidence intervals for several parameters of
interest, as shown in Section 5.

4.3 Commenting on the assumptions

Assumption A1 consists in two statements. The first one is a simple condition guarantee-
ing that the limit variance of

√
n(ψ∗n−ψrn,0) is positive. The second one is more stringent.

In the terminology of [21], it states that Q0 is not exceptional. If Q0 were exceptional, then

10



the set {w ∈ W : qY,0(w) = 0} would have positive probability under Q0. To a patient
falling in this set, the optimal treatment rule r(QY,0) ≡ r0 recommends to assign treatment
A = 1 instead of treatment A = 0. This arbitrary choice has no consequence whatsoever
in terms of conditional mean of the reward given treatment and baseline covariates.

However, it is well documented that exceptional laws are problematic. For the estima-
tion of the optimal treatment rule r0, one reason is that an estimator will typically not
converge to a fixed limit on {w ∈ W : qY,0(w) = 0} [21, 22, 16]. Another reason is that
the mean reward under the optimal treatment rule seen as a functional, Ψ, is pathwise
differentiable at Q0 if and only if, Q0-almost surely, either |qY,0(W )| > 0 or the condi-
tional distributions of Y given (A = 1,W ) and (A = 0,W ) under Q0 are degenerated [16,
Theorem 1]. This explains why it is also assumed that the true law is not exceptional
in [29, 15, 17]. Other approaches have been considered to circumvent the need to make
this assumption: relying on m-out-of-n bootstrap [5] (at the cost of a

√
m = o(

√
n)-rate of

convergence and need to fine-tune m), or changing the parameter of interest by focusing
on the mean reward under the optimal treatment rule conditional on patients for whom
the best treatment has a clinically meaningful effect (truncation) [11, 13, 14].

To the best of our knowledge, only [16] addresses the inference of the original param-
eter at a

√
n-rate of convergence without assuming that the true law is not exceptional.

Moreover, if the true law is not exceptional, then the estimator is asymptotically efficient
among all regular and asymptotically linear estimators. Developed in the i.i.d. setting,
the estimator of [16] does not require that the estimator of r0 converge as the sample size
grows. It relies on a clever iteration of a two-step procedure consisting in (i) estimating
well-chosen nuisance parameters, including r0, on a small chunk of data, then (ii) con-
structing an estimator targeted to the mean reward under the current estimate of r0 with
the nuisance parameters obtained in (i). The final estimator is a weighted average of the
resulting chunk-specific estimators. Adapting this procedure to our setting where data are
dependent would be very challenging.

Assumptions A2 states the existence of L-projections QY,βn,0 of QY,0 onto each working
model Q1,n and their convergence to a limit L-projection QY,β0 ∈ Q1 ≡ ∪n≥1Q1,n. More
importantly, it states that the blip function qY,β0 associated with QY,β0 equals the true
blip function qY,0 associated with QY,0.

For any fixed treatment rule ρ ∈ R, the limit L-projection QY,β0 can be fluctuated in
a direction Hρ(g0) characterized by ρ and QY,0, see (7), (11)) and (19). Assumption A3
states that there exists a unique Lkl-projection of QY,0 onto this ρ-specific one-dimensional
parametric model fluctuating QY,β0 . In particular, when ρ = rn, the estimator of r0 at
sample size n, QY,0 is uniquely Lkl-projected onto, say, Q∗Y,0,rn . One of the keys to our
approach is the equality EQ0(Q∗Y,0,rn(rn(W ),W )) = ψrn,0 ≡ EQ0(QY,0(rn(W ),W )) even if
QY,0 and Q∗Y,0,rn differ. Proven in step 3 of the proof of Proposition 7, which states that
ψ∗n is a consistent estimator of ψrn,0 (i.e., ψ∗n−ψrn,0 = oP (1)), this robustness property is
a by product of the robustness of the efficient influence curve of the mean reward under
rn treated as a fixed treatment rule, see Lemma 12.

Expressed in terms of separability and conditions on uniform entropy integrals, A4 and
A4* restrict the complexities of the working models Q1,n and resulting classes r(Q1,n) and
L(Q1,n). Imposing separability is a convenient way to ensure that some delicate measur-
ability conditions are met. Assumption A4* partially strengthens A4 because choosing
δn ≡ 1/

√
n (all n ≥ 1) in A4* implies J1(1,Fn) = o(

√
n) for both Fn ≡ Q1,n and

Fn ≡ r(Q1,n) by a simple change of variable. Section 4.4 presents an example of sequence
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{Q1,n}n≥1 of working models which meets A4 and A4*. Its construction involves VC-
classes of functions, which are archetypical examples of classes with well-behaved uniform
entropy integrals. Restricting the complexities of the working models Q1,n, r(Q1,n) and
L(Q1,n) in terms of bracketing entropy is tempting because of the great diversity of exam-
ples of classes of functions which behave well in these terms. Unfortunately, this is not a
viable alternative, since bounds on the bracketing numbers of Q1,n do not imply bounds
on those of r(Q1,n).

Inspired from the seminal article [18], assumptions similar to A5 are known as “margin
assumptions” in the literature. They describe how the data-distribution concentrates
on adverse events, i.e., on events that make inference more difficult. We have already
discussed the fact that inferring the optimal treatment rule and its mean reward is less
challenging when the law of the absolute value of |qY,0(W )| puts no mass on {0}. It actually
occurs that the less mass this law puts around {0}, the less challenging is the inference.
Assumption A5 formalizes tractable concentrations. It has already proven useful in the
i.i.d. setting, see [15, Lemma 1] and [16, Condition (16)]. By Markov’s inequality, A5 is
implied by the following, clearer assumption:

A5**. There exists γ2 > 0 such that

γ1 ≡ EQ0

(
|qY,0(W )|−γ21{|qY,0(W )| > 0}

)
<∞.

4.4 An example

In this section, we construct a sequence {Q1,n}n≥1 of working models which meets A4 and
A4*, see Proposition 2. Let F− be a separable class of measurable functions from W to
[−1, 1] \ {0} such that {{w ∈ W : f−(w) ≥ t} : f− ∈ F−, t ∈ [−1, 1]} is a VC-class of sets.
By definition, F− is a VC-major class [28, Sections 2.6.1 and 2.6.4]. Thus, Corollary 2.6.12
in [28] guarantees the existence of two constants K− > 0 and α− ∈ [0, 1) such that, for
every ε > 0,

log sup
µ
N(ε‖1‖2,µ,F−, ‖ · ‖2,µ) ≤ K−

(
1

ε

)2α−

. (22)

Let F+ be a separable class of measurable functions from W to [0, 2] such that, for two
constants K+ > 0, α+ ∈ [0, 1) and for every ε > 0,

log sup
µ
N(ε‖2‖2,µ,F+, ‖ · ‖2,µ) ≤ K+

(
1

ε

)2α+

. (23)

For instance, F+ may be a VC-hull class of functions, i.e., a subset of the pointwise se-
quential closure of the symmetric convex hull of a VC-class of functions [28, Section 2.6.3].
(The suprema in (22) and (23) are taken over all probability measures µ on the measured
space W.)

We now use F− and F+ to define the sequence {Q1,n}n≥1 of working models. Let
F− = ∪n≥1F−n and F+ = ∪n≥1F+

n be rewritten as the limits of two increasing sequences
of sets {F−n }n≥1 and {F+

n }n≥1. Set n ≥ 1 and define

Bn ≡ {(f−, f+) ∈ F−n ×F+
n : 0 ≤ f+ + f−, f+ − f− ≤ 2}.

For each β ≡ (f−, f+) ∈ Bn, introduce QY,β mapping A×W to [0, 1] characterized by

QY,β(A,W ) =
A

2
(f+(W ) + f−(W )) +

(1−A)

2
(f+(W )− f−(W )). (24)
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We define the nth working model as Q1,n ≡ {QY,β : β ∈ Bn}. It is separable because F−
and F+ are separable.

Because qY,β ≡ QY,β(1, ·)−QY,β(0, ·) = f− for every β ≡ (f−, f+) ∈ Bn, it holds that

r(Q1,n) ≡ {1{qY,β(·) ≥ 0} : β ∈ Bn}
=
{
1{f−(·) ≥ 0} : f− ∈ F−n

}
⊂
{
1{f−(·) ≥ 0} : f− ∈ F−

}
which, by construction, is a fixed subset of a VC-class of functions, hence a VC-class of
functions itself. Moreover, r(Q1,n) is separable because F− is separable and elements of
F− take only positive or negative values. These properties and (22), (23) are the main
arguments in the proof of the following result:

Proposition 2. The sequence {Q1,n}n≥1 of working models satisfies A4 (with L = Lls

the least-square loss) and A4*.

4.5 Asymptotic linear expansion and resulting central limit theorem

Theorem 1 is a summary of Theorem 2 below, whose main result is the asymptotic linear
expansion (31). The statement of Theorem 2 requires additional notation.

Let Q∗Y,0, d∗W,0, d∗Y,0 and Σ0 be given by

Q∗Y,0(A,W ) ≡ QY,β0,g0,r0(ε0(r0))(A,W ),

d∗W,0(W ) ≡ Q∗Y,0(r0(W ),W )− EQ0(Q∗Y,0(r0(W ),W )), (25)

d∗Y,0(O,Z) ≡ 1{A = r0(W )}
Z

(Y −Q∗Y,0(A,W )), (26)

Σ0 ≡ PQ0,g0(d∗W,0 + d∗Y,0)2. (27)

Analogously, recall that Q∗Y,βn,gn,rn ≡ QY,βn,gn,rn(εn) and let d∗W,n, d∗Y,n and Σn be given
by

d∗W,n(W ) ≡ Q∗Y,βn,gn,rn(rn(W ),W )− ψ∗n, (28)

d∗Y,n(O,Z) ≡ 1{A = rn(W )}
Z

(Y −Q∗Y,βn,gn,rn(A,W )), (29)

Σn ≡ Pn(d∗W,n + d∗Y,n)2. (30)

Note that d∗W,n, d∗Y,n and Σn are empirical counterparts to d∗W,0, d∗Y,0 and Σ0.

Theorem 2. Suppose that A1, A2, A3, A4, A4* and A5 are met. It holds that ψ∗n −
ψrn,0 = oP (1). Thus, by Corollary 1, ψ∗n−ψ0 = oP (1) as well. Moreover, Σn = Σ0 +oP (1)
with Σ0 > 0 and

ψ∗n − ψrn,0 = (Pn − PQ0,gn)(d∗Y,0 + d∗W,0) + oP (1/
√
n). (31)

Consequently,
√
n/Σn(ψ∗n − ψrn,0) converges in law to the standard normal distribution.

Consider (25). It actually holds that the centering term EQ0(Q∗Y,0(r0(W ),W )) equals
ψ0 ≡ EQ0(QY,0(r0(W ),W )) (see step one of the proof of Corollary 2 in Section A.2). This
proximity between QY,0 and Q∗Y,0 follows from the careful fluctuation of QY,β0 .
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Set Q∗0 ≡ (QW,0dµW , Q
∗
Y,0(·|a,w), (a,w) ∈ A×W) ∈ Q. The influence function d∗Y,0 +

d∗W,0 in (31) is closely related to the efficient influence curve Dr0(Q∗0, g0) at PQ∗0,g0 of the
mapping Ψr0 :M→ [0, 1] characterized by

Ψr0(PQ,g) ≡ EQ (QY (r0(W ),W )) ,

the mean reward under Q of the treatment rule r0 (possibly different from the opti-
mal treatment rule r(QY ) under Q) treated as known and fixed. Specifically, in light of
Lemma 12 in Section C,

d∗Y,0(O,Z) + d∗W,0(W ) = Dr0(Q∗0, g0)(O)

when Z = g0(A|W ). Consequently, Σ0 = PQ0,g0Dr0(Q∗0, g0)2.

If QY,β0 = QY,0 (a stronger condition than equality qY,β0 = qY,0 in A2), then Q∗Y,0 =
QY,0 (because ε0(r0) from A3 equals zero) hence Q∗0 = Q0 and, finally, the remarkable
equality Σ0 = PQ0,g0Dr0(Q0, g0)2: the asymptotic variance of

√
n(ψ∗n − ψrn,0) coincides

with the generalized Cramér-Rao lower bound for the asymptotic variance of any regular
and asymptotically linear estimator of Ψr0(PQ0,g0) when sampling independently from
PQ0,g0 (see Lemma 12). Otherwise, the discrepancy between Σ0 and PQ0,g0Dr0(Q0, g0)2

will vary depending on that between QY,β0 and QY,0, hence in particular on the user-
supplied sequence {Q1,n}n≥1 of working models. Studying this issue in depth is very
difficult, if at all possible, and beyond the scope of this article.

5 Confidence regions

We explore how Theorems 1 and 2 enable the construction of confidence intervals for
various possibly data-adaptive parameters: the mean rewards under the optimal treatment
rule and under its current estimate in Section 5.1; the empirical cumulative pseudo-regret
in Section 5.2; the counterfactual cumulative pseudo-regret in Section 5.3.

Set a confidence level α ∈ (0, 1/2). Let ξα < 0 and ξ1−α/2 > 0 be the corresponding α-
and (1− α/2)-quantiles of the standard normal distribution.

5.1 Confidence intervals for the mean rewards under the optimal treat-
ment rule and under its current estimate

Theorems 1 and 2 yield straightforwardly a confidence interval for the mean reward under
the current best estimate of the optimal treatment rule, ψrn,0.

Proposition 3. Under the assumptions of Theorems 1 or 2, the probability of the event

ψrn,0 ∈

[
ψ∗n ± ξ1−α/2

√
Σn

n

]

converges to (1− α) as n goes to infinity.

We need to strengthen A5 to guarantee that the confidence interval in Proposition 3
can also be used to infer the mean reward under the optimal treatment rule, ψ0. Consider
thus the following.

14



A5*. There exist γ1 > 0, γ2 ≥ 1 such that, for all t ≥ 0,

PQ0 (0 < |qY,0(W )| ≤ t) ≤ γ1t
γ2 .

Just like A5 is a consequence of A5**, A5* is a consequence of A5** where one substi-
tutes the condition γ2 > 0 for the stronger condition γ2 ≥ 1.

Proposition 4. Under A5** there exists a constant c > 0 such that

0 ≤ ψ0 − ψrn,0 ≤ c‖qY,βn − qY,0‖
2(1+γ2)/(3+γ2)
2 . (32)

Set γ3 ≡ 1/4 + 1/2(1 + γ2) ∈ (1/4, 1/2]. By (32), if ‖QY,βn −QY,β0‖2,PQ0,g
ref

= oP (1/nγ3),

then ‖qY,βn − qY,0‖2 = oP (1/nγ3), which implies 0 ≤ ψ0 − ψrn,0 = oP (1/
√
n).

Therefore, if the assumptions of Theorems 1 or 2 are also met, then the probability of
the event

ψ0 ∈

[
ψ∗n ± ξ1−α/2

√
Σn

n

]
converges to (1− α) as n goes to infinity.

The definition of γ3 in Proposition 4 justifies the requirement γ2 ≥ 1 in A5*. Indeed,
γ3 ≤ 1/2 is equivalent to γ2 ≥ 1. Moreover, it holds that γ3 = 1/2 (so that ‖qY,βn−qY,0‖2 =
oP (1/nγ3) can be read as a parametric rate of convergence) if and only if γ2 = 1.

5.2 Lower confidence bound for the empirical cumulative pseudo-regret

We call

En ≡
1

n

n∑
i=1

(Yi −QY,0(rn(Wi),Wi)) (33)

the “empirical cumulative pseudo-regret” at sample size n. A data-adaptive parameter, it
is the difference between the average of the actual rewards garnered so far, n−1

∑n
i=1 Yi,

and the average of the mean rewards under the current estimate rn of the optimal treat-
ment rule r0 in the successive contexts drawn so far during the course of the experiment,
n−1

∑n
i=1QY,0(rn(Wi),Wi). The former is a known quantity, so the real challenge is to

infer the latter. Moreover, we are mainly interested in obtaining a lower confidence bound.

