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PRECONDITIONING THE AUGMENTED LAGRANGIAN METHOD FOR
INSTATIONARY MEAN FIELD GAMES WITH DIFFUSION*

ROMAN ANDREEV'

Abstract. We discuss the application of the augmented Lagrangian method to the convex optimization problem
of instationary variational mean field games with diffusion. The problem is first discretized with space-time tensor
product piecewise polynomial bases. This leads to a sequence of linear problems posed on the space-time cylinder
that are second order in the temporal variable and fourth order in the spatial variable. To solve these large linear
problems with the preconditioned conjugate gradients method we propose a preconditioner that is based on a temporal
transformation coupled with a spatial multigrid. This preconditioner is thus based on standard components and is
particularly suitable for parallel computation. It is conditionally parameter-robust in the sense that the condition
number of the preconditioned system is low for sufficiently fine temporal discretizations. Numerical examples illustrate
the method.

Key words. mean field games, ADMM, ALG2, augmented Lagrangian, space-time, discretization, preconditioning,
multigrid, B-splines

AMS subject classifications. 35K45, 49J20, 49M29, 65F10, 65M12, 65M55, 65M60, 65N22, 65Y05, 91A10,
91A13

1. Introduction. Mean field games and related models describe a wide range of social
phenomena such as crowd motion, opinion dynamics, vaccination rates, stability of marriage,
percolation of innovation, etc., and, moreover, appear as the equations to be solved in each
time-step of the so-called JKO time-stepping scheme for gradient flows. In the instationary
stochastic case introduced in [23], mean field games is a coupled system of a transport-diffusion
equation for a density (of crowd, opinion, etc.) with a nonlinear equation for the value function
running in the opposite temporal direction. Existing numerical methods for mean field games
are based for instance on finite volumes [1, 2, 3], the dynamic programming principle [13, 16],
or on convex duality [9]; further references can be found in [10]. In this work we reconsider the
convex duality formulation of [14] and the ALG2 splitting method of [19, 9], a.k.a. ADMM, in
the presence of diffusion. The idea to use ALG2 in this context seems to go back to [8], but other
proximal type methods could be used instead [26, 12]. The algorithm generates a sequence of
linear partial differential equations posed on the space-time cylinder that are second order in
time and fourth order in space. We discretize them with space-time finite elements. To solve the
resulting large linear algebraic problems with an iterative method such as conjugate gradients,
we develop a preconditioner using a) the principle of operator preconditioning, b) a temporal
transformation that block-diagonalizes the preconditioner, and c¢) a multigrid for the spatial
blocks. This preconditioner is thus based on standard components and is particularly suitable
for parallel computation. Our space-time discretization corresponds in a sense to continuous
Galerkin time-stepping for the value function, which implies a loss of stability if the temporal
resolution is too coarse [5]. For this reason, the proposed preconditioner is robust in the relevant
parameters provided the temporal resolution is fine enough, see Figure 1. A slight modification
of the preconditioner partly alleviates this restriction, see Figure 2.

The paper is structured as follows. In Section 2 we introduce the mean field games model,
its convex formulation and the ALG2 method. In Section 3 we describe the discrete version of
ALG2. In Section 4 we comment on preconditioning of the space-time linear problems. The
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numerical experiments in Sections 5.2-5.4 illustrate these concepts for 1d and 2d examples.
The final Section 5.5 extends the model to include intermediate instantaneous costs.
Supporting Matlab code is available from https://github.com/numpde/alg2mfg/.