Define

ΣE
0 ≡ EQ0,g0

(
d∗W,0(W )− (QY,0(r0(W ),W )− ψ0) + d∗Y,0(O,Z)

)2
,

ΣE
n ≡ 1

n

n∑
i=1

(d∗W,n(Wi)−
(
QY,βn(rn(Wi),Wi)− ψ0

n

)
+ d∗Y,n(Oi, Zi))

2,

with ψ0
n ≡ n−1

∑n
i=1QY,βn(rn(Wi),Wi). Note that ΣE

n is an empirical counterpart to ΣE
0 .

Proposition 5. Under the assumptions of Theorems 1 or 2, the probability of the event

En ≥
1

n

n∑
i=1

Yi − ψ∗n + ξα

√
ΣE
n

n

converges to (1− α) as n goes to infinity.
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5.3 Lower confidence bound for the counterfactual cumulative pseudo-
regret

In this section, we cast our probabilistic model in a causal model. We postulate the
existence of counterfactual rewards Yn(1) and Yn(0) of assigning treatment a = 1 and
a = 0 to the nth patient (all n ≥ 1). They are said counterfactual because it is impossible
to observe them jointly. The observed nth reward writes Yn = AnYn(1) + (1−An)Yn(0).

We call

Cn ≡
1

n

n∑
i=1

(Yi − Yi(rn(Wi))) (34)

the “counterfactual cumulative pseudo-regret” at sample size n. It is the difference between
the average of the actual rewards garnered so far, n−1

∑n
i=1 Yi, and the average of the

counterfactual rewards under the current estimate rn of the optimal treatment rule r0 in the
successive contexts drawn so far during the course of the experiment, n−1

∑n
i=1 Yi(rn(Wi)).

Once more, the former is a known quantity, so the real challenge is to infer the latter.
Moreover, we are mainly interested in obtaining a lower confidence bound.

For simplicity, we adopt the so called “non-parametric structural equations” approach
[19]. So, we actually postulate the existence of a sequence {Un}n≥1 of i.i.d. random vari-
ables independent from {On}n≥1 with values in U and that of a deterministic measurable
function QY,0 mapping A×W × U to Y such that, for every n ≥ 1 and both a = 0, 1,

Yn(a) = QY,0(a,Wn, Un).

The notation QY,0 is motivated by the following property. Let (A,W,U) ∈ A×W ×U be
distributed from P in such a way that (i) A is conditionally independent from U given W ,
and (ii) with Y ≡ AQY,0(1,W,U) + (1 − A)QY,0(0,W,U), the conditional distribution of
Y given (A,W ) is QY,0(·|A,W )dµY . Then, for each a ∈ A,

EP (QY,0(a,W,U)|W ) = EP (QY,0(a,W,U)|A = a,W )

= EP (Y |A = a,W )

= QY,0(a,W ). (35)

Although Cn is by nature a counterfactual data-adaptive parameter, it is possible
to construct a conservative lower confidence bound yielding a confidence interval whose
asymptotic coverage is no less than (1− α).

Proposition 6. Under the assumptions of Theorems 1 or 2, the probability of the event

Cn ≥
1

n

n∑
i=1

Yi − ψ∗n + ξα

√
ΣE
n

n

converges to (1− α′) ≥ (1− α) as n goes to infinity.

The key to this result is threefold. First, the asymptotic linear expansion (31) still
holds in the above causal model where each observation (On, Zn) is augmented with Un
(every n ≥ 1). Second, the expansion yields a confidence interval with asymptotic level
(1−α). Unfortunately, its asymptotic width depends on features of the causal distribution
which are not identifiable from the real-world (as opposed to causal) distribution. Third,
and fortunately, ΣE

n is a conservative estimator of the limit width. We refer the reader to
the proof of Proposition 6 in Section A.3 for details. It draws inspiration from [1], where
the same trick was first devised to estimate the so called sample average treatment effect.
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Linear contextual bandit problems. Consider the following contextual bandit prob-
lem: an agent is sequentially presented a context wt ∈ Rd, has to choose an action
at ∈ {0, 1}, and receives a random reward yt = f(at, wt) + εt, with f an unknown real-
valued function and εt a centered, typically sub-Gaussian noise. The agent aims at max-
imizing the cumulated sum of rewards. The contextual bandit problem is linear if there
exists θ ≡ (θ0, θ1) ∈ R2d such that f(a,w) ≡ w>θa for all (a,w) ∈ {0, 1} × Rd. At time t,
the best action is a∗t ≡ arg maxa=0,1w

>
t θa and maximizing the cumulated sum of rewards

is equivalent to minimizing the cumulated pseudo-regret RθT ≡
∑T

t=1w
>
t (a∗t θa∗t − atθat).

We refer to [12, Chapter 4] for an overview of the literature dedicated to this problem,
which bears evident similitudes with our problem of interest. Optimistic algorithms consist
in constructing a frequentist region of confidence for θ and choosing that action at+1

maximizing a 7→ maxϑw
>
t+1ϑa where ϑ ranges over the confidence region. The Bayes-

UCB algorithm and its variants follow the same idea with Bayesian regions of confidence
substituted for the frequentist ones. As for the celebrated Thompson Sampling algorithm,
it consists in drawing θ̃ from the posterior distribution of θ and choosing that action
at+1 maximizing a 7→ w>t+1θ̃a. Each time estimating θ (which is essentially equivalent to
estimating the optimal treatment rule and its mean reward) is a means to an end.

Various frequentist analyses of such algorithms have been proposed. It notably appears
that the cumulated pseudo-regret RθT typically scales in Õ(

√
T ) with high probability,

where Õ ignores logarithmic factors in T . This is consistent with the form of the lower
confidence bounds that we obtain, as by products rather than main objectives and under
milder assumptions on f/QY,0, for our empirical and counterfactual cumulated pseudo-
regrets.

6 Simulation study

6.1 Setup

We now present the results of a simulation study. Under Q0, the baseline covariate W
decomposes as W ≡ (U, V ) ∈ [0, 1] × {1, 2, 3}, where U and V are independent random
variables respectively drawn from the uniform distribution on [0, 1] and such that PQ0(V =
1) = 1

2 , PQ0(V = 2) = 1
3 and PQ0(V = 3) = 1

6 . Moreover, Y is conditionally drawn
given (A,W ) from the Beta distribution with a constant variance set to 0.1 and a mean
QY,0(A,W ) satisfying

QY,0(1,W ) ≡ 1

2

(
1 +

3

4
cos(πUV )

)
,

QY,0(0,W ) ≡ 1

2

(
1 +

1

2
sin(3πU/V )

)
.

The conditional means and associated blip function qY,0 are represented in Figure 2 (left
plots). We compute the numerical values of the following parameters: ψ0 ≈ 0.6827 (true
parameter); VarP

Q0,g
b
D(Q0, g

b)(O) ≈ 0.19162 (the variance under PQ0,gb of the efficient

influence curve of Ψ at PQ0,gb , i.e., under Q0 with equiprobability of being assigned A = 1
or A = 0); VarPQ0,g0

D(Q0, g0)(O) ≈ 0.16662 (the variance under PQ0,g0 of the efficient
influence curve of Ψ at PQ0,g0 , i.e., under Q0 and the approximation g0 to the optimal
treatment rule r0); and VarPQ0,r0

D(Q0, r0)(O) ≈ 0.16342 (the variance under PQ0,r0 of
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the efficient influence curve of Ψ at PQ0,r0 , i.e., under Q0 and the optimal treatment rule
r0).

The sequences {tn}n≥1 and {ξn}n≥1 are chosen constant, with values t∞ = 10% and
ξ∞ = 1% respectively. We choose gref = gb as reference. The targeting steps are performed
when sample size is a multiple of 100, at least 200 and no more than 1000, when sampling
is stopped. At such a sample size n, the working model Q1,n consists of functions QY,β
mapping A ×W to [0, 1] such that, for each a ∈ A and v ∈ {1, 2, 3}, logitQY,β(a, (U, v))
is a linear combination of 1, U, U2, . . . , Udn and 1{(l − 1)/`n ≤ U < l/`n} (1 ≤ l ≤ `n)
with dn = 3 + bn/500c and `n = dn/250e. The resulting global parameter β belongs to
R6(dn+`n+1) (in particular, R60 at sample size n = 1000). Working model Q1,n is fitted
wrt L = Lkl using the cv.glmnet function from package glmnet [9], with weights given
in (3) and the option "lambda.min". This means imposing (data-adaptive) upper-bounds
on the `1- and `2-norms of parameter β (via penalization), hence the search for a sparse
optimal parameter βn.

6.2 Results

We repeat N = 1000 times, independently, the procedure described in Section 2.2 and the
construction of confidence intervals for ψrn,0 and confidence lower-bounds for the empirical
and counterfactual cumulative pseudo-regrets described in Section 5. We report in Table 1
four empirical summary measures computed across simulations for each parameter among
ψrn,0, ψ0, En and Cn. In rows a: the empirical coverages. In rows b and c: the p-values
of the binomial tests of 95%-coverage at least or 94%-coverage at least (null hypotheses)
against their one-sided alternatives. In rows d: the mean values of the possibly data-
adaptive parameters. In rows e: the mean values of Σn (for ψrn,0), mean values of |En −
(n−1

∑n
i=1 Yi − ψ∗n + ξα

√
ΣE
n/n)|/|En| (for En), mean values of |Cn − (n−1

∑n
i=1 Yi − ψ∗n +

ξα
√

ΣE
n/n)|/|Cn| (for Cn).

It appears that the empirical coverage of the confidence intervals for the data-adaptive
parameter ψrn,0 and the fixed parameter ψ0 is very satisfying. Although 14 out of 18
empirical proportions of coverage lie below 95%, the simulation study does not reveal a
coverage smaller than 94%, even without adjusting for multiple testing. For sample size
larger than 400, the simulation study does not reveal a coverage smaller than the nominal
95%, even without adjusting for multiple testing.

The asymptotic variance of ψ∗n seems to stabilize below 0.18502. This is slightly
smaller than VarP

Q0,g
b
D(Q0, g

b)(O) ≈ 0.19162 (1916/1850 ≈ 1.04) and a little larger

than VarPQ0,g0
D(Q0, g0)(O) ≈ 0.16662 (1850/1666 ≈ 1.11). In theory, the asymptotic

variance of ψ∗n can converge to VarPQ0,g0
D(Q0, g0)(O) if QY,βn converges to QY,0. Rigor-

ously speaking, this cannot be the case here given the working models we rely on. This
is nonetheless a quite satisfying finding: we estimate ψrn,0 and ψ0 more efficiently than if
we had achieved their efficient estimation based on i.i.d. data sampled under Q0 and the
balanced treatment rule gb and, in addition, do so in such a way that most patients (those
for whom rn(W ) = r0(W )) are much more likely (90% versus 50%) to be assigned their
respective optimal treatments.

The empirical coverage provided by the lower confidence bounds on the data-adaptive
parameters En and Cn is excellent. Actually, the empirical proportions of coverage for En,
all larger than 96.5%, suggest that either En or the asymptotic variance of its estimator
is slightly overestimated (or both are). Naturally, there is no evidence whatsoever of an
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effective coverage smaller than 95% for En. The empirical proportions of coverage for Cn,
all larger than 98.9% and often equal to 100%, illustrate the fact that the lower confidence
bounds are conservative by construction.

Finally, the mean values of |En − (n−1
∑n

i=1 Yi − ψ∗n + ξα
√

ΣE
n/n)|/|En| and |Cn −

(n−1
∑n

i=1 Yi − ψ∗n + ξα
√

ΣE
n/n)|/|Cn| quickly stabilize around 1.30. They quantify how

close the lower confidence bounds are to the parameters they lower bound, at the scale
of the parameters themselves (which, by nature, are bound to get close to zero, if not to
converge to it).

6.3 Illustration

Figures 1 and 2 illustrate the data-adaptive inference of the optimal treatment rule, its
mean reward and the related pseudo-regrets with a visual summary of one additional run
of the procedure described in Sections 2.2 and 5. We see in the top plot of Figure 1 that
each 95%-confidence interval contains both its corresponding data-adaptive parameter
ψrn,0 and ψ0. Moreover, the difference between the length of the 95%-confidence interval
at sample size n and that of the vertical segment joining the two grey curves at this
sample size gets smaller as n grows, showing that the variance of ψ∗n gets closer to the
optimal variance VarPQ0,r0

D(Q0, r0)(O). Finally, the bottom plot also reveals that the
empirical and counterfactual cumulated pseudo-regrets Cn and En go to zero and that
each 95%-lower confidence-bound is indeed below its corresponding pseudo-regrets.

7 Discussion

We develop a targeted, data-adaptive sampling scheme and TMLE estimator to build
confidence intervals on the mean reward under the current estimate of the optimal treat-
ment rule and the optimal treatment rule itself. As a by product, we also obtain lower
confidence bounds on two cumulated pseudo-regrets. A simulation study illustrates the
theoretical results. One of the cornerstones of the study is a new maximal inequality for
martingales wrt the uniform entropy integral which allows the control of several empirical
processes indexed by random functions.

We assume here that there is no stratum of the baseline covariates where treatment
is neither beneficial nor harmful, i.e., that non-exceptionality holds [21]. In future work,
we will extend our result to handle exceptionality, building upon [16] (where observations
are sampled independently). Extension to more than two treatments and to the inference
of an optimal dynamic treatment rule (where treatment assignment consists in successive
assignments at successive time points) and its mean reward will also be considered.
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0005 (project SPADRO). Mark J. van der Laan was funded by NIH Grant Number 2R01
A1074345-07.

19



A Proofs

The notation a . b means that expression a is smaller than expression b up to a universal
multiplicative constant.

To alleviate notation, we introduce the indexing parameter ζ ∈ ∪n≥1Bn × G1 which
stands for a couple (β, g). For every ζ ≡ (β, g) ∈ ∪n≥1Bn × G1, ρ ∈ R and ε ∈ E , we set

QY,ζ,ρ(ε) ≡ expit (logit(QY,β) + εHρ(g)) (36)

and characterize QY,ζ,ρ(ε) ◦ ρ given by

QY,ζ,ρ(ε) ◦ ρ(W ) = QY,ζ,ρ(ε)(ρ(W ),W ).

With ζn ≡ (βn, gn) and ζ0 ≡ (β0, g0), we set

Q∗Y,ζn,rn ≡ QY,ζn,rn(εn),

Q∗Y,ζ0,rn ≡ QY,ζ0,rn(ε0(rn))

where ε0(rn) is defined in (20) with ρ ≡ rn. With both ζ = ζn and ζ = ζ0, we also
introduce Q∗Y,ζ,rn ◦ rn and d∗Y,ζ,rn given by

Q∗Y,ζ,rn ◦ rn(W ) ≡ Q∗Y,ζ,rn(rn(W ),W ), (37)

d∗Y,ζ,rn(O,Z) ≡ 1{A = rn(W )}
Z

(
Y −Q∗Y,ζ,rn(A,W )

)
. (38)

In particular, d∗Y,ζn,rn = d∗Y,n previously defined in (29). Finally, we denote Q∗ζ,rn any
Q ∈ Q such that the marginal distribution of W under Q is the empirical measure and
QY = Q∗Y,ζ,rn .

Lemmas 2, 3 and 4 are proven in Section A.1. Proposition 1 and Theorem 2 in
Section A.2 and Propositions 4, 5 and 6 in Section A.3. Technical lemmas are presented
and proven in Section B.

A.1 Proofs of Lemmas 2, 3 and 4

Proof of Lemma 2. The key to the proof is the following identity: for each g ∈ G, we have

EQ0,g(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )g(1|W )). (39)

This is a straightforward consequence of the decomposition QY,0(A,W ) = QY,0(0,W ) +
AqY,0(W ). Moreover, (39) also holds when g takes its value in [0, 1], hence for all treatment
rules as well.

Set n ≥ 1. Applying (39) with g = rn and g = r0 yields

EQ0,rn(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )rn(W )), (40)

EQ0,r0(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )r0(W )). (41)

Because EQ0,r0(QY,0(A,W )) = EQ0(QY,0(r0(W ),W )) = ψ0, substracting (40) and (41)
entails

ψ0 − EQ0,rn(QY,0(A,W )) = EQ0 (qY,0(W )× (r0(W )− rn(W ))) ≤ ‖rn − r0‖1. (42)
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By definition of r0, the above LHS expression is non-negative, hence it coincides with
∆(rn, r0). This completes the proof of (16).