2. Mean field games and ALG2 with diffusion.

2.1. Mean field games. The spatial domain D c R? is assumed to be a cuboid but the
main ideas are generic. Let T > 0, set J := (0, T). Consider the system of partial differential
equations

KFP[p, ¢ ]:=d,p — v*Ap +div(o VH(t,x,V¢)) =0, (1a)
HIB[p,¢]:=08,¢ + vV*A¢p + H(t,x, V) =A(t,x,p), (1b)
st.  p(0)=py and ¢(T)=—T"(x,p(T)), (1)

for (t,x) € J x D. We will refer to this system as the mean field games (MFGs) equations.
See Section 2.2 for an interpretation of the equations. We omit the dependence on (t, x)
in the notation where convenient (in particular, the right-hand-side of (1b) actually means
A'(t,x,p(t,x)), etc.). Here, A and T are convex real valued functions of the third variable
p = 0 that evaluate to +0o for negative p, and the indicated derivatives are with respect to
this variable. The essential assumption on the Hamiltonian H is convexity with respect to the
third variable. The unknowns are the density p and the cost ¢, both space-time dependent real
valued functions. Periodic boundary conditions are often assumed in the literature but here we
will be interested in no-flow boundary conditions on the density p. Based on (1a), these are
implemented by requiring

VH(t,x,V¢$)-n=0 and Vp-n=0 on D (2)

where n is the outward normal to the spatial boundary. In particular, the total mass fD p is
conserved in time, and we suppose that p, > 0 non-trivially. We consider only radially symmetric
coercive Hamiltonians (in the third variable); hence the first condition of (2) amounts to

V¢-n=0 on ID. 3)

Let L(t,x,Vv) be the Lagrangian obtained from the Hamiltonian H as the dual conjugate
with respect to the third variable. By convexity of H in that variable, H is also the dual conjugate
of L (and the formal optimality condition for the supremum is p = VL(V)):

H(p) =L"(p) := sup{p-v—L(v)}. C))
veRd
The principal feature of the MFGs equations is that the Kolmogorov-Fokker—Planck (KFP)
equation evolves forward in time with an explicit initial condition at t = 0 and the Hamilton—
Jacobi-Bellman (HJB) equation evolves backward in time with a possibly implicit initial condition
at t = T. The mathematical interpretation of the KFP is in the weak sense and that of the HJB
is in the viscosity sense, but we will mostly proceed in a formally (in particular assuming the
regularity (11)-(12) below).
The main innovation of this work with respect to the numerical method based on finite
elements proposed in [9] is the presence of the positive diffusion coefficient

y> 0. (5)
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We will therefore pay particular attention to robustness with respect to v. The first consequence
of (5) is a minor adaptation in the formulation due to the v term in (14). The second consequence
is the necessity of choosing the finite element spaces appropriately, e.g. in our case we require
H?-conformity of the spatial discretization of ¢. The third consequence is the appearance of
a linear partial differential operator .« (defining successive approximations of ¢ in the ALG2
iteration) that is second order in time and fourth order in space. This means that a large
linear algebraic system of equations, typically highly ill-conditioned, has to be solved in each
outer iteration. The main contribution of this paper is a preconditioner that breaks that linear
problem down into a sequence of independent spatial problems, each amenable to multigrid.
The preconditioner is based on the principle of operator preconditioning [22, 25], i.e. it is
obtained as the discretization of an operator % that is similar to .« on the continuous level. We
first motivate the functional framework in Sections 2.2-2.4, and then define the operator % in
Section 2.5.1.

2.2. Variational formulation. As already observed in [23], the MFGs equations (1) arise
as the first order optimality conditions of a constrained optimization problem which we recall
here. This perspective provides some useful intuition for the quantities appearing in (1), see
also the example in Section 5.2.

Consider the transport equation (slightly overloading the notation from (1a))

KFP[p,v] := 3,p — v*Ap +div(pv) = 0. (6)

One may think of the space-time dependent function p as the state variable and of the space-time
dependent vector field v as the control variable. To fix p and v we introduce the functional (in
Section 5.5 we also consider a variant with multiple I'-like terms)

Jilp,v) = J {LV)p +A(p)} +f I'(p(T)), (7)
JxD D

and the constrained optimization problem

infJ;(p,v) s.t. KFP[p,v]=0. (8
PV

For p < 0, by convention, L(v)p = 0 if (p,v) = 0 and L(v)p = +00 else. To formally
characterize the minimizers we look for the stationary points of the space-time Lagrangian
J1(p,v)+ (¢,KFP[p,Vv]), where the space-time scalar function ¢ is the Lagrange multiplier
for the KFP constraint. The derivative of the Lagrangian with respect to v gives the relation
VL(v) = V¢, at least where p # 0. Using the optimality condition for the supremum in
(4), this implies the representation H(V¢) = v: V¢ — L(v) and hence the feedback strategy
v = VH(V¢). Employing the latter in the derivative of the space-time Lagrangian with respect
to p gives the HJB equation (1b) with its terminal condition from (1c).

In the next subsection, following [8, 23, 14, 9], we use convex duality theory to obtain a
formally equivalent formulation (15) of (8). First, some notation is in order.

2.3. The predual problem. We will work with the function spaces

H:=L,(D), V:=H. (D), W:=H*D)nV. )

Neu

We write || - ||;xp / ||  ||p to indicate the L,(J x D) / Ly(D) norm. On V, which incorporates
homogeneous Neumann boundary conditions, we use the norm given by

Iy = 13 + IVl xeV. (10)

3



Introducing the Bochner-Sobolev space
X :=L,y((0, T); W) N H*((0, T); H), (11)
we suppose that the Lagrange multiplier ¢ from the previous subsection satisfies
¢ X (12)

We abbreviate L, := L,((0,T) x D). Recall the isometry L, = L,((0, T); L,(D)). We identify
H = H’ via the Riesz isomorphism, obtaining the Gelfand triple V < H Z H' — V’, and in
particular the embedding V < V’. Set

Y :=1L,x Lg x V. (13)

This choice of spaces and norms will be important in Section 2.5.1 in the derivation of the
preconditioner ¢. We identify again the L, spaces with their dual. Elements of Y will be
denoted by o = (a,b,c) or A = (p,m,e), and those of Y by A’ = (p,m,e’). We define the
linear operator

A:X>Y, ¢—(8,¢+Ap,Vo,—¢(T)). (14)

This definition follows [9] except that here we admit v > 0.

The operator A is injective. Indeed, multiplying J,¢ + v2A¢ = 0 by ¢, integrating over
J x D, integrating by parts on A, and using (3,¢, ¢ )y = %@Il(i)llﬁ gives ||¢ (O)ln < e (Dl
In particular, A¢ = 0 implies ¢ = 0, which is the raison d’etre for the third component of A.
The key observation that was made and exploited in [23, 14, 9] is that the optimization problem

argmin {Z(¢$)+Y%(0)} st. o=A¢p (15)
(¢,0)eXxY
with
Z(¢) ¢=J #(0)po, ¥(0) 2=J A*(a+H(b))+f I'"(c) (16)
D JxD D

is a reformulation of the MFGs equations (1), because it is in duality with the constrained
optimization problem (8). Here, (-)* denotes the convex conjugate, i.e.

A'(z) =sup{zp —A(p)}, T"(c)=sup{cp —T(p)}. 17)
P P

By assumptions on A and T, the functions A* and I'* are “flat” on negative arguments.

For convenience of the reader, and to highlight some technical points, we explain how (15)
and (8) are connected in the remainder of this subsection. First, by the general theory of duality
[18], the (typical) convex dual problem of (15) reads

Ai/relgl{ﬁ*(—/\’l’) +9* (1)}, (18)

where A’ : Y/ — X’ is the adjoint (see Theorems 1-2 below for the relation between the

minimizers of (15) and (18)). We write [L + A] for the function (p,m) — L(m/p)p +A(p).

Using H(b) = sup,{b-m/p —L(m/p)} one finds A*(a+ H(b)) = [L + A]*(a, b). Under standard
4



conditions [18, Prop. 4.1], the function [L + A] coincides with its second dual. The same holds
for T'. This leads to (cf. (7))

9*(V) < sup{(o, ') — 9(0)} = f

JxD

{L(m/p)p +A(p)} +J r(e). (19)

Concerning 7 *, we first observe (using integration by parts in time)