We now apply (39) with g = g0 to get

EQ0,g0(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )g0(1|W )). (43)

Substracting (43) and (41) yields the new equality

0 ≤ ψ0 − EQ0,g0(QY,0(A,W )) = EQ0 (qY,0(W )× (r0(W )− g0(1|W ))) .

Based on (12), a case-by-case study depending on the sign of qY,0(W ) finally reveals that

0 ≤ ψ0 − EQ0,g0(QY,0(A,W )) ≤ t∞EQ0 (|qY,0(W )|) + ξ∞ ≤ t∞ + ξ∞. (44)

To obtain (17), we simply note that

0 ≤ ψ0 − EQ0,gn(QY,0(A,W ))

= ψ0 − EQ0,g0(QY,0(A,W )) + EQ0,g0(QY,0(A,W ))− EQ0,gn(QY,0(A,W ))

≤ t∞ + ξ∞ + ∆(gn, g0)

by (44) and (15).

Proof of Lemma 3. Set n ≥ 1, p ≥ 1 and η > 0. There exists α > 0 such that PQ0(0 <
|qY,0(W )| < α) ≤ ηp/2.

Note that |(rn−r0)(W )| ∈ {0, 1}. Moreover, |(rn−r0)(W )| = 1 implies qY,βnqY,0(W ) ≤
0. This justifies the first inequality below. The others easily follow from the fact that
|qY,0(W )| ≤ 1 and a case-by-case study depending on whether 0 < |qY,0(W )| < α or not:

|qY,0(W )| × |(rn − r0)(W )|p ≤ |qY,0(W )| × 1{qY,βnqY,0(W ) ≤ 0}
≤ 1{0 < |qY,0(W )| < α}+ 1{|qY,0(W )| ≥ α}

×|qY,0(W )| × 1{|(qY,βn − qY,0)(W )| ≥ α}
≤ 1{0 < |qY,0(W )| < α}+ 1{|qY,0(W )| ≥ α}

×|qY,0(W )| × α−1|(qY,βn − qY,0)(W )|
≤ 1{0 < |qY,0(W )| < α}

+α−1|qY,0(W )|1/2 × |(qY,βn − qY,0)(W )|.

Taking the expectation under QW,0dµW on both sides yields

‖rn − r0‖pp ≤ PQ0(0 < |qY,0(W )| < α) + α−1

∫
|qY,0|1/2 × |(qY,βn − qY,0)|QW,0dµW

hence, by choice of α and the Cauchy-Schwartz inequality,

‖rn − r0‖pp ≤ ηp/2 + α−1‖qY,βn − qY,0‖2.

Therefore, ‖rn−r0‖p ≥ η implies ‖qY,βn−qY,0‖2 ≥ αηp/2. Consequently, ‖qY,βn−qY,0‖2 =
oP (1) does yield ‖rn − r0‖p = oP (1). This completes the proof.

Proof of Lemma 4. Set n ≥ 1, p ≥ 1, p̄ = p/(p− 1) (p̄ =∞ if p = 1) and p′ = min(p, 2).
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By (39) with g = gn and g = g0, we obtain

∆(gn, g0) = |EQ0 [qY,0(W )× (gn(1|W )− g0(1|W ))]|.

Applying successively the triangle inequality and Hölder’s inequality yields

∆(gn, g0) ≤ EQ0 (|qY,0(W )| × |gn(1|W )− g0(1|W )|)
≤ ‖gn − g0‖p,

which is the result first stated in the lemma.

Suppose now that n is large enough so that Gn = G∞. Since G∞ is c∞-Lipschitz, it
holds that

|qY,0(W )| × |gn(1|W )− g0(1|W )|p = |qY,0(W )| × |G∞(qY,βn(W ))−G∞(qY,0(W ))|p

. |qY,0(W )| × |qY,βn(W )− qY,0(W )|p

≤ |qY,0(W )| × |qY,βn(W )− qY,0(W )|p′ ,

where the last inequality is due to the fact that |qY,βn − qY,0| ≤ 1. Taking the expectation

under QW,0dµW gives the bound ‖gn − g0‖p . ‖qY,βn − qY,0‖
p′/p
p′ . ‖qY,βn − qY,0‖

p′/p
2 . This

completes the proof.

A.2 Proofs of Proposition 1 and Theorem 2

Let us prove Proposition 1.

Proof of Proposition 1. The convergence ‖qY,βn−qY,β0‖ = oP (1) follows immediately from
(18) and the convergence ‖QY,βn − QY,β0‖2,PQ0,g

ref
= oP (1). This convergence is a con-

sequence of Lemma 7 with Θ ≡ Q1, Θn ≡ Q1,n, d the distance induced on Θ by the
norm ‖ · ‖2,P

Q0,g
ref

, Mn and Mn characterized over Θ by Mn(QY ) ≡ PQ0,grefL(QY ) (which

does not depend on n after all) and Mn(QY ) ≡ Png
refL(QY )/Z = n−1

∑n
i=1 g

ref(Ai |
Wi)L(QY )(Oi)/Zi. Assumption A2 implies that (a) and (b) from Lemma 7 are met
(take τn = QY,β0 and τ∗n = QY,βn,0). It remains to prove that (c) also holds or, in other
terms, that ‖Mn −Mn‖Q1,n = oP (1).

For any QY ∈ Θ, characterize `(QY ) by setting `(QY )(O,Z) ≡ gref(A|W )L(QY )(O)/Z.
Then we can rewrite ‖Mn −Mn‖Q1,n as follows:

‖Mn −Mn‖Q1,n = ‖Pn`− PQ0,grefL‖Q1,n = ‖(Pn − PQ0,gn)`‖Q1,n = ‖Pn − PQ0,gn‖`(Q1,n).

The separability of `(Q1,n) follows from that of L(Q1,n). Let Fn be the envelope func-
tion for L(Q1,n) from A4. By construction of gn, Z is bounded away from 0, so there
exists a constant c > 0 such that cFn is an envelope function for `(Q1,n). Moreover,
JcFn(1, `(Q1,n)) = O(JFn(1, L(Q1,n)) = o(

√
n) by A4. Therefore, Lemma 9 applies and

yields ‖Pn−PQ0,gn‖`(Q1,n) = oP (1) by Markov’s inequality. Thus, we can apply Lemma 7.
It yields that ‖QY,βn −QY,β0‖2,PQ0,g

ref
= oP (1), which is the desired result.

Assume now that A1 and A5 also hold and set arbitrarily t > 0. Because |rn − r0| ∈
{0, 1}, we can upper-bound ‖rn − r0‖22,P

Q0,g
ref

as follows:

‖rn − r0‖22,P
Q0,g

ref
= PQ0,gref1{|qY,0| > t} × |rn − r0|+ PQ0,gref1{|qY,0| ≤ t} × |rn − r0|
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≤ t−1PQ0,gref |qY,0| × |rn − r0|+ PQ0,gref (0 < |qY,0| ≤ t)
. t−1‖rn − r0‖22 + tγ2 .

Optimizing in t yields

‖rn − r0‖2,P
Q0,g

ref
. ‖rn − r0‖γ2/2(1+γ2)

2 = oP (1).

We obtain that
‖gn − g0‖2,P

Q0,g
ref

. ‖gn − g0‖γ2/2(1+γ2)
2 = oP (1)

along the same lines as above. This completes the proof.

We now turn to the first part of Theorem 2:

Proposition 7 (consistency of ψ∗n). Suppose that A2, A3 and A4 are met. Then it holds
that ψ∗n − ψrn,0 = oP (1).

Proof of Proposition 7. This is a three-part proof.

Step one: studying εn. Let us show that εn − ε0(rn) = oP (1). We apply Lemma 8
with Θ ≡ E , d the Euclidean distance, Zn and Zn characterized over E by Zn(ε) =
PQ0,g0DY,rn(QY,ζ0,rn(ε), g0), and Zn(ε) = PnDY,rn(QY,ζn,rn(ε), gn)gn/Z, see (36), (19) and
(8) for the definitions of QY,ζ0,rn(ε) and QY,ζn,rn(ε).

From the differentiability of ε 7→ Lkl(QY,ζ0,rn(ε)), validity of the differentiation under
the integral sign, and definition of ε0(rn) (20) in A3, we deduce that Zn(ε0(rn)) = 0. By
definition of εn (9), Zn(εn) = 0 too. Moreover, (d) from Lemma 8 is met. Indeed, by
differentiability of ε 7→ DY,rn(QY,ζ0,rn(ε), g0) and validity of the differentiation under the
integral sign, Zn : E → R is differentiable on E with a derivative given by

Z′n(ε) = −PQ0,g0

QY,ζ0,rn(ε) ◦ rn × (1−QY,ζ0,rn(ε) ◦ rn)

g0 ◦ rn

where g0 ◦ rn is characterized by g0 ◦ rn(W ) = g0(rn(W )|W ). By construction, QY,ζ,r(ε)
and g0 are bounded away from 0 and 1 uniformly in ζ ∈ ∪n≥1Bn × G1, ρ ∈ R and ε ∈ E .
Therefore, there exists a universal constant c such that |Z′n(ε)| ≥ c > 0 for all ε ∈ E .
Consequently, by the mean value theorem, for all ε ∈ E , |Zn(ε)| ≥ c|ε − ε0(rn)|. This
entails condition (d).

Applying Lemma 8 finally requires verifying that (e) is met, i.e., proving that ‖Zn −
Zn‖E = oP (1). Introduce Fn ≡ {fρ,ε : ρ ∈ r(Q1,n), ε ∈ E} with

fρ,ε(O,Z) ≡ 1{A = ρ(W )}
Z

(Y −QY,ζ0,ρ(ε)(A,W )) (45)

for each (ρ, ε) ∈ r(Q1,n)× E . We start with the following derivation:

‖Zn(ε)−Zn(ε)‖E

= sup
ε∈E

∣∣∣∣Pn(frn,ε +
1{A = rn(W )}

Z
(QY,ζ0,rn(ε)−QY,ζn,rn(ε))

)
− PQ0,gnfrn,ε

∣∣∣∣
≤ ‖Pn − PQ0,gn‖Fn + sup

ε∈E

∣∣∣∣Pn1{A = rn(W )}
Z

(QY,ζ0,rn(ε)−QY,ζn,rn(ε))

∣∣∣∣ . (46)
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• Consider the first RHS term in (46). Set (ρ1, ε1), (ρ2, ε2) ∈ r(Q1,n) × E . Since Z is
bounded away from 0 and |Y −QY,ζ0,ρ2(ε2)(A,W )| ≤ 1, it holds that

|(fρ1,ε1 − fρ2,ε2)(O,Z)| ≤ 1{A = ρ1(W )}
Z

|(QY,ζ0,ρ1(ε1)−QY,ζ0,ρ2(ε2)) (A,W )|

+|1{A = ρ1(W )− 1{A = ρ2(W )}|

×
|Y −QY,ζ0,ρ2(ε2)(A,W )|

Z
. |(QY,ζ0,ρ1(ε1)−QY,ζ0,ρ1(ε2)) (A,W )|

+ |(QY,ζ0,ρ1(ε2)−QY,ζ0,ρ2(ε2)) (A,W )|
+|ρ1(W )− ρ2(W )|.

Because expit is 1-Lipschitz, E is bounded and g0 is bounded away from 0, this
entails the bound

|(fρ1,ε1 − fρ2,ε2)(O,Z)| . |ε1 − ε2|+ |ε2| × |(Hρ1(g0)−Hρ2(g0))(O)|
+|ρ1(W )− ρ2(W )|

. |ε1 − ε2|+ |ρ1(W )− ρ2(W )|. (47)

This upper-bound notably implies that Fn is separable because r(Q1,n) and E (seen
as a class of constant functions) are separable. By A4, J1(1, r(Q1,n)) = o(

√
n).

Since E is bounded, there exists a bounded envelope function F for E seen as a class
of (constant) functions and JF (1, E) is finite. Assume without loss of generality
that F is also an envelope function for Fn. By (47) and the trivial inequalities
(a+b)2 ≤ 2(a2+b2) and

√
a+ b ≤

√
a+
√
b (valid for all a, b ≥ 0), JF (1,Fn) = o(

√
n)

(we will use repeatedly this argument in the rest of the article, without mentioning its
details). Therefore, we can apply Lemma 9 and conclude, with Markov’s inequality,
that ‖Pn − PQ0,gn‖Fn = oP (1).

• Consider next the second term in the RHS of (46). It is upper-bounded by

∆n ≡ sup
ε∈E

Pn|QY,ζ0,rn(ε)−QY,ζn,rn(ε)|/Z.

Since expit is 1-Lipschitz, Q1,n is bounded away from 0 and 1, and logit is Lipschitz
on any compact subset of ]0, 1[, it holds that

∆n ≤ sup
ε∈E

Pn |logit(QY,βn)− logit(QY,β0) + ε(Hrn(gn)−Hrn(g0))| /Z

. Pn|QY,βn −QY,β0 |/Z + Pn|1/gn − 1/g0|/Z
= PQ0,gn |QY,βn −QY,β0 |/Z + PQ0,gn |1/gn − 1/g0|/Z

+(Pn − PQ0,gn)|QY,βn −QY,β0 |/Z + (Pn − PQ0,gn)|1/gn − 1/g0|/Z.(48)

Using the fact that gref is bounded away from 0 and 1 and the Cauchy-Schwarz
inequality, we readily see that PQ0,gn |QY,βn − QY,β0 |/Z . PQ0,gref |QY,βn − QY,β0 | ≤
‖QY,βn −QY,β0‖2,PQ0,g

ref
= oP (1) by Proposition 1, whose assumptions are met here.

We control PQ0,gn |1/gn − 1/g0|/Z similarly, using additionally that gn and g0 are
uniformly bounded away from 0 and 1 and that, for n large enough, Gn = G∞ is
c∞-Lipschitz. Indeed, for n large enough, PQ0,gn |1/gn−1/g0|/Z . PQ0,gref |gn−g0| ≤
‖gn − g0‖2,P

Q0,g
ref

and

‖gn − g0‖2,P
Q0,g

ref
= ‖G∞(qY,βn)−G∞(qY,β0)‖2,P

Q0,g
ref
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. ‖qY,βn − qY,β0‖2,PQ0,g
ref

. ‖QY,βn −QY,β0‖2,PQ0,g
ref

= oP (1), (49)

as recalled earlier. Thus, the sum of the two first terms in the RHS expression of
(48) is oP (1).

We now turn to the third term of the RHS sum in (48). For any QY ∈ Q1, introduce
h1(QY ) characterized by h1(QY )(O,Z) ≡ |QY (A,W )−QY,β0(A,W )|/Z. Obviously,

|(Pn − PQ0,gn)|QY,βn −QY,β0 |/Z| ≤ ‖(Pn − PQ0,gn)h1‖Q1,n = ‖Pn − PQ0,gn‖h1(Q1,n).

The separability of Q1,n implies that of h1(Q1,n). Since Z is bounded away from 0,
it holds that h1(Q1) is uniformly bounded by a constant c > 0 which can serve
as a constant envelope function, and Jc(1, h1(Q1,n)) = O(J1(1, {|QY − QY,β0 :
QY ∈ Q1,n|})) = O(J1(1,Q1,n)) = o(

√
n) by A4. Therefore, Lemma 9 applies

and Markov’s inequality yields ‖Pn − PQ0,gn‖h1(Q1,n) = oP (1). We control the last
term similarly. Let n be large enough so that Gn = G∞. For any QY ∈ Q1, introduce
h2(QY ) characterized by h2(QY )(O,Z) ≡ |1/G∞(qY (A,W ))−1/G∞(qY,β0(A,W ))|/Z.
We have

|(Pn − PQ0,gn)|1/gn − 1/g0|/Z| ≤ ‖(Pn − PQ0,gn)h2‖Q1,n = ‖Pn − PQ0,gn‖h2(Q1,n).