(=A@, ) = ($,0,0 — v’ Ap) — (¢, p) 1=y + (¢,divm) + (¢(T),e’) =BT,  (20)

where the spatial boundary terms are collected in

BTzzf (v*pV¢ —(v*Vp —m)¢)-n. (21)
Jx3D

Invoking the spatial homogeneous Neumann boundary conditions (3) we find that

F*(—N' 1) =sup{(—A¢p, ') — F(¢)} is finite (and equals zero) (22)
¢

if and only if the equations
d,p—vV*Ap+divm=0, p(0)=p, »Vp-n=m-n and p(T)=¢ (23)

are satisfied in the weak sense. In view of (19) and (22), writing v := m/p we find that (18) is
just the constrained optimization problem (8). We note here two consequences of (23) for the
numerical method in Section 3 below:
o The spatial Neumann boundary conditions (2) imply m-n = 0 on d D, which we also
use for the discrete flux my,.
o From the discrete triple A;, = (py,, my, e3), an approximation of the velocity field in (8)
may be obtained as v, :=m;,/py.

2.4. On existence of minimizers. The following two classical results [18, Remark 4.2]
concern the optimization problems (15)-(18).

THEOREM 1. Suppose & and ¥ are convex. Suppose there exists ¢, such that F(¢,) and
9 (A¢,) are finite and ¥ is continuous at A¢. Then inf (15) = inf (18) and (18) has a minimizer.

THEOREM 2. (¢, ") solves (15)—(18) and inf (15) = inf (18) iff (—A'A’, 1) € 8.F(¢) %
9Y(N).

Typically, A* and I'* will be convex nondecreasing functions, and together with convexity of
H those conditions suffice to show convexity of F and G directly. Formally, the two inclusions
from Theorem 2 correspond to the KFP (1a) and the HJB (1b) equations, respectively.

The built-in regularity assumption ¢ € X in (15) implies that ¢(0) € V, so that F(¢) is
well-defined even for p, € V'. Let 0 = (a,b,c) = A¢. Thena € L,, b€ V¢ and c € V, and
certain growth conditions on A", I'" and H ensure that G(c) is well-defined. Let us focus on
d = 2 spatial dimensions. Then we may assume quadratic growth for A* and I'* and arbitrary
polynomial growth for H in the last variable. For an arbitrary o € Y not in the range of A
we may extend the definition of G by +o0o but this would preclude the usage of Theorem 1.
Alternatively, we could restrict Y, say Y = L, x L,((0, T); H*(D)) x V, but we chose not follow
this road in this paper in order to simplify the numerics in Step B of ALG2 below. Another
possibility is to assume convexity and at most quadratic growth for A* and A* o H ensuring
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continuity of G on Y so that Theorem 1 could be used but this would rule out the desirable
situation of the standard quadratic Hamiltonian H together with a quadratic cost A in (7). In any
case Theorem 1 does not address existence for the primal problem (15), and seeing (18)-(15)
as the primal-dual pair is problematic because F* is discontinuous wherever it is finite (unless
again, we modify Y suitably).

Existence and stability in space-time Lebesgue spaces were obtained using Theorem 1 in
[14], and by operating directly on the MFGs equations for example in [24, Theorem 2.7] and
[3, Theorem 3.1]. The methods of [3] do not seem to apply in our case due to the lack of a
discrete maximum principle.

Another possible approach to existence of minimizers in (15) is to verify coercivity of the
functional under suitable assumptions on the data (which would also play a role in establishing
I'-convergence of numerical solutions [9, Section 3.1]). This, however, does not seem possible
because the term f » I"(=¢(T)) does not provide control on the spatial derivatives of ¢(T),
which would be necessary to control the norm of ¢ in X (see e.g. [6, Theorem 4.1] for that kind
of statement). We believe the mesh-dependent convergence rate of ALG2, see Section 5.4, is a
manifestation of this fact.

2.5. ALG2 formulation. In order to solve the optimization problem (15), in the augmented
Lagrangian method one looks for saddle points (¢, 0, A) € XxY xY of the augmented Lagrangian

L(¢,0,2)=F($)+9(0)+(Ap —0, M)y +3lAp — 03, 24)
where r > 0; these are characterized by
Lr(¢,0,‘) SLr(¢5O-9A‘) SLr(': :)') (25)

It is elementary to check that the Lagrangians L, and L, have the same saddle points. Moreover,
any saddle point furnishes a solution to (15) and (18). With the notation of the previous
subsection it would have been natural to have the duality pairing (A¢ — o, ') with A" €
Y’ instead of the Y scalar product but below it is more convenient to work with the Riesz
representative A € Y given by (A,-)y = A’. With the L, identification already made in Section
2.3, the first two components of A and A’ coincide.

Let r > 0. Consider the function h,.(A) := infy , L.(¢,0,2). Then A in the saddle point
characterization (25) maximizes this function. At any point A, its gradient direction is (A¢ — &)
where (¢,5) := argminL,(-,-,A). This suggests a steepest ascent algorithm for finding the
optimal A. This is the algorithm “ALG1” in [19, Section 3.1]. The subsequent algorithm ‘ALG2”
[19, Section 3.2] is a modification where the minimization of ¢ and o is decoupled. It proceeds
by iterating the following three steps.

A. Minimize L, with respect to the first component by solving the elliptic problem

Find ¢*7eX st (52(¢“,0%,1),¢) =0 VdeX. (26)
B. Proximal step:

o™ ;= argmin{G(c) + ;|6*" — o |3} for &*V:=Ap* D+ A0, 27
oeY

C. Multiplier update:

AR = A0 4 r(AED — o<, 28)
6



The algorithm is also known as ADMM or Douglas-Rachford, and it was shown in [17]
to be a proximal point algorithm. A recent overview of convergence results may be found in
[20]. We now comment on each of those steps separately, and use this occasion to introduce
the operator that will be the basis for the preconditioner below.

2.5.1. Step A. Since & is linear, (26) amounts to the linear variational problem
Find ¢*PeX: (Ap*,Ad)y=(0®—IA9 Ad)y—1F(d) VdeX. (29
The only term involving the unknown ¢**" is (we suppress the iteration superscript)

(AP, Ay = (B, + Y2 D), (8, + V*A)P) + (V, V) + (¢(T), p(T))y. (30)

Expanding the first term on the right-hand side we obtain
((at + VZA)(;[): . ) = (af¢5 atq§> + V4(A¢,A(£> - v2<v¢(t): V(ﬁ(t» izg; (31)

having used integration by parts in time and space on the term (3,¢, A¢). The boundary
term 12 f Ixa D(cde; — $V¢) - n disappears for any combination of homogeneous/periodic
Dirichlet/Neumann spatial boundary conditions. The negative »? term cancels by the definition
of the norm on V, so we are left with

1A¢lIS = 118:0 117, + VA7, +1VEIT,, + (DI + IV (O)I3. (32)

Consider the operator .« := A’A : X — X/, where the adjoint is with respect to the Y scalar
product; hence (.«/ ¢, qf;) = (32). Below we will iteratively invert a discretized version of .«/,
and will therefore require a good preconditioner. To that end we define the symmetric operator
% : X — X’ by omitting the last term in (32), cf. Section 4.1, i.e.

(6¢,¢) =100, + oD +IVPIT,, + v A7, (33)

The operator %4 is equivalent to . by an argument similar to that of [4, Section 2.5]. Specif-
ically, take the eigenfunctions ¢, normalized to ||¢,||p = 1 and the corresponding eigenvalues
0 =g < u; <...of the operator —A with the Neumann boundary conditions (3). Consider
the expansion ¢ = Zn 0, ® ¢,,. The first inequality in the equivalence (33) < (32) < (33)
is obvious. For the second, we need to estimate v*||V¢(0)||3 = >, v*u,16,(0)? in terms of
(33) =2 {02112 +16,(T)I* + (un, + v*u?)|16,113}. It suffices to find a constant K > 0 such that
KFO)* < a MIf 17+ aHf (T)I* + allf |7 uniformly in > 0 and f € H'(J), where a and
f are placeholders for v*u, and 6,. We consider two cases:

e If a <1, we can use e.g. |f(0)| < VT||f’ll; + |f (T)| to infer a suitable K.
e If a > 1, we assume w.l.o.g. f(0) = 1. Minimizing a*||f’||> + a||f||? over f leads to
the boundary value problem —a ™! f” + af = 0 with f(0) =1 and f’(T) = 0. The exact
solution (a catenary) yields a '[|f’l|3 + al|f ||? = tanh(aT). This suggests K := tanh T.
In both cases we obtain a constant K that depends only on the time horizon T. Consequently,
the equivalence (32) ~ (33) is robust in the diffusion coefficient ».