The separability of Q1,n implies that of h2(Q1,n). Because Z is bounded away from
0 and because G∞ is c∞-Lipschitz and bounded away from 0 and 1 too, it holds that
h2(Q1) is uniformly bounded by a constant c′ > 0 which can serve as a constant
envelope function, and Jc′(1, h2(Q1,n)) = O(J1(1, {|qY − qY,β0 | : QY ∈ Q1,n})) =
O(J1(1, {|QY − QY,β0 | : QY ∈ Q1,n})) = O(J1(1,Q1,n)) = o(

√
n), as we have seen

before. Thus, ‖Pn−PQ0,gn‖h2(Q1,n) = oP (1), hence the sum of the tow last terms in
the RHS expression of (48) is oP (1). We conclude that ∆n = oP (1).

Combining the results obtained on the first and second RHS terms in (46) yields the
desired convergence ‖Zn − Zn‖E = oP (1). We are now in a position to apply Lemma 7,
which implies the stated convergence εn − ε0(rn) = oP (1).

Step two: studying Q∗Y,ζn,rn. Let us now prove that ‖Q∗Y,ζn,rn − Q
∗
Y,ζ0,rn

‖2,P
Q0,g

ref
=

oP (1). For this, we equip Q1 ×G1 ×E −Q1 ×G1 ×E with a seminorm |||·|||1 such that, for
any two (QY,1, g1, ε1), (QY,2, g2, ε2) ∈ Q1 × G1 × E ,

|||(QY,1, g1, ε1)− (QY,2, g2, ε2)|||1 ≡ ‖QY,1 −QY,2‖2,PQ0,g
ref

+ ‖g1 − g2‖2,P
Q0,g

ref
+ |ε1 − ε2|.

Proposition 1 and the first step of this proof imply that

|||(QY,βn , gn, εn)− (QY,β0 , g0, ε0(rn))|||1 = oP (1).

We also equip the set QRY − QRY with a seminorm |||·|||2 characterized as follows: for any
two (QY,ρ)ρ∈R, (Q

′
Y,ρ)ρ∈R ∈ QRY ,∣∣∣∣∣∣(QY,ρ)ρ∈R − (Q′Y,ρ)ρ∈R

∣∣∣∣∣∣
2
≡ sup

ρ∈R
‖QY,ρ −Q′Y,ρ‖2,PQ0,g

ref
.

Let f : Q1 × G1 × E → QRY be given by f(QY , g, ε) = (fρ(QY , g, ε))ρ∈R where, for each
ρ ∈ R,

fρ(QY , g, ε)(O) ≡ expit (logit(QY (A,W )) + εHρ(g)(O)) . (50)
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Set (QY,1, g1, ε1), (QY,2, g2, ε2) ∈ Q1 × G1 × E and ρ ∈ R. Because (i) expit is 1-Lipschitz,
(ii) Q1 is bounded away from 0 and 1, and logit is Lipschitz on any compact subset of
]0, 1[, (iii) G1 is uniformly bounded away from 0 and 1, (iv) E is a bounded set, it holds
that

‖fρ(QY,1, g1, ε1)− fρ(QY,2, g2, ε2)‖2,P
Q0,g

ref

≤ ‖ logit(QY,1)− logit(QY,2)‖2,P
Q0,g

ref
+ ‖ε2(1/g1 − 1/g2)‖2,P

Q0,g
ref

+ ‖(ε1 − ε2)/g1‖2,P
Q0,g

ref

. ‖QY,1 −QY,2‖2,P
Q0,g

ref
+ ‖g1 − g2‖2,P

Q0,g
ref

+ |ε1 − ε2|

= |||(QY,1, g1, ε1)− (QY,2, g2, ε2)|||1. (51)

Noting that the RHS expression does not depend on ρ then taking the supremum in ρ ∈ R
to the left yields

|||f(QY,1, g1, ε1)− f(QY,2, g2, ε2)|||2 . |||(QY,1, g1, ε1)− (QY,2, g2, ε2)|||1.

Therefore, the convergence |||(QY,βn , gn, εn)− (QY,β0 , g0, ε0(rn))|||1 = oP (1) implies the con-
vergence |||f(QY,βn , gn, εn)− f(QY,β0 , g0, ε0(rn))|||2 = oP (1). In particular,

‖frn(QY,βn , gn, εn)−frn(QY,β0 , g0, ε0(rn))‖2,P
Q0,g

ref
= ‖Q∗Y,ζn,rn−Q

∗
Y,ζ0,rn‖2,PQ0,g

ref
= oP (1),

as we claimed.

Step three: studying ψ∗n. Let us first demonstrate that EQW,0(Q∗Y,ζ0,rn ◦rn(W )) = ψrn,0,
then that ψ∗n − ψrn,0 = oP (1). We have already shown that Zn(ε0(rn)) = 0. Equivalently,
by conditioning first on (A,W ) (second line) then on W only (third line),

0 = Zn(ε0(rn)) = EQ0,g0

(
1{A = rn(W )}

g0(A|W )
(Y −Q∗Y,ζ0,rn(A,W ))

)
= EQ0,g0

(
1{A = rn(W )}

g0(A|W )
(QY,0(A,W )−Q∗Y,ζ0,rn(A,W ))

)
= EQ0,g0

(
QY,0(rn(W ),W )−Q∗Y,ζ0,rn(rn(W ),W )

)
= ψrn,0 − EQW,0(Q∗Y,ζ0,rn ◦ rn(W )) (52)

hence the claimed equality.

Let ψ∼n ≡ EQW,0(Q∗Y,ζn,rn ◦ rn(W )). By (52), the fact that gref is bounded away from
0 and 1 and the Cauchy-Schwarz inequality, it holds that

|ψ∼n − ψrn,0| =

∣∣∣∣EQW,0,gref (1{A = rn(W )}
gref(A|W )

(
Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn

)
(A,W )

)∣∣∣∣
. ‖Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn‖2,PQ0,g

ref
= oP (1). (53)

Therefore, it suffices to show that ψ∗n − ψ∼n = oP (1) too to conclude.

Since Q∗Y,ζn,rn ◦ rn is a function of W only, we can write

|ψ∗n − ψ∼n | =
∣∣(Pn − PQ0,gn)Q∗Y,ζn,rn ◦ rn

∣∣ ≤ ‖Pn − PQ0,gn‖F ′n

where we define F ′n ≡ {QY,ζ,ρ(ε) ◦ ρ : ζ ∈ Bn × G1,n, ρ ∈ r(Q1,n), ε ∈ E}. By construction,
F ′n is uniformly bounded by 1 which can serve as an envelope function. Moreover, for
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every ζ1 ≡ (β1, g1), ζ2 ≡ (β2, g2) ∈ Bn × G1,n, ρ1, ρ2 ∈ r(Q1,n), ε1, ε2 ∈ E , because (i)
|(ρ1 − ρ2)(W )| ∈ {0, 1}, (ii) expit is 1-Lipschitz, (iii) Q1 is bounded away from 0 and 1,
logit is Lipschitz on any compact subset of ]0, 1[, and (iv) G1 is uniformly bounded away
from 0 and 1, the following inequalities hold pointwise:

|QY,ζ1,ρ1(ε1) ◦ ρ1 −QY,ζ2,ρ2(ε2) ◦ ρ2|
=
∣∣(QY,ζ1,ρ1(ε1)−QY,ζ2,ρ2(ε2)

)
◦ ρ1 +

(
QY,ζ2,ρ2(ε2) ◦ ρ1 −QY,ζ2,ρ2(ε2) ◦ ρ2

)∣∣
≤
∣∣(QY,ζ1,ρ1(ε1)−QY,ζ2,ρ2(ε2)

)
◦ ρ1

∣∣
+ |ρ1 − ρ2|

∣∣(QY,ζ2,ρ2(ε2) ◦ ρ1 −QY,ζ2,ρ2(ε2) ◦ ρ2

)∣∣
. |(QY,β1 −QY,β2) ◦ ρ1|+ |ε1/g1(ρ1|·)− ε2/g2(ρ1|·)|+ |ρ1 − ρ2|
. |(QY,β1 −QY,β2) ◦ ρ1|+ |g1(ρ1|·)− g2(ρ1|·)|+ |ε1 − ε2|+ |ρ1 − ρ2|
≤ |(QY,β1 −QY,β2) ◦ ρ1|+ |(QY,β1 −QY,β2) ◦ (1− ρ1)|+ |g1(ρ1|·)− g2(ρ1|·)|

+ |g1(1− ρ1|·)− g2(1− ρ1|·)|+ |ε1 − ε2|+ |ρ1 − ρ2|
= |QY,β1 −QY,β2 |+ |Q

−
Y,β1
−Q−Y,β2 |+ 2|g1 − g2|+ |ε1 − ε2|+ |ρ1 − ρ2| (54)

where, for every β ∈ ∪n≥1Bn, Q−Y,β denotes the function given by Q−Y,β(A,W ) ≡ QY,β(1−
A,W ). This entails that F ′n is separable because Q1,n, G1,n, E (seen as a class of constant
functions with envelope function F ′ ≥ 1) and r(Q1,n) are separable (the separability of
G1,n follows straightforwardly from that of Q1,n, the definition of G1,n and continuity of
Gn). Let n be large enough so that Gn = G∞. Inequality (54) and the facts that (i)
G1,n ≡ {Gn(qY ) : QY ∈ Q1,n} = {G∞(qY ) : QY ∈ Q1,n} with G∞ c∞-Lipschitz and (ii)
|qY,β1 − qY,β2 | ≤ |QY,β1 −QY,β2 |+ |Q

−
Y,β1
−Q−Y,β2 | imply that

JF ′(1,F ′n) . JF ′(1,Q1,n) + JF ′(1,G1,n) + JF ′(1, E) + JF ′(1, r(Q1,n))

. JF ′(1,Q1,n) + JF ′(1, E) + JF ′(1, r(Q1,n)) = o(
√
n)

by A4. Thus, Lemma 9 applies and Markov’s inequality yields ‖Pn − PQ0,gn‖F ′n = oP (1)
hence |ψ∗n−ψ∼n | = oP (1). This completes the third step, and the proof of Proposition 7.

The second part of Theorem 2 revolves around a consequence of the following result.

Proposition 8 (first asymptotic linear expansion of ψ∗n). Suppose that A2, A3, A4 and
A4* are met. Then it holds that

ψ∗n − ψrn,0 = (Pn − PQ0,gn)(d∗Y,ζ0,rn +DW,rn(Q∗ζ0,rn)) + oP (1/
√
n). (55)

The asymptotic linear expansion (55) is obtained from the exact linear expansion stated
in the next lemma.

Lemma 5 (exact linear expansion of ψ∗n). It follows from the definition of ψ∗n that

ψ∗n − ψrn,0 = −PQ0,g0Drn(Q∗ζn,rn , g0) (56)

= (Pn − PQ0,gn)(d∗Y,ζ0,rn +DW,rn(Q∗ζ0,rn))

+(Pn − PQ0,gn)
(
(d∗Y,ζn,rn − d

∗
Y,ζ0,rn)

+(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn

)
. (57)

Proof of Lemma 5. Equality (56) readily follows from the definitions of Drn(Q∗ζn,rn , g0),
ψ∗n and ψrn,0.
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We now turn to (57). Let us denote by Pn,gn the empirical distribution of On

weighted by gn(Ai|Wi)/gi(Ai|Wi). By construction of the fluctuation (8) and definition
of εn (9), it holds that Pn,gnDY,rn(Q∗Y,ζn,rn , gn) = 0. Moreover, (10) can be rewritten as
PnDW,rn(Q∗ζn,rn) = 0. Therefore, (56) is equivalent to

ψ∗n − ψrn,0 = (Pn − PQ0,g0)DW,rn(Q∗ζn,rn)

+
(
Pn,gnDY,rn(Q∗Y,ζn,rn , gn)− PQ0,g0DY,rn(Q∗Y,ζn,rn , g0)

)
. (58)

Adding and substracting (Pn−PQ0,g0)DW,rn(Q∗ζ0,rn) to the first term in the RHS expression
of (58) implies

(Pn−PQ0,g0)DW,rn(Q∗ζn,rn)

= (Pn − PQ0,g0)DW,rn(Q∗ζ0,rn) + (Pn − PQ0,g0)(DW,rn(Q∗ζn,rn)−DW,rn(Q∗ζ0,rn))

= (Pn − PQ0,g0)DW,rn(Q∗ζ0,rn) + (Pn − PQ0,g0)(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn

= (Pn − PQ0,gn)DW,rn(Q∗ζ0,rn) + (Pn − PQ0,gn)(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn, (59)

where the last equality is valid because (Pn − PQ0,g0) operates on functions of W .

As for the second term in the RHS expression of (58), it equals

1

n

n∑
i=1

(
gn(Ai|Wi)

gi(Ai|Wi)

1{Ai = rn(Wi)}
gn(Ai|Wi)

(Yi −Q∗Y,ζn,rn(Ai,Wi))

−PQ0,g0

1{A = rn(W )}
g0(A|W )

(Y −Q∗Y,ζn,rn)

)
=

1

n

n∑
i=1

(
1{Ai = rn(Wi)}
gi(Ai |Wi)

(Yi −Q∗Y,ζn,rn(Ai,Wi))

−PQ0,gi

1{A = rn(W )}
gi(A |W )

(Y −Q∗Y,ζn,rn)

)
= (Pn − PQ0,gn)d∗Y,ζn,rn

= (Pn − PQ0,gn)d∗Y,ζ0,rn + (Pn − PQ0,gn)(d∗Y,ζn,rn − d
∗
Y,ζ0,rn). (60)

The equalities (58), (59) and (60) imply (57).

We now build upon Lemma 5 to prove Proposition 8.

Proof of Proposition 8. By (57) in Lemma 5, (55) follows from

(Pn − PQ0,gn)
(
(d∗Y,ζn,rn − d

∗
Y,ζ0,rn) + (Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn) ◦ rn

)
= (Pn − PQ0,gn)(d∗Y,ζn,rn − d

∗
Y,ζ0,rn)

+ (Pn − PQ0,gn)(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn = oP (1/

√
n). (61)

This is a consequence of Lemma 10, as shown hereafter in three steps.

Step one: preliminary. We will use the following notation: for all β ∈ Bn and ε ∈ E ,

∆QY,β(ε) ≡ fr(QY,β) (QY,β, Gn(qY,β), ε)− fr(QY,β) (QY,β0 , g0, ε0(r(QY,β))) and

∆dY,β(ε) ≡ f ′r(QY,β) (QY,β, Gn(qY,β), ε)− f ′r(QY,β) (QY,β0 , g0, ε0(r(QY,β))) ,
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where fρ(QY , g, ε) and f ′ρ(QY , g, ε) are respectively characterized in (50) and by

f ′ρ(QY , g, ε)(O,Z) ≡ 1{A = ρ(W )}
Z

(Y − fρ(QY , g, ε)(O)). (62)

The two next steps mainly consist in controlling the uniform entropy integrals of the two
following sets:

Fn ≡ {∆dY,β(ε) : β ∈ Bn, ε ∈ E} ,
F ′n ≡ {∆QY,β(ε) ◦ r(QY,β) : β ∈ Bn, ε ∈ E} .

From now on, we assume that n is taken large enough to ensure β0 ∈ Bn and Gn = G∞,
∆dY,β0(ε0(r0)) = ∆QY,β0(ε0(r0)) = 0 (recall that r0 ≡ r(QY,β0)). Consequently, 0 ∈ Fn
and 0 ∈ F ′n.

Step two: studying the first RHS term in (61). Since Z is bounded away from 0 and 1,
the elements of Fn are uniformly bounded by a constant c which can serve as an envelope
function for Fn. We assume without loss of generality that c ≥ max(1, supε∈E |ε|). Obvi-
ously, (a) in Lemma 10 is met for Fn by the resulting (constant) sequence of (constant) en-
velope functions. Moreover, ∆dY,βn(εn)−∆dY,β0(ε0(r0)) = ∆dY,βn(εn) = d∗Y,ζn,rn −d

∗
Y,ζ0,rn

satisfies

|(∆dY,βn(εn)−∆dY,β0(ε0(r0)))(O,Z)|

=

∣∣∣∣1{A = rn(W )}
Z

(
Q∗Y,ζn,rn(A,W )−Q∗Y,ζ0,rn(A,W )

)∣∣∣∣
.
∣∣Q∗Y,ζn,rn(A,W )−Q∗Y,ζ0,rn(A,W )

∣∣
hence the convergence in probability ‖∆dY,βn(εn)−∆dY,β0(ε0(r0))‖2,PQ0

,gref = oP (1) follows
from the second step of the proof of Proposition 7, whose assumptions are met.