The variational problem (29) is convenient for finite element discretization as is. In strong
form (29)-(31) amounts to a PDE of the form (=372 + v*A? — A)¢** = RHS, which shows that
the problem is of second order in time and of fourth order in space.
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2.5.2. Step B. Recall the notation o = (a,b,c) and A = (p, m, e). Step B consists of two
decoupled proximal subproblems, the first one being

(a®,b) = argmin { [, 4'(@+H®)+ 5@ .5 -@bIZ .} 69

(a,b)eLyxLd

with the “priors” a* := (9, + v?A)p* + % p® and b := Vp* 4 %m("), and the second
one being

¢ = arg:‘}in {[,T )+ 5le“ —cli}} (35)
[

with the “prior” ¢*™V := —¢p*(T) + %e(k). The first subproblem is as in [9, Section 4.2] but the
second is not due to the non-L, norm, which is a consequence of the choice (13) of Y.

2.5.3. Step C. Step C is a straightforward update.
3. Discretization.

3.1. Discrete spaces. We discretize the quantities (¢, o, A) in (24) using tensor products
of piecewise polynomial functions on an interval. We use the following notation, leaving the
underlying mesh to be specified separately:

P1. Continuous piecewise affine functions (hat functions);

P2. Continuous piecewise quadratic functions;

DO. Piecewise constant functions (top functions);

D1. Piecewise polynomials of degree one with no inter-element continuity;

B2. Piecewise polynomials of degree two with C! continuity.

For simplicity, we assume here that the spatial dimension is d = 2. We write P2 ® B2? for the
function space spanned by the products of P2 functions in time with B2 functions in each spatial
dimension, etc. We will look for a discrete saddle point (¢y,, o1, Ay,) as follows:

¢y € X}, :=P2® B22 (36a)

ay, pp € A, :=D1®D0? (36b)
by, m; € B, := D0 ® [(P1®DO) x (DO ® P1)] (36¢)
cnr ey € Cp, := B22, (36d)

Furthermore, we set Y} := A, x By x C;, with the norm Y. The motivation for taking B2 in
(36a) is mainly H%(D)-conformity required for the regularity (12). It also interacts well with the
choice DO in (36b) because DO simultaneously approximates functions in B2 and their second
derivatives well, which plays a role in (42) and leads to the dimension formula (38) below. More
generally, instead of the P2-D1 combination in (36a)—(36b) one can take P(p + 1)-D(p) for any
degree p > 0, so that (42) below corresponds to a so-called continuous Galerkin time-stepping
scheme. The choice of the spatial component in (36c) allows integration by parts in space
in an expression like (m;,,—V ¢,;) and approximates V¢, well. Finally, the space in (36d) is
simply the trace of (36a) at t = T, and is sufficiently regular for the proximal step (49) to be
well-defined.
We impose the no-flux boundary conditions for the density p through (cf. (2) and (23)):

homogeneous Neumann spatial boundary conditions on Xp,; (37a)
homogeneous Dirichlet boundary conditions on the P1 components of Bj,. (37b)

8



With these boundary conditions, the number of spatial degrees of freedom of X, (i.e., dim B2%)
and those of A, (i.e., dim D0?) coincide, and therefore

The operator A is approximated by the (injective) operator
Ay Xy =Yy, Ay i=(Qq( +v*A)$),Q,V e, —¢(T)), (39)

where Q; is the L,-orthogonal projection onto A;, and Q, is the componentwise L,-orthogonal
projection onto B,. We insert these projections for the update Step C §3.2.3 to make sense.
They have no effect in the term (A¢,, — oy, A )y but they do affect the r-term of the augmented
Lagrangian (24).