It remains to prove that Fn is separable and satisfies (b) in Lemma 10. Set arbitrarily
(β1, ε1), (β2, ε2) ∈ Bn × E and define g1 ≡ Gn(qY,β1), g2 ≡ Gn(qY,β2), ρ1 ≡ r(QY,β1) and
ρ2 ≡ r(QY,β2). First, we note that

|(∆dY,β1(ε1)−∆dY,β2(ε2))(O,Z)|

=

∣∣∣∣1{A = ρ1(W )}
Z

∆QY,β1(ε1)(O)− 1{A = ρ2(W )}
Z

∆QY,β2(ε2)(O)

∣∣∣∣
. |1{A = ρ1(W )}(∆QY,β1(ε1)(O)−∆QY,β2(ε2)(O))

+ |(1{A = ρ1(W )} − 1{A = ρ2(W )})∆QY,β2(ε2)(O)|,

which yields the pointwise inequality

|∆dY,β1(ε1)−∆dY,β2(ε2)| . |∆QY,β1(ε1)−∆QY,β2(ε2)|+ |ρ1 − ρ2|. (63)

Second, we focus on the left RHS term in (63). It holds pointwise that

|∆QY,β1(ε1)−∆QY,β2(ε2)| ≤ |fρ1(QY,β1 , g1, ε1)− fρ1(QY,β2 , g2, ε2)|
+|fρ1(QY,β0 , g0, ε0(ρ1))− fρ1(QY,β0 , g0, ε0(ρ2))|
+|fρ1(QY,β2 , g2, ε2)− fρ2(QY,β2 , g2, ε2)|
+|fρ1(QY,β0 , g0, ε0(ρ2))− fρ2(QY,β0 , g0, ε0(ρ2))|.
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For the same reasons as those which lead to (51) and because Gn c∞-Lipschitz implies
|g1 − g2| . |qY,β1 − qY,β2 | ≤ |QY,β1 − QY,β2 | + |Q

−
Y,β1
− Q−Y,β2 |, we derive the following

pointwise inequalities from the previous one:

|∆QY,β1(ε1)−∆QY,β2(ε2)| . |QY,β1 −QY,β2 |+ |g1 − g2|+ |ε1 − ε2|+ |ε0(ρ1)− ε0(ρ2)|
+|Hρ1(g2)−Hρ2(g2)|+ |Hρ1(g0)−Hρ2(g0)|

. |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+|ε1 − ε2|+ |ε0(ρ1)− ε0(ρ2)|
+|Hρ1(g2)−Hρ2(g2)|+ |Hρ1(g0)−Hρ2(g0)|. (64)

Consider the last term in the above RHS sum. Because G1 is uniformly bounded away
from 0 and 1, we have |Hρ1(g0)(O) −Hρ2(g0)(O)| . |1{A = ρ1(W ) − 1{A = ρ2(W )}| =
|ρ1(W ) − ρ2(W )| (we already used this argument to derive (47) in the first step of the
proof of Proposition 7). The last but one term is dealt with similarly. It remains to
control the most delicate term, |ε0(ρ1) − ε0(ρ2)|. Let Z1,Z2 be characterized over E by
Zj(ε) ≡ PQ0,g0DY,ρj (QY,ζ0,ρj (ε), g0) = PQ0,g0fρj ,ε (j = 1, 2; see (45) for the definition of
fρ,ε). For the same reasons as in the first step of the proof of Proposition 7 (substitute
ρ1 or ρ2 for rn), Z1(ε0(ρ1)) = Z2(ε0(ρ2)) = 0 and |ε − ε0(ρ2)| . |Z2(ε)| for all ε ∈ E .
Moreover, by (47), |Z1(ε) − Z2(ε)| . ‖ρ1 − ρ2‖2,P

Q0,g
ref

for all ε ∈ E , hence in particular

|Z2(ε0(ρ1))| . ‖ρ1 − ρ2‖2,P
Q0,g

ref
. This entails the bound

|ε0(ρ1)− ε0(ρ2)| . ‖ρ1 − ρ2‖2,P
Q0,g

ref
. (65)

Consequently, (64) implies the pointwise inequality

|∆QY,β1(ε1)−∆QY,β2(ε2)| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+|ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P
Q0,g

ref
+ |ε1 − ε2|. (66)

Combining (63) and (66) finally yields (with the same notation as in (54))

|∆dY,β1(ε1)−∆dY,β2(ε2)| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+|ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P
Q0,g

ref
+ |ε1 − ε2|. (67)

Inequality (67) entails that Fn is separable because Q1,n, r(Q1,n) and E (seen as a
class of constant functions with constant envelope function c′) are separable. Moreover,
since the definition of the uniform entropy integral involve a supremum over probability
measures, (49) and (67) also imply that, for each δ > 0,

Jc(δ,Fn) . Jc(δ,Q1,n) + Jc(δ, r(G1,n)) + Jc(δ, E).

Consequently, A4* guarantees that (b) in Lemma 10 is met. Thus, Lemma 10 applies
and yields

√
n(Pn − PQ0,gn)(d∗Y,ζn,rn − d

∗
Y,ζ0,rn

) =
√
n(Pn − PQ0,gn)∆dY,βn(εn) = oP (1).

Step three: studying the second RHS term in (61). The elements of F ′n are uni-
formly bounded by 1 hence by a constant c′ ≥ max(1, supε∈E |ε|) which can serve as
an envelope function for F ′n. Obviously, (a) in Lemma 10 is met for F ′n by the result-
ing (constant) sequence of (constant) envelope functions. Moreover, (54) implies that
∆QY,βn(εn) ◦ r(QY,βn) − ∆QY,β0(ε0(r0)) ◦ r(QY,β0) = ∆QY,βn(εn) ◦ rn = (QY,ζn,rn(εn) −
QY,ζ0,rn(ε0(rn))) ◦ rn = (Q∗Y,ζn,rn − Q

∗
Y,ζ0,rn

) ◦ rn satisfies (with the same notational con-
vention)
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|∆QY,βn(εn) ◦ r(QY,βn)−∆QY,β0(ε0(r0)) ◦ r(QY,β0)|
. |QY,βn −QY,β0 |+ |Q

−
Y,βn
−Q−Y,β0 |+ |gn − g0|+ |εn − ε0(rn)|.

Because gref is bounded away from 0 and 1, this yields

‖∆QY,βn(εn) ◦ r(QY,βn)−∆QY,β0(ε0(r0)) ◦ r(QY,β0)‖2,P
Q0,g

ref

. ‖QY,βn −QY,β0‖2,PQ0,g
ref

+ ‖gn − g0‖2,P
Q0,g

ref
+ |εn − ε0(rn)| = oP (1)

because each term in the above RHS sum is oP (1) by Proposition 1, the first step of the
proof of Proposition 7 and (49).

It remains to prove that F ′n is separable and satisfies (b) in Lemma 10. For this, set
arbitrarily (β1, ε1), (β2, ε2) ∈ Bn × E , define g1 ≡ Gn(qY,β1), g2 ≡ Gn(qY,β2), ρ1 ≡ r(QY,β1)
and ρ2 ≡ r(QY,β2), then note that

|∆QY,β1(ε1) ◦ ρ1 −∆QY,β2(ε2) ◦ ρ2|
≤ |∆QY,β1(ε1) ◦ ρ1 −∆QY,β1(ε1) ◦ ρ2|+ |(∆QY,β1(ε1)−∆QY,β2(ε2)) ◦ ρ2|.

Consider the first term in the above RHS sum. Because (i) it equals zero when ρ1 and
ρ2 coincide, (ii) |ρ1 − ρ2| ∈ {0, 1}, and (iii) |∆QY,β1(ε1) − ∆QY,β1(ε1)| ≤ 2, we see that
it is actually upper-bounded by 2|ρ1 − ρ2|. We now turn to the second term. By (66), it
satisfies the following pointwise inequalities:

|(∆QY,β1(ε1)−∆QY,β2(ε2)) ◦ ρ2| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+ |ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P
Q0,g

ref
+ |ε1 − ε2|.

We thus have

|∆QY,β1(ε1) ◦ ρ1 −∆QY,β2(ε2) ◦ ρ2|
. |QY,β1 −QY,β2 |+ |Q

−
Y,β1
−Q−Y,β2 |+ |ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P

Q0,g
ref

+ |ε1 − ε2|.

As argued in the previous step, the above pointwise inequality yields that F ′n is separable
and that, for each δ > 0,

Jc′(δ,F ′n) . Jc′(δ,Q1,n) + Jc′(δ, r(G1,n)) + Jc′(δ, E).

Consequently, A4* guarantees that (b) in Lemma 10 is met. Thus, Lemma 10 applies and
implies

√
n(Pn−PQ0,gn)(Q∗Y,ζn,rn−Q

∗
Y,ζ0,rn

)◦rn =
√
n(Pn−PQ0,gn)∆QY,βn(εn)◦r(QY,βn) =

oP (1). Combining the conclusions of steps two and three shows that (61) holds, and
therefore completes the proof.

Proposition 8 has the following corollary. Proving it will complete the proof of Theo-
rem 2.

Corollary 2 (second asymptotic linear expansion of ψ∗n and resulting central limit theo-
rem). Suppose that A1, A2, A3, A4, A4*, and A5 are met. Then (31) holds. Moreover,
Σn = Σ0 + oP (1) with Σ0 > 0 and

√
n/Σn(ψ∗n − ψ0,rn) converges in law to the standard

normal distribution.
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Proof of Corollary 2. This is a four-part proof.

Step one: preliminary. Recall (25), (26), (28), (29), (37), (38) and set

f0 ≡ d∗W,0 + EQW,0(Q∗Y,ζ0,r0 ◦ r0(W )) + d∗Y,0 = Q∗Y,ζ0,r0 ◦ r0 + d∗Y,0,

fn ≡ d∗W,n + ψ∗n + d∗Y,n = Q∗Y,ζn,rn ◦ rn + d∗Y,n,

f0,n ≡ Q∗Y,ζ0,rn ◦ rn + d∗Y,ζ0,rn .

A straightforward adaptation of the argument leading to (52) in step three of the proof of
Proposition 7 also yields EQW,0(Q∗Y,ζ0,r0 ◦ r0(W )) = ψ0. It is then apparent that Pn(fn −
ψ∗n) = PQ0,g0(f0−ψ0) = 0. Now, note that Σ0, Σn defined in (27) and (30) can be rewritten

Σ0 = PQ0,g0(f0 − ψ0)2 = PQ0,g0f
2
0 − ψ2

0,

Σn = Pn(fn − ψ∗n)2 = Pnf
2
n − ψ∗2n ,

and that Σ0 > 0 by A1. Introduce also Sn ≡ PQ0,gn(f0 − ψ0)2.

For each (f, ζ, r, ψ) ∈ {(f0, ζ0, r0, 0), (f0, ζ0, r0, ψ0), (fn, ζn, rn, 0), (fn, ζn, rn, ψ
∗
n)}, it

holds that

PQ0,gn(f − ψ)2 =
1

n

n∑
i=1

PQ0,gi(f − ψ)2

= PQ0,g0

(
(Q∗Y,ζ,r ◦ r − ψ)2 + 2(Q∗Y,ζ,r ◦ r − ψ)DY,r(Q

∗
ζ,r, g0)

)
+

1

n

n∑
i=1

PQ0,g0

1{A = r(W )}
g0gi

(Y −Q∗Y,ζ,r)2

= PQ0,g0

(
(Q∗Y,ζ,r ◦ r − ψ)2 + 2(Q∗Y,ζ,r ◦ r − ψ)DY,r(Q

∗
Y,ζ,r, g0)

)
+PQ0,g0

1{A = r(W )}
g0

(Y −Q∗Y,ζ,r)2 × 1

n

n∑
i=1

1

gi

and, similarly,

PQ0,g0(f − ψ)2 = PQ0,g0

(
(Q∗Y,ζ,r ◦ r − ψ)2 + 2(Q∗Y,ζ,r ◦ r − ψ)DY,r(Q

∗
Y,ζ,r, g0)

)
+PQ0,g0

1{A = r(W )}
g0

(Y −Q∗Y,ζ,r)2 × 1

g0
.

Since (Y −Q∗Y,ζ,r)2 ≤ 1 and because g0, g
ref and all gis (i ≥ 1) are bounded away from 0

and 1, applying the Cauchy-Schwarz inequality then yields

|PQ0,gn(f − ψ)2−PQ0,g0(f − ψ)2|

=

∣∣∣∣∣PQ0,g0

1{A = r(W )}
g0

(Y −Q∗Y,ζ,r)2

(
1

n

n∑
i=1

1

gi
− 1

g0

)∣∣∣∣∣
. PQ0,g0

∣∣∣∣∣ 1n
n∑
i=1

1

gi
− 1

g0

∣∣∣∣∣ .
∥∥∥∥∥ 1

n

n∑
i=1

(gi − g0)

∥∥∥∥∥
2,P

Q0,g
ref

. (68)

Step two: studying Σn and Σ0. By Lemma 6 (presented after this proof), (68) teaches
us that E(Sn) = Σ0 + o(1) and Sn = Σ0 + oP (1) (take (f, ψ) = (f0, ψ0) in (68)).

Let us show now that Σn = Σ0 + oP (1) by proving Σn − Sn + (ψ∗2n −ψ2
0) = Σn − Sn +

oP (1) = oP (1). We use the following decomposition:

Σn − Sn + (ψ∗2n − ψ2
0) = Pnf

2
n − PQ0,gnf

2
0
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= (Pn − PQ0,gn)f2
n + PQ0,gn(f2

n − f2
0 )

= (Pn − PQ0,gn)f2
n + PQ0,g0(f2

n − f2
0 ) + oP (1), (69)

where the last equality holds because PQ0,gnf
2 = PQ0,g0f

2 + oP (1) for both f = f0 and
f = fn by (68) (take (f, ψ) = (f0, 0) and (f, ψ) = (fn, 0)) and Lemma 6. Let us consider
in turn the two RHS terms in (69).

• From now on, we assume that n is taken large enough to ensure Gn = G∞. For all
β ∈ Bn and ε ∈ E , let

dY,β(ε) ≡ f ′r(QY,β)(QY,β, Gn(qY,β), ε)

where f ′ρ is defined in (62). Introduce

Fn ≡ {QY,ζ,ρ(ε) ◦ ρ+ dY,β(ε) : β ∈ Bn, g = Gn(qY,β), ζ = (β, g), ρ = r(QY,β), ε ∈ E} .

In particular, f2
n = (QY,ζn,rn(εn) ◦ rn + dY,βn(εn))2 ∈ (Fn)2 ≡ {f2 : f ∈ Fn}. The

following upper-bound motivates the definition of Fn:

|(Pn − PQ0,gn)f2
n| ≤ ‖Pn − PQ0,gn‖(Fn)2 .

If ‖Pn − PQ0,gn‖(Fn)2 = oP (1) then (Pn − PQ0,gn)f2
n = oP (1) too. We prove the

former convergence by applying Lemma 9 and Markov’s inequality.

Since Fn is uniformly bounded, there exists a constant c ≥ max(1, supε∈E |ε|) which
can serve as an envelope function to both Fn and (Fn)2. Set arbitrarily (β1, ε1),
(β2, ε2) ∈ Bn × E , define g1 = Gn(qY,β1), g2 = Gn(qY,β2), ζ1 = (β1, g1) , ζ2 =
(β2, g2), ρ1 = r(QY,β1), ρ2 = r(QY,β2), and let f1 ≡ QY,ζ1,ρ1(ε1) ◦ ρ1 + dY,β1(ε1),
f2 ≡ QY,ζ2,ρ2(ε2) ◦ ρ2 + dY,β2(ε2). Because |f2

1 − f2
2 | . |f1 − f2|, it holds that

Jc(1, (Fn)2) . Jc(1,Fn) and the separability of Fn implies that of (Fn)2. So, we
now focus on Fn.