Our aim is therefore to solve the discrete optimization problem (cf. (15))

argmin  {Z,(¢r) + Gu(0p)} st o =AMy (40)
(r,0)EX, XY},

with &), := % and ¥, := ¥ from (16) (or some convex approximations thereof). Analogously
to (18), the convex dual problem now reads

nf (F A+ O, (41)
with Z7(—A/ A1) =
sup {—(py, (8, + ¥’ A)py) — (my, Vo) — (0o, $n(0)) + (ef, dn(T))}, (42)

PrEXy,

where, notably, the supremum is taken over discrete functions only. Here, QL;I = (pp, my, e,’l). It
is possible to integrate by parts in space on the term (m;,,—V¢;) owing to the choice of the
discrete spaces (36a) and (36c). Therefore, the supremum (42) is finite (and equals zero) if
and only if the triple (o, my, e;) € Y} satisfies the following discrete analog of (1a),

(ph> (_at - VQA)(b) = <_ divmh: ¢> + (pO’ ¢(0)> - (e}/p ¢(T)> V¢ € Xh' (43)

In particular, fixing m;, and restricting the test functions to ¢(T) = 0, the dimension count (38)
suggests that p; is well-defined by (43) and approximates the solution p of d,p — V*Ap =
—divm,, with p(0) = p, and ¥*Vp -n =0 on JD in the space-time ultraweak sense (spatial
and temporal derivatives are on the discrete test function; the analysis can be done along the
lines of [7, 5]). The initial condition and the no-flux boundary condition are thereby injected
naturally. Integration by parts in time shows that admitting nonzero ¢ (T) additionally ensures
(e, x) = {pn(T), ) for all y € Cp, that is e; is determined as the L,(D)-orthogonal projection
of p,(T) onto C,.

Consider ¢ := b, ® (1® 1), where b,, € P2 is a quadratic (nonzero) bubble on the n-th tem-
poral element that vanishes outside that element. Using this ¢ in (43) yields fJ b, 0o, f »Pr=0.
Since 0, f p Pr 1s piecewise constant in time, it must equal zero. This implies mass conservation.

At least when p,, > 0 and in DO?, we can take p;,(t) := p, in (43) to find a corresponding mj,
and e;. This will give a triple A; = (pj,, my, ¢; ) that yields a finite value in (41). Consequently,
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the discrete problem (41) admits a minimizer (under reasonable conditions on A, T', and L,
e.g. as in the numerical examples below).

An alternative to ALG2 is to first discretize the MFGs equations (1), thus obtaining a
nonlinear system of evolution equations, and then apply a root-finding method such as the
Newton iteration. This route was investigated in [2]. In this case, a linearized discrete version
of (1) is to be solved in each iteration. Some drawbacks associated with this approach are:
the saddle point structure of the linear problem as opposed to the symmetric positive definite
problem (45); the required degree of differentiability of the data (e.g. C2 for H(x,-) in [2]); the
iterates may not respect constraints such as non-negativity of the density, unless they are already
sufficiently close to the solution [2, p. 202]; it is difficult to specify the required accuracy for
the iterates. It seems therefore meaningful to switch to a Newton iteration once a good guess
has been constructed with the ALG2 iteration.

It is tempting to try to solve the MFGs system (1) by iterating the KFP-HJB equations. This
works in practice [16], but averaging as in [15] may furnish a provably convergent iteration.

3.2. Discretized ALG2. We run ALG2 from Section 2.5 on the discrete augmented La-
grangian obtained from (40):

L (¢n 0n Aw) = Zi(@n) + 9u(01) + (Mn by — 04, Ay + 5lIARdr — o4l3 (44)

Suppose Z;, and ¥, are closed proper convex functions into (—oo, 0o ], the operator A
is injective, and fix r > 0 (we will use r = 1). Assume that there exists a Kuhn-Tucker pair
(=N Aq, Ay) € 0 F () x @ 9, (A dp)- Then the algorithm converges to a solution of the discrete
opt1m1zat1on problem (40) and the convergence is robust under perturbations in Step A and
Step B if those perturbations decay sufficiently fast with the iteration [17, Theorem 8].