Obviously, |f1 − f2| ≤ |QY,ζ1,ρ1(ε1) ◦ ρ1 − QY,ζ2,ρ2(ε2) ◦ ρ2| + |dY,β1(ε1) − dY,β2(ε2)|.
The first RHS is controlled in (54). We deal with the second one in the same spirit
as in step two of the proof of Proposition 8. First,

|(dY,β1(ε1)−dY,β2(ε2))(O,Z)|

=

∣∣∣∣1{A = ρ1(W )}
Z

(Y − fρ1(QY,β1 , g1, ε1)(O))

− 1{A = ρ2(W )}
Z

(Y − fρ2(QY,β2 , g2, ε2)(O))

∣∣∣∣
. |1{A = ρ1(W )}(fρ1(QY,β1 , g1, ε1)(O)− fρ2(QY,β2 , g2, ε2)(O))|

+ | (1{A = ρ1(W )} − 1{A = ρ2(W )}) fρ2(QY,β2 , g2, ε2)(O)|

which yields

|dY,β1(ε1)− dY,β2(ε2)| . |fρ1(QY,β1 , g1, ε1)− fρ2(QY,β2 , g2, ε2)|+ |ρ1 − ρ2|.

Second, the previous pointwise inequality implies

|dY,β1(ε1)− dY,β2(ε2)| . |QY,β1 −QY,β2 |+ |g1 − g2|+ |ε1 − ε2|+ |ρ1 − ρ2|.

In summary,

|f1 − f2| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |+ |g1 − g2|+ |ε1 − ε2|+ |ρ1 − ρ2|. (70)
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Since Q1,n hence G1,n (already proven), r(Q1,n) and E (seen as a class of constant
functions with constant envelope c) are separable, (70) implies that Fn is separable.
Moreover, (70) also implies

Jc(1,Fn) . Jc(1,Q1,n) + Jc(1, r(Q1,n)) + Jc(1, E)

(see the argument following (54)) which yields in turn that Jc(1,Fn) = o(
√
n) by

A4. Thus, (Fn)2 is separable, Jc(1, (Fn)2) = o(
√
n), Lemma 9 applies and teaches

us that E(‖Pn−PQ0,gn‖(Fn)2) = o(1), and finally Markov’s inequality implies ‖Pn−
PQ0,gn‖(Fn)2 = oP (1). This completes the study of the first term in the RHS of (69).

• To rely more easily on all the results obtained so far, we first note that

|PQ0,g0(f2
n − f2

0 )| ≤ |PQ0,g0(f2
n − f2

0,n)|+ |PQ0,g0(f2
0,n − f2

0 )|
≤ PQ0,g0 |f2

n − f2
0,n|+ PQ0,g0 |f2

0,n − f2
0 |

. PQ0,g0 |fn − f0,n|+ PQ0,g0 |f0,n − f0|
≤ ‖fn − f0,n‖2,P

Q0,g
ref

+ ‖f0,n − f0‖2,P
Q0,g

ref
,

where the last upper-bound follows from the Cauchy-Schwarz inequality and the fact
that g0 and gref are bounded away from 0 and 1. Now,

‖fn − f0,n‖2,P
Q0,g

ref
≤ ‖(Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn) ◦ rn‖2,P

Q0,g
ref

+ ‖d∗Y,n − d∗Y,ζ0,rn‖2,PQ0,g
ref

and we already proved that ‖(Q∗Y,ζn,rn−Q
∗
Y,ζ0,rn

)◦rn‖2,P
Q0,g

ref
= oP (1) (see step two

of the proof of Proposition 7) and ‖d∗Y,n−d∗Y,ζ0,rn‖2,PQ0,g
ref

= ‖∆dY,βn(εn)‖2,P
Q0,g

ref
=

oP (1) (see step two of proof of Proposition 8). Therefore, ‖fn−f0,n‖2,P
Q0,g

ref
= oP (1)

and it suffices to show that ‖f0,n − f0‖2,P
Q0,g

ref
= oP (1) too to obtain the desired

convergence PQ0,g0(f2
n − f2

0 ) = oP (1).

As previously, we first note that

‖f0,n−f0‖2,P
Q0,g

ref
≤ ‖Q∗Y,ζ0,rn◦rn−Q

∗
Y,ζ0,r0◦r0‖2,P

Q0,g
ref

+‖d∗Y,ζ0,rn−d
∗
Y,ζ0,r0‖2,PQ0,g

ref
.

By (54) and (65) in step two of the proof of Proposition 8, it holds that

‖Q∗Y,ζ0,rn ◦ rn −Q
∗
Y,ζ0,r0 ◦ r0‖2,P

Q0,g
ref

. ‖ε0(rn)− ε0(r0)‖2,P
Q0,g

ref

+‖rn − r0‖2,P
Q0,g

ref

. ‖rn − r0‖2,P
Q0,g

ref

with ‖rn− r0‖2,P
Q0,g

ref
= oP (1) by Proposition 1, whose assumptions are met. Once

again, we control the last remaining term in the same spirit as in step two of the
proof of Proposition 8: from the upper-bound

|(d∗Y,ζ0,rn − d
∗
Y,ζ0,r0)(O,Z)| . |1{A = rn(W )}(Q∗Y,ζ0,rn −Q

∗
Y,ζ0,r0))(A,W )|

+|1{A = rn(W )} − 1{A = r0(W )}|
. |ε0(rn)− ε0(r0)|+ |rn(W )− r0(W )| (71)

we deduce that

‖d∗Y,ζ0,rn − d
∗
Y,ζ0,r0‖2,PQ0,g

ref
. ‖rn − r0‖2,P

Q0,g
ref

= oP (1).

In summary, ‖f0,n−f0‖2,P
Q0,g

ref
= oP (1), and this completes the study of the second

term in the RHS of (69).
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By combining the results of the above two-step study of the RHS sum in (69) and (69)
itself we finally get the stated convergence Σn = Σ0 + oP (1), thus completing step two of
the current proof.

Step three: deriving (31) from (55). The asymptotic linear expansion (55) rewrites as

ψ∗n − ψrn,0 = (Pn − PQ0,gn)f0,n + oP (1/
√
n)

= (Pn − PQ0,gn)f0 + (Pn − PQ0,gn)(f0,n − f0) + oP (1/
√
n),

hence (31) follows from the convergence (Pn − PQ0,gn)(f0,n − f0) = oP (1/
√
n), which is a

consequence of Lemma 10.

For each n ≥ 1, introduce the class

F ′n ≡ {Q∗Y,ζ0,ρ ◦ ρ+ d∗Y,ζ0,ρ − f0 : ρ ∈ r(Q1,n)}.

In particular, f0,n − f0 ∈ F ′n (take ρ = rn), and we have already proven in the previous
step of the current proof that ‖f0,n − f0‖2,P

Q0,g
ref

= oP (1). The class F ′n is uniformly

bounded, so there exists a constant c′ ≥ 1 which can serve as an envelope function to
both F ′n and r(Q1,n). Obviously, the resulting (constant) sequence of (constant) envelope
functions satisfies condition (a) in Lemma 10. Set arbitrarily ρ1, ρ2 ∈ r(Q1,n). We have

|(Q∗Y,ζ0,ρ1 ◦ ρ1 + d∗Y,ζ0,ρ1 − f0)−(Q∗Y,ζ0,ρ1 ◦ ρ2 + d∗Y,ζ0,ρ2 − f0)|
≤ |Q∗Y,ζ0,ρ1 ◦ ρ1 −Q∗Y,ζ0,ρ1 ◦ ρ2|+ |d∗Y,ζ0,ρ1 − d

∗
Y,ζ0,ρ2 |.

By (54), (65) in step two of the proof of Proposition 8 and (71) with (ρ1, ρ2) substituted
for (rn, r0), this inequality yields

|(Q∗Y,ζ0,ρ1 ◦ ρ1 + d∗Y,ζ0,ρ1 − f0)− (Q∗Y,ζ0,ρ1 ◦ ρ2 + d∗Y,ζ0,ρ2 − f0)|
. |ε0(ρ1)− ε0(ρ2)|+ |ρ1 − ρ2| . ‖ρ1 − ρ2‖2,P

Q0,g
ref

+ |ρ1 − ρ2|.

Consequently, F ′n is separable because r(Q1,n) is separable. Moreover, since the def-
inition of the uniform entropy integral involve a supremum over probability measures,
the above pointwise inequality entails that, for each δ > 0, Jc′(δ,F ′n) . Jc′(δ, r(Q1,n)),
so that condition (b) in Lemma 10 is met by A4*. Applying Lemma 10 then gives
(Pn − PQ0,gn)(f0,n − f0) = oP (1/

√
n), hence the validity of (31).

Step four: deducing the limiting normal distribution from (31). We first argue that
(31) implies the converges in law to the standard normal distribution of

√
n/Σ0(ψ∗n−ψ0).

This is a consequence of [24, Theorem 3.3.7] because (i) Sn/E(Sn) − 1 = oP (1), and (ii)
for each α > 0, E(Pnf

2
01{f2

0 ≥ α2nE(Sn)}) = o(E(Sn)) trivially holds since f0 is bounded
and E(Sn) = Σ0 +o(1) with Σ0 > 0. Then Slutsky’s lemma and Σn = Σ0 +oP (1) yield the
convergence in law of

√
n/Σn(ψ∗n − ψ0) to the same limiting distribution. This completes

the proof.

Lemma 6. If ‖gn − g0‖2,P
Q0,g

ref
= oP (1), then ‖n−1

∑n
i=1(gi − g0)‖2,P

Q0,g
ref

converges to

0 both in probability and in L1.

Proof of Lemma 6. Since G is uniformly bounded, ‖gn − g0‖2,P
Q0,g

ref
= oP (1) implies

E(‖gn − g0‖2,P
Q0,g

ref
) = o(1). Now, by convexity then Cesaro’s lemma,

E

∥∥∥∥∥ 1

n

n∑
i=1

(gi − g0)

∥∥∥∥∥
2,P

Q0,g
ref

 ≤ 1

n

n∑
i=1

E
(
‖(gi − g0)‖2,P

Q0,g
ref

)
= o(1).
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This convergence in L1 implies the convergence in probability because G is uniformly
bounded.

A.3 Proofs of Propositions 2, 4, 5 and 6

Proof of Proposition 2. Set a probability measure µ̃ on the measured space A×W. Denote
µ̄ the marginal probability measure induced by µ̃ on W. Let {δn}n≥1 be a sequence of
positive numbers such that δn = o(1) and set ε > 0.

Since r(Q1,n) is a subset of a fixed VC-class of functions taking values in [0, 1], there
exists a constant c > 0 such that, for all 0 < ε < 1,

log sup
µ
N(ε‖1‖2,µ, r(Q1,n), ‖ · ‖2,µ) . log(ε−1) + c

[28, Theorem 2.6.7], where 1 serves as a fixed (and constant) envelope function for r(Q1,n)
and the supremum is taken over all probability measures µ on W. It follows easily that
J1(δn, r(Q1,n)) .

∫ δn
0

√
log(ε−1) + cdε = o(1). In particular, the choice δn = 1/

√
n yields

J1(1, r(Q1,n)) = o(
√
n).

We now turn to Q1,n. Let {f−j : 1 ≤ j ≤ N(ε,F−, ‖ · ‖2,µ̄)} and {f+
j : 1 ≤ j ≤

N(ε,F+, ‖ · ‖2,µ̄)} be two collections of functions from W to R such that the unions of
the L2(µ̄)-balls of radius ε centered at f−j or f+

j cover F− or F+, respectively. Choose

arbitrarily QY,β ∈ Q1,n, with β ≡ (f−, f+) ∈ Bn. We may assume without loss of
generality that ‖f− − f−1 ‖2,µ̄ ≤ ε and ‖f+ − f+

1 ‖2,µ̄ ≤ ε. Introduce β1 ≡ (f−1 , f
+
1 ) and

QY,β1 defined as in (24) with β1 substituted for β (the fact that β1 may fall outside Bn is
not a concern). Now, observe that

|QY,β −QY,β1 |2 ≤
(
|f− − f−1 |+ |f

+ − f+
1 |
)2 ≤ 2

(
|f− − f−1 |

2 + |f+ − f+
1 |

2
)

hence
‖QY,β −QY,β1‖2,µ̃ ≤

√
2
(
‖f− − f−1 ‖2,µ̄ + ‖f+ − f+

1 ‖2,µ̄
)
≤ 2
√

2ε.

This entails that N(ε,Q1,n, ‖·‖2,µ̃) ≤ N(ε/2
√

2,F−, ‖·‖2,µ̃)×N(ε/2
√

2,F+, ‖·‖2,µ̃). Since
‖1‖2,µ̄ = 1, ‖2‖2,µ̄ = 2 and because ‖1‖2,µ̃ = 1 where 1 serves as a (constant) envelope
function to Q1,n, (22), (23) and the previous bound imply the existence of α ∈ [0, 1)
(independent of µ̃) such that√

logN(ε‖1‖2,µ̃,Q1,n, ‖ · ‖2,µ̃) .

(
1

ε

)α
. (72)

Taking the supremum over all probability measures µ̃ on the measured space A×W and
integrating wrt ε then yield J1(δn,Q1,n) = o(1). In particular, the choice δn = 1/

√
n gives

J1(1,Q1,n) = o(
√
n).

We now turn to Lls(Q1,n), which admits 1 as a (constant) envelope function. Simply
observe that

|L(QY,β)(O)− L(QY,β1)(O)| = |(Y −QY,β(A,W ))2 − (Y −QY,β1(A,W ))2|
= |2Y −QY,β(O)−QY,β1(O)| × |QY,β(O)−QY,β1(O)|
. |QY,β(O)−QY,β1(O)|,

which entails J1(1, Lls(Q1,n)) = O(J1(1,Q1,n)) = o(1). This completes the proof.
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Proof of Proposition 4. Arbitrarily set t > 0. By the LHS equality in (42), shown while
proving Lemma 2, we first get

0 ≤ ψ0 − ψrn,0 ≤ EQ0 (|qY,0(W )| × |rn(W )− r0(W )|)
= EQ0 (|qY,0(W )| × 1{rn(W ) 6= r0(W )})
= EQ0 (|qY,0(W )| × 1{rn(W ) 6= r0(W )}

× (1{|qY,0(W )| ≥ t}+ 1{|qY,0(W )| < t})) .

Recall that rn(W ) 6= r0(W ) is equivalent to qY,βnqY,β0(W ) < 0 and therefore implies
|(qY,βn − qY,0)(W )| ≥ |qY,0(W )|. Thus, the above inequality entails

0 ≤ ψ0 − ψrn,0 ≤ EQ0 (|(qY,βn − qY,0)(W )| × 1{|(qY,βn − qY,0)(W )| ≥ |qY,0(W )| ≥ t})

+ EQ0

(
|qY,0(W )|1/3 × |(qY,βn − qY,0)(W )|2/3 × 1{|qY,0(W )| < t}

)
. (73)

First, we note that the left term in the above RHS expression is bounded by

EQ0 (|(qY,βn − qY,0)(W )| × 1{|(qY,βn − qY,0)(W )| ≥ |qY,0(W )| ≥ t})

≤ EQ0

(
|qY,0(W )|

t
×

(qY,βn − qY,0)2(W )

t

)
= t−2‖qY,βn − qY,0‖22.

Second, Hölder’s inequality and A5* yield that the right term in the RHS expression of
(73) is bounded by

‖qY,βn − qY,0‖
2/3
2 × PQ0 (0 < |qY,0(W )| ≤ t)2/3 . t2γ2/3‖qY,βn − qY,0‖

2/3
2 .

In summary, we have proven that

0 ≤ ψ0 − ψrn,0 . t−2‖qY,βn − qY,0‖22 + t2γ2/3‖qY,βn − qY,0‖
2/3
2 .

Optimizing in t finally yields (32). In conclusion, ‖qY,βn − qY,0‖2 = oP (1/nγ3) does imply
ψ0 − ψrn,0 = oP (1/

√
n) because 2(1 + γ2)/(3 + γ2)× γ3 = 1/2.

The claim on the confidence interval readily follows from Proposition 3 and the prop-
erty ψ0 − ψrn,0 = oP (1/

√
n). This completes the proof.

Proof of Proposition 5. Since ψ∗n and n−1
∑n

i=1 Yi are known quantities, we focus on

√
nΩE

n ≡
√
n

(
ψ∗n + En −

1

n

n∑
i=1

Yi

)
=
√
n (ψ∗n − PnQY,0 ◦ rn) . (74)

By definition of ψrn,0 (21) and (31), it holds that

√
nΩE

n =
√
n(ψ∗n − ψrn,0)−

√
n(Pn − PQ0,gn)QY,0 ◦ rn

=
√
n(Pn − PQ0,gn)(d∗Y,0 + d∗W,0 −QY,0 ◦ r0)

+
√
n(Pn − PQ0,gn)QY,0 ◦ (rn − r0) + oP (1).

Arguments similar to those developed in Section A.2 to prove Corollary 2 successively
yield ΣE

n = ΣE
0 + oP (1),

√
n(Pn − PQ0,gn)QY,0 ◦ (rn − r0) = oP (1),

√
nΩE

n =
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0) + oP (1) (75)

and the convergence in distribution of
√
n/ΣE

nΩE
n to the standard normal distribution.

This justifies the validity of the proposed asymptotic confidence interval.
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Proof of Proposition 6. This is a three-step proof.

Step one: preliminary. Let us assume for the time being that we also observe the vari-
ables U1, . . . , Un in addition to O1, . . . , On. The resulting counterpart to On is denoted
On ≡ ((O1, U1), . . . , (On, Un)) with convention O0 ≡ ∅. Likewise, the resulting counterpart
to the empirical measure Pn is Pn. Since the sequence {Un}n≥1 consists of i.i.d. variables
independent from {On}n≥1, a distribution PQ,g ∈M for (O,Z) yields univocally a distri-
bution PQ,g for (O,Z,U). For a measurable function f : O × [0, 1] × U → Rd, we denote
Pnf ≡ n−1

∑n
i=1 f(Oi, Zi, Ui) and PQ,gf ≡ EPQ,g(f(O,Z,U)).

Neglecting this new source of information, we carry out the exact same statistical
procedure as developed and studied in Sections 2, 3, 4, 5.1 and 5.2. If we write

PQ0,gif ≡ EPQ0,gi
[f(Oi, Zi, Ui)|Oi−1],

PQ0,gnf ≡ 1

n

n∑
i=1

PQ0,gif

for the counterparts to PQ0,gif and PQ0,gnf (each i = 1, . . . , n), then (74) reads

√
nΩE

n =
√
n(ψ∗n − PnQY,0 ◦ rn) (76)

and (75) still holds and reads

√
nΩE

n =
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0) + oP (1). (77)

Step two: inferring in the causal world. For ρ = r0 and ρ = rn, we set QY,0 ◦ρ(W,U) =
QY,0(ρ(W ),W,U). Since ψ∗n and n−1

∑n
i=1 Yi are known quantities, we focus on

√
nΩC

n ≡
√
n

(
ψ∗n + Cn −

1

n

n∑
i=1

Yi

)
=
√
n (ψ∗n − PnQY,0 ◦ rn) .

By (76), (77), and because (35) implies PQ0,gn(QY,0−QY,0)◦rn = PQ0,g0(QY,0−QY,0)◦rn =
0, it holds that

√
nΩC

n =
√
nΩE

n −
√
nPn(QY,0 ◦ rn −QY,0 ◦ rn)

=
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0)

−
√
n(Pn − PQ0,gn)(QY,0 −QY,0) ◦ rn + oP (1)

=
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0)

−
√
n(Pn − PQ0,gn)(QY,0 −QY,0) ◦ r0

−
√
n(Pn − PQ0,gn) ((QY,0 −QY,0) ◦ rn − (QY,0 −QY,0) ◦ r0) + oP (1).

Define f0 ≡ d∗Y,0 +Q∗W,ζ0,r0− (QY,0 ◦r0−ψ0), χ0 ≡ (QY,0−QY,0)◦r0, and ΣC
0 ≡ PQ0,g0(f0−

χ0)2. Arguments similar to those developed in Section A.2 to prove Corollary 2 successively
yield

√
n(Pn − PQ0,gn)((QY,0 −QY,0) ◦ rn − χ0) = oP (1),
√
nΩC

n =
√
n(Pn − PQ0,gn)(f0 − χ0) + oP (1)

and the convergence in distribution of
√
n/ΣC

0ΩC
n to the standard normal distribution.
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Step three: inferring in the real world. At this stage, there is still one issue to solve: it
is not possible to infer ΣC

0 because, contrary to f0 which is a function of O, χ0 is a function
of (O,U) and we actually do not observe U1, . . . , Un. Fortunately, it holds that

ΣC
0 = PQ0,g0f

2
0 − PQ0,g0χ

2
0 = ΣE

0 − PQ0,g0χ
2
0 ≤ ΣE

0 , (78)

the inequality justifying our claim on the proposed asymptotic confidence interval.

It only remains to prove the LHS equality in (78), which is equivalent to PQ0,g0f0χ0 =
PQ0,g0χ

2
0. First, we note that

PQ0,g0f0χ0 = PQ0,g0

(
Q∗W,ζ0,r0 − (QY,0 ◦ r0 − ψ0)

)
χ0 + PQ0,g0d

∗
Y,0χ0.

By the tower rule and (35), the first RHS term in this sum equals

EPQ0,g0

[
(Q∗W,ζ0,r0(W )− (QY,0 ◦ r0(W )− ψ0))

× EPQ0,g0

(
QY,0(r0(W ),W,U)−QY,0(r0(W ),W )

∣∣W )] = 0.

Thus, proving the LHS equality in (78) boils down to showing that the second term equals
PQ0,g0χ

2
0. By definitions of d∗Y,0 (26) and of Y in the causal model, the tower rule and (35)

imply that the second term equals

EPQ0,g0

[
1{A = r0(W )}

Z
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))

× EPQ0,g0

(
Y −Q∗Y,0(r0(W ),W )

∣∣A,W,U)]
= EPQ0,g0

[
1{A = r0(W )}

Z
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))

×
(
QY,0(r0(W ),W,U)−Q∗Y,0(r0(W ),W )

)]
= EPQ0,g0

[
1{A = r0(W )}

Z
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))2

]
+ EPQ0,g0

[
1{A = r0(W )}

Z

(
QY,0(r0(W ),W )−Q∗Y,0(r0(W ),W )

)
× EPQ0,g0

(
QY,0(r0(W ),W,U)−QY,0(r0(W ),W )

∣∣W )]
= EPQ0,g0

[
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))2E

(
1{A = r0(W )}

Z

∣∣∣∣W,U)]
= EPQ0,g0

[
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))2

]
= PQ0,g0χ

2
0.

This completes the proof.

B Technical lemmas

B.1 Lemmas for M- and Z-estimation

The first lemma is a simple adaptation of [28, Corollary 3.2.3].
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Lemma 7. Let Mn and Mn be two real-valued stochastic processes indexed by a metric
space (Θ, d). Consider a sequence of subsets Θn ⊂ Θ and the following assumptions:

(a) For each n ≥ 1, there exists τn ∈ Θ such that, for all ε > 0,

inf
n≥1

inf{Mn(θ)−Mn(τn) : θ ∈ Θ, d(θ, τn) ≥ ε} > 0.

(b) For each n ≥ 1, there exists τ∗n ∈ Θn such that Mn(τ∗n) = infθ∈Θn Mn(θ). Moreover,
Mn(τ∗n)−Mn(τn) = oP (1).

(c) It holds that ‖Mn −Mn‖Θn = oP (1).

Under (a), (b), and (c), if θn ∈ Θn satisfies Mn(θn) −Mn(τ∗n) ≤ 0 for all n ≥ 1, then
d(θn, τn) = oP (1).

The corollary below will prove useful.

Lemma 8. Let Zn and Zn be two real-valued stochastic processes indexed by a metric
space (Θ, d). Consider the following assumptions:

(d) For each n ≥ 1, there exists τn ∈ Θ such that Zn(τn) = 0 and, for all ε > 0,

inf
n≥1

inf{|Zn(θ)| : θ ∈ Θ, d(θ, τn) ≥ ε} > 0.

(e) It holds that ‖Zn − Zn‖Θ = oP (1).

Under (d) and (e), if θn ∈ Θ satisfies Zn(θn) = 0 for all n ≥ 1, then d(θn, τn) = oP (1).

Proof of Lemma 7. Set n ≥ 1. By (a), it holds that

0 ≤ Mn(θn)−Mn(tn)

= (Mn(θn)−Mn(θn)) + (Mn(θn)−Mn(t∗n))

+ (Mn(t∗n)−Mn(t∗n)) + (Mn(t∗n)−Mn(tn)) .

The above first and third RHS terms are both upper-bounded by ‖Mn −Mn‖Θn . The
second RHS term is non-positive by definition of θn. The fourth RHS terms is oP (1) by
(b). Thus, it actually holds that 0 ≤Mn(θn)−Mn(tn) ≤ 2‖Mn−Mn‖Θn +oP (1) = oP (1)
by (c).

Set ε > 0. By (a), there exists a positive random variable ∆ which is independent of n
and such that d(θn, tn) ≥ ε implies Mn(θn)−Mn(tn) ≥ ∆ or, equivalently, ∆−1[Mn(θn)−
Mn(tn)] ≥ 1. Now, by Slutsky’s lemma [27, Lemma 2.8], Mn(θn)−Mn(tn) = oP (1) entails
∆−1[Mn(θn)−Mn(tn)] = oP (1). Therefore, we conclude that d(θn, tn) = oP (1) too.

Proof of Lemma 8. For all n ≥ 1 and θ ∈ Θ, define Θn = Θ, t∗n = tn, Mn(θ) = |Zn(θ)| and
Mn(θ) = |Zn(θ)|. We note that (a) in Lemma 7 follows from (d), that (b) in Lemma 7
trivially holds, and finally that (c) in Lemma 7 is a consequence of (e) and the reverse
triangle inequality. Now, for each n ≥ 1, Zn(θn) = 0 rewrites Mn(θn) −Mn(t∗n) ≤ 0.
Applying Lemma 7 yields the result.
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B.2 Maximal inequalities and convergence of empirical processes

The following two results are the cornerstones of our theoretical study.

Lemma 9 (maximal inequality). Let F be a separable class of measurable, real-valued
functions, with envelope function F . Set n ≥ 1. It holds that

E
(√
n‖Pn − PQ0,gn‖F

)
. JF (1,F)× ‖F‖2,P

Q0,g
ref
. (79)

Lemma 10 (convergence of empirical processes indexed by estimated functions). For
each n ≥ 1, let Fn = {fθ,η : θ ∈ Θ, η ∈ Tn} be a separable class of measurable, real-valued
functions, with envelope function Fn. Suppose the following holds:

(a) The sequence {Fn}n≥1 satisfies the Lindeberg condition: ‖Fn‖2,P
Q0,g

ref
= O(1) and,

for every δ > 0, ‖Fn1{Fn > δ
√
n}‖2,P

Q0,g
ref

= o(1).

(b) If δn = o(1), then it holds that JFn(δn,Fn) = o(1).

If ηn ∈ Tn is such that supθ∈Θ ‖fθ,ηn − fθ,η0‖2,PQ0,g
ref

= oP (1) for some η0 ∈ ∩p≥1∪n≥p Tn,

then supθ∈Θ |
√
n(Pn − PQ0,gn)(fθ,ηn − fθ,η0)| = oP (1).

The proof of Lemma 10 notably relies on the lemma below. Its proof, a straightforward
adaptation of that of [33, Lemma 12], is omitted.

Lemma 11. For each n ≥ 1, let Fn be a class of measurable, real-valued functions
with envelope function Fn such that δn = o(1) implies JFn(δn,Fn) = o(1). Then (i)
JFn(δ,Fn) = O(1) for every δ > 0, and (ii) for every ε > 0, there exist δ > 0 and n1 ≥ 1
such that JFn(δ,Fn) ≤ ε for all n ≥ n1.

Proof of Lemmas 9 and 10. The proofs of Lemmas 9 and 10 are best presented jointly.

Let us prove (79) from Lemma 9 in three steps.

Step one: decoupling. By [8, Proposition 6.1.5 and Remark 6.1.6], it is possible to
enlarge the probability space and to define three sequences of random variables {εn}n≥1,

{(O[n, Z[n)}n≥1, {(O\n, Z\n)}n≥1 and a σ-field G such that

• {εn}n≥1 is a sequence of independent Rademacher random variables, a sequence that

is moreover independent of {(On, Zn)}n≥1, {(O[n, Z[n)}n≥1, {(O\n, Z\n)}n≥1;

• the distributions of (O[1, Z
[
1) and (O\1, Z

\
1) coincide with that of (O1, Z1) and, for

every n ≥ 2, the conditional distributions of (O[n, Z
[
n) and (O\n, Z

\
n) given G coincide

with that of (On, Zn) given {(O1, Z1), . . . , (On−1, Zn−1)};

• conditionally on G, the two sequences {(O[n, Z[n)}n≥1, {(O\n, Z\n)}n≥1 are independent
and each with mutually independent elements.

The new sequences {(O[n, Z[n)}n≥1 and {(O\n, Z\n)}n≥1 are said “decoupled sequences” to
{(On, Zn)}n≥1.

We denote EG the conditional expectation given G and E[G the conditional expectation

given G and {(O[n, Z[n)}n≥1. We also characterize P [n, P [Q0,gn
and P 0[

n by setting, for
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each f : O × [0, 1] → R, P [nf = n−1
∑n

i=1 f(O[i , Z
[
i ), P

[
Q0,gn

f = n−1
∑n

i=1EG [f(O[i , Z
[
i )],

P 0[
n f = n−1

∑n
i=1 εif(O[i , Z

[
i ).

Step two: symmetrizing. Let Φ be a non-decreasing, convex function mapping R+ to
R. Set n ≥ 1. By construction of the decoupled sequences, it holds that E[Φ(n‖Pn −
PQ0,gn‖F )] = E(EG [Φ(n‖P [n − P [Q0,gn

‖F )]). We now focus on EG [Φ(n‖P [n − P [Q0,gn
‖F )].

Note that

n‖P [n − P [Q0,gn‖F =

∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− EG(f(O\i , Z

\
i ))

∥∥∥∥∥
F

=

∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− E[G(f(O\i , Z

\
i ))

∥∥∥∥∥
F

≤ E[G

[∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

]
,

so that Jensen’s inequality yields

Φ
(
n‖P [n − P [Q0,gn‖F

)
≤ E[G

[
Φ

(∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

)]
.

By taking outer (conditional) expectation, we obtain

EG

[
Φ
(
n‖P [n − P [Q0,gn‖F

)]
≤ EG

[
Φ

(∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

)]
. (80)

Observe now that, for every n-tuple (e1, . . . , en) ∈ {−1, 1}n,

EG

[
Φ

(∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

)]
= EG

[
Φ

(∥∥∥∥∥
n∑
i=1

ei(f(O[i , Z
[
i )− f(O\i , Z

\
i ))

∥∥∥∥∥
F

)]

since, for each 1 ≤ i ≤ n, (O[i , Z
[
i ) and (O\i , Z

\
i ) are independent and equal in law (condi-

tional on G). Consequently, (80) yields

EG

[
Φ
(
n‖P [n − P [Q0,gn‖F

)]
≤ EG

[
Φ

(∥∥∥∥∥
n∑
i=1

εi(f(O[i , Z
[
i )− f(O\i , Z

\
i ))

∥∥∥∥∥
F

)]
, (81)

where the expectation EG to the right now also concerns the (conditionally and uncondi-
tionally on G) independent (ε1, . . . , εn). By the triangle inequality and convexity of Φ, we
see that the RHS expression of (81) is itself upper-bounded by

1

2
EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O[i , Z
[
i )

∥∥∥∥∥
F

)]
+

1

2
EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O\i , Z
\
i )

∥∥∥∥∥
F

)]

= EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O[i , Z
[
i )

∥∥∥∥∥
F

)]
,

hence

EG

[
Φ
(
n‖P [n − P [Q0,gn‖F

)]
≤ EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O[i , Z
[
i )

∥∥∥∥∥
F

)]
.
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In conclusion, we derive the symmetrization inequality

E [Φ (n‖Pn − PQ0,gn‖F )] ≤ E[Φ(2n‖P 0[
n ‖F )]. (82)

Step three: chaining. Taking Φ given by Φ(x) = x (all x ≥ 0) in (82) readily yields

E
(√
n‖Pn − PQ0,gn‖F

)
≤ 2E(

√
n‖P 0[

n ‖F ). (83)

Set now Φ(x) = exp(x2) − 1 (all x ≥ 0) and let ‖ · ‖Φ be the corresponding Φ-Orlicz
norm [28, page 95]. Conditionally on (O[1, Z

[
1), . . . , (O[n, Z

[
n), the process

√
nP 0[

n is sub-
Gaussian for the L2(P [n)-seminorm ‖ · ‖[2,n by Hoeffding’s inequality [28, Lemma 2.2.7].

The number s[n = supf∈F ‖f‖[2,n upper-bounds the radius of F ∪ {0} wrt ‖ · ‖[2,n. Thus,
by [28, Theorem 2.2.4] (a maximal inequality whose proof essentially relies on a chaining
argument) and a change of variable, it holds that

‖
√
nP 0[

n ‖Φ .
∫ s[n

0

√
1 + logN(ε,F , L2(P [n))dε

≤ ‖F‖[2,n
∫ s[n/‖F‖[2,n

0

√
1 + logN(ε‖F‖[2,n,F , L2(P [n))dε.

By definition of the uniform entropy integral, we therefore obtain

‖
√
nP 0[

n ‖Φ . ‖F‖[2,nJFn(s[n/‖F‖[2,n,F),

a result which holds conditionally on (O[1, Z
[
1), . . . , (O[n, Z

[
n). Finally, we take the expec-

tation wrt to (O[1, Z
[
1), . . . , (O[n, Z

[
n) and note that (a) s[n ≤ ‖F‖[2,n, (b) E(‖F‖[2,n) .

‖F‖2,P
Q0,g

ref
. In view of (83) this does yield

E
(√
n‖Pn − PQ0,gn‖F

)
= E

(√
n‖P [n − P [Q0,gn‖F

)
. E

(
‖F‖[2,n × JFn(s[n/‖F‖[2,n,F)

)
(84)

≤ JFn(1,F)× ‖F‖2,P
Q0,g

ref
,

which completes the proof of (79).

We now show Lemma 10. The proof follows closely that of [2, Part III, Theorem 6.16].
It has four steps.

Step one: preliminary. Introduce the classes F̃0
n (random) and F0

n (deterministic)
given by

F̃0
n ≡ {fθ,ηn − fθ,η0 : θ ∈ Θ} ⊂ F0

n ≡ {fθ,η − fθ,η0 : θ ∈ Θ, η ∈ Tn}.

Lemma 10 states that
√
n‖Pn − PQ0,gn‖F̃0

n
= oP (1).

For an arbitrarily fixed δ > 0, define

T 0
n(δ) ≡

{
η ∈ Tn : sup

θ∈Θ
‖fθ,η − fθ,η0‖22,PQ0,g

ref
≤ δ2

}
,

F0
n(δ) ≡ {fθ,η − fθ,η0 : θ ∈ Θ, η ∈ T 0

n(δ)} ⊂ F0
n,

F0
n(δ)2 ≡ {h2 : h ∈ F0

n(δ)}, and
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s[n(δ) ≡
suph∈F0

n(δ) ‖h‖[2,n
‖1 + 2Fn‖[2,n

=
‖P [n‖F0

n(δ)2

‖1 + 2Fn‖[2,n
.

The classes F̃0
n, F0

n(δ) and F0
n admit Hn ≡ 1 + 2Fn as an envelope function. Because its

definition involves P [n, s[n(δ) is random. Moreover, ‖Hn‖[2,n ≥ 1 and suph∈F0
n(δ) ‖h‖[2,n ≤

‖2Fn‖[2,n yield that

s[n(δ) ≤ min

(
1, sup
h∈F0

n(δ)

‖h‖[2,n

)
= min

(
1, ‖P [n‖F0

n(δ)2

)
. (85)

By (84) and the Cauchy-Schwarz inequality, we have[
E
(√
n‖Pn − PQ0,gn‖F0

n(δ)

)]2
.

[
E
(
‖Hn‖[2,n × JHn(s[n(δ),F0

n(δ))
)]2

≤ E
(
‖Hn‖[22,n

)
× E

(
JHn(s[n(δ),F0

n(δ))2
)
. (86)

Step two: studying s[n(δ). We now show that there exists an integer n1(δ) such that
E(s[n(δ)) . min(1, δ2) for all n ≥ n1(δ). The proof is based on (85) and the decomposition
F0
n(δ)2 = F0

n,1(δ)2 ∪ F0
n,2(δ)2 for

F0
n,1(δ)2 ≡

{
h21{2Fn ≤ ρ

√
n/2} : h ∈ F0

n(δ)
}
,

F0
n,2(δ)2 ≡

{
h21{2Fn > ρ

√
n/2} : h ∈ F0

n(δ)
}

where the constant ρ > 0 will be determined later.

Obviously, ρ
√
n/2 × 2Fn = ρ

√
nFn is an envelope function for F0

n,1(δ)2. By (84), we
thus have

E
(√

n‖P [n − P [Q0,gn‖F0
n,1(δ)2

)
. Jρ

√
nFn(1,F0

n,1(δ)2)× ‖ρ
√
nFn‖2,P

Q0,g
ref
. (87)

But Jρ
√
nFn(1,F0

n,1(δ)2) easily compares to JFn(1,Fn). Indeed, whichever are ε > 0,

h, h′ ∈ F0
n(δ), and m a discrete probability measure such that 0 < mFn, it holds that

m(h2 − h′2)21{2Fn ≤ ρ
√
n/2} ≤ (4Fn)2m(h− h′)2 ≤ (ρ

√
n)2m(h− h′)2,

hence
N(ε‖ρ

√
nFn‖m,2,F0

n,1(δ)2) ≤ N(ε‖Fn‖m,2,Fn),

from which we deduce that Jρ
√
nFn(1,F0

n,1(δ)2) ≤ JFn(1,Fn). This bound and (87) yield

E
(
‖P [n − P [Q0,gn‖F0

n,1(δ)2

)
. ρJFn(1,Fn)× ‖Fn‖2,P

Q0,g
ref
. (88)

Furthermore, because (i) 2Fn is an envelope function for F0
n,2(δ)2 and (ii) the design

gn attached to the sequence {(O[n, Z[n)}n≥1 is bounded away from 0 and 1, it holds that

E
(
‖P [n − P [Q0,gn‖F0

n,2(δ)2

)
. ρJFn(1,Fn)× ‖Fn1{Fn > ρ

√
n/2}‖2,P

Q0,g
ref
.

Since F0
n(δ)2 is the union of F0

n,1(δ)2 and F0
n,2(δ)2, the previous inequality combined with

(88) then yields
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E
(
‖P [n − P [Q0,gn‖F0

n(δ)2

)
. ρJFn(1,Fn)× ‖Fn‖2,P

Q0,g
ref

+ ρJFn(1,Fn)× ‖Fn1{Fn > ρ
√
n/2}‖2,P

Q0,g
ref
.

By (a) in Lemma 10, ‖Fn‖2,P
Q0,g

ref
= O(1) and ‖Fn1{Fn > ρ

√
n/2}‖2,P

Q0,g
ref

= o(1). By

Lemma 11, JFn(1,Fn) = O(1). Therefore, it is possible to choose ρ > 0 and find n1(δ) ≥ 1
such that, for all n ≥ n1(δ),

E
(
‖P [n − P [Q0,gn‖F0

n(δ)2

)
≤ δ2. (89)

Now, the definition of F0
n(δ) and the above remark (ii) about the design gn yield the

additional inequality, valid for all sample size:

E
(
‖P [Q0,gn‖F0

n(δ)2

)
. δ2. (90)

By the triangle inequality, (85), (89) and (90) imply

E(s[n(δ)) ≤ min
(

1, E
(
‖P [n‖F0

n(δ)2

))
. min(1, δ2)

for all n ≥ n1(δ). Markov’s inequality then yields that, for all ξ > 0 and n ≥ n1(δ),

P
(
s[n(δ) ≥ ξ

)
≤ ξ−1 min(1, δ2). (91)

This completes the study of s[n(δ).

Step three: fine-tuning. Set arbitrarily α, ε > 0. Note that the above remark (ii) about
the design gn and assumption (a) in Lemma 10 imply the existence of a constant C1 > 0
such that the following bounds hold on the leftmost factor of the RHS expression in (86):

E
(
‖Hn‖[22,n

)
. ‖Fn‖22,P

Q0,g
ref
≤ C2

1 . (92)

By assumption (b) in Lemma 10 and Lemma 11, there exist 0 < ξ ≤ 1, C2 > 0 and n2 ≥ 1
such that JHn(ξ,Fn) ≤ αε/C1 and JHn(1,Fn)2 ≤ C2

2 for all n ≥ n2. Let δ0 > 0 be such
that δ0 ≤ αε

√
3ξ/C1C2. By assumption on ηn in Lemma 10, we know that there exists

n3(δ0) ≥ 1 such that P (ηn 6∈ T 0
n(δ0)) ≤ ε for all n ≥ n3(δ0).

Step four: wrapping up. Let n be larger than max(n1(δ0), n2, n3(δ0)). It holds that

A ≡ P
(

sup
θ∈Θ
|
√
n(Pn − PQ0,gn)(fθ,ηn − fθ,η0)| ≥ α

)
= P

(√
n‖Pn − PQ0,gn‖F̃0

n
≥ α

)
≤ P

(
ηn 6∈ T 0

n(δ0)
)

+ P
(
ηn ∈ T 0

n(δ0),
√
n‖Pn − PQ0,gn‖F̃0

n
≥ α

)
≤ ε+ P

(√
n‖Pn − PQ0,gn‖F0

n(δ0) ≥ α
)
.

By Markov’s inequality, (86), (92) and (91), we obtain the inequalities

A ≤ ε+ α−1E
(
‖Hn‖[22,n

)1/2
× E

(
JHn(s[n(δ),F0

n(δ))2
)1/2

≤ ε+ α−1C1 ×
(
P (s[n(δ0) ≥ ξ)× JHn(1,Fn)2 + JHn(ξ,Fn)2

)1/2

≤ ε+ α−1C1 ×
(
ξ−1 min(1, δ2

0)× C2
2 + (C−1

1 αε)2
)
≤ 3ε.

Since α and ε were arbitrarily chosen, this completes the proof of Lemma 10.
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C Pathwise differentiability

The next two lemmas are summaries of results stated and shown in [15, 16]. We state
them for the sake of completeness.

Lemma 12. Set ρ ∈ R, a known treatment rule. Let Ψρ :M→ [0, 1] be given by

Ψρ(PQ,g) ≡ EQ (QY (ρ(W ),W )) . (93)

The mapping Ψρ :M→ [0, 1] is pathwise differentiable at every PQ,g ∈M with respect to
(wrt) the maximal tangent space. Its efficient influence curve at PQ,g is Dρ(Q, g) which
satisfies Dρ(Q, g)(O) = DW,ρ(Q, g)(W ) +DY,ρ(Q, g)(O) with

DW,ρ(Q)(W ) ≡ QY (ρ(W ),W )−Ψρ(PQ,g),

DY,ρ(Q, g)(O) ≡ 1{A = ρ(W )}
g(A|W )

(Y −QY (A,W )) .

The variance VarPQ,g Dρ(Q, g)(O) is a generalized Cramér-Rao lower bound for the
asymptotic variance of any regular and asymptotically linear estimator of Ψρ(PQ,g) when
sampling independently from PQ,g.

In addition, if g = g′, then EQ,g(Dρ(Q
′, g′)(O)) = 0 implies Ψρ(PQ′,g′) = Ψρ(PQ,g).

The notation DW,ρ(Q) conveys the notion that the first component of Dρ(Q, g) does
not depend on g. This is true because Ψρ(PQ,g) does not depend on g either.

Lemma 13. The mapping Ψ :M→ [0, 1] is pathwise differentiable at every PQ,g ∈M wrt
the maximal tangent space. Its efficient influence curve at PQ,g is D(Q, g) which satisfies
D(Q, g)(O) = DW (Q, g)(W ) +DY (Q, g)(O) with

DW (Q)(W ) ≡ QY (r(QY )(W ),W )−Ψ(PQ,g),

DY (Q, g)(O) ≡ 1{A = r(QY )(W )}
g(A|W )

(Y −QY (A,W )) .

The variance VarPQ,g D(Q, g)(O) is a generalized Cramér-Rao lower bound for the
asymptotic variance of any regular and asymptotically linear estimator of Ψ(PQ,g) when
sampling independently from PQ,g.

In addition, if g = g′, then EQ,g(D(Q′, g′)(O)) = 0 implies

Ψ(PQ′,g′) = EQ
(
QY (r(Q′Y )(W ),W )

)
.

In particular, if r(QY ) = r(Q′Y ) and g = g′, then EQ,g(D(PQ′,g′)(O)) = 0 implies
Ψ(PQ′,g′) = Ψ(PQ,g).
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Figure 1: Illustrating the data-adaptive inference of the optimal treatment rule,
its mean reward and the related pseudo-regrets (see also Figure 2). Top plot. The
blue horizontal line represents the value of the mean reward under the optimal treatment
rule, ψ0. The grey curves represent the mapping n 7→ ψ0±ξ97.5%σ0/

√
n, where σ0 = 0.1634

is the square root of VarPQ0,r0
D(Q0, r0)(O); thus, at a given sample size n, the length of

the vertical segment joining the two curves equals the length of a confidence interval
based on a regular, asymptotically efficient estimator of ψ0. The pink crosses represent
the successive values of the data-adaptive parameters ψrn,0. The black dots represent
the successive values of ψ∗n, and the vertical segments centered at them represent the
successive 95%-confidence intervals for ψrn,0 and, under additional assumptions, for ψ0 as
well. Bottom plot. The pink crosses and green circles represent the successive values of
the empirical and counterfactual cumulative pseudo-regrets En and Cn. The black dots
represent the successive values of n−1

∑n
i=1 Yi − ψ∗n, and the vertical segments represent

the successive 95%-lower confidence bounds on En and Cn.

51



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Q
Y

0(
a,

(U
,v

))
truth

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

U

q Y
0(

U
,v

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Q
Y

 β
n(

a,
(U

,v
))

estimated

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

U

q Y
 β

n(
U

,v
)

Figure 2: Illustrating the data-adaptive inference of the optimal treatment rule,
its mean reward and the related pseudo-regrets through the representation
of the conditional mean QY,0, blip function qY,0 and their estimators (see also
Figure 1). Top left plot. The solid curves represent U 7→ QY,0(1, (U, v)) for v = 1 (in blue,
minimum reached at U = 1), v = 2 (in pink, minimum reached at U = 1/2) and v = 3 (in
green, minimum reached at U = 1/3). The dashed curves represent U 7→ QY,0(0, (U, v))
for v = 1 (in blue, maximum reached at U = 1/6), v = 2 (in pink, maximum reached at
U = 1/3) and v = 3 (in green, minimum reached at U = 1/2). Bottom left plot. The
curves represent U 7→ qY,0(U, v) for v = 1 (in blue, minimum reached close to 1/9), v = 2
(in pink, minimum reached close to 1/2) and v = 3 (in green, minimum reached close to
1/3). Right plots. Counterparts to the left plots, where QY,0 and qY,0 are replaced with
QY,βn and qY,βn for n = 1000, the final sample size.
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