3.2.1. Discrete Step A. The iterate ¢, € X, is defined by the linear variational problem

(An; ™, Ay = (o) — 17L;1’():Ahq§)Y - %gh((ﬁ) Vé € X, (45)
With .7, := A} A;, where the adjoint is w.r.t. the Y scalar product, this can be written as
Ay pp = by = A (o) — 1A — 1 P (46)
3.2.2. Discrete Step B. The prior is
(—)_(k+1) _( (k+1) b(k+1) —(k+1)) _A ¢(k+1)+ A(k) (47)
h

The minimization problem (34) is a pointwise minimization in space-time. Even if the data
are discrete functions, the minimizer need not lie in the discrete spaces. We first perform the
minimization on collocation nodes on each space-time element that are together unisolvent
for a piecewise polynomial space. Specifically, we use the 2-node Gauss-Legendre quadrature
points on each one-dimensional element (hence 4 nodes per spatial element and 8 nodes per
space-time element) to characterize a function in the discrete space Z, := D1 ® D12. We write
N(Zy,) € J x D for those collocation nodes. Then we project the result onto the original discrete
spaces. The procedure is thus as follows.
1. For each collocation node n € A(Z;) let (ay(n),by(n)) denote the solution to the
pointwise minimization problem

argmin {A*(a +H(b)) + §|(@*"(n),b\*"(n)) — (a,b)?} . (48)
(a,b)eRxRd
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2. Construct the intermediate (ay, by) € Z, x Z% from the values on the collocation nodes.
3. Project (orthogonally in L, x [L,]?) the intermediate (a;,by) onto A, x By, to obtain
the new iterates (a; ", b;").
Let I, denote the operator that constructs a D12 function from its values on the spatial
collocation nodes 4 (D12) C D. The minimization problem (35) is approximated by

C}(lkﬂ) = argmin {fD Ill"*(c) + %”E](f“) — C”%/} . (49)

ceCy,

3.2.3. Discrete Step C. This is the update A*" := A® + r(A, ¢, — o). Since the

range of A is contained in Y}, by the definition (39), we have A**? € Y}, whenever A® € Y,,.
4. Preconditioning the Step A of ALG2.

4.1. Basic preconditioner. In Section 2.5.1 we introduced the symmetric operator 4 :
X — X' as

(6¢,9) =100, + oD +IVPIT,, + v A3, (33)

and argued that it is equivalent to the operator .o/ := A’A uniformly in the diffusion coefficient
v. We discretize this operator to obtain %, defined by 6,¢; := (6 ¢4)lx,, and use it as a
preconditioner for the discrete operator .¢f, = Aj A;, in (46)—(53). Recall from (39) that A,
includes the projections Q; and Q, onto discrete spaces. This begs the question whether the
equivalence .¢fj, ~ 6, is still true on X;, uniformly in the relevant parameters (as it would be
without the projections). The answer is a conditional yes in the sense of [5], as reported in
Figure 1. We give only a sketch of the underlying mechanism here. Note that it suffices to check
the first equivalence in

Ay~ ~C~% on X, (50)

Hence, for ¢ € X;,, we write (. ¢, ) = Ty + Ty, with Ty, = [1Q, (8, + P A)@ |2, , + 1o (T
and T, = ||Q2V¢||3X p- Let T; and T, be those quantities without the projections, so that
(#¢p,¢) = T; + T,. Clearly, T;), < T;. Define the hyperbolic and parabolic CFL numbers
in terms of the resolution of the space-time mesh as CFLyy, = (time scale)/ (length scale)
CFL,,, := 2 (time scale)/(length scale)?. Consider two cases:
e Case v 2 1. In this case T, S T; holds, because the third term T, of (32) is controlled
by the second. Moreover, provided CFL,,, < 1, the arguments of [5, Sec. 3.2.3] give
T, S Ty, and therefore (50). Compare Figure 1 (left) with the implicit midpoint rule
in [5, Fig. 1.1].
e Case v < 1. In this case T; ~ T;; and the term T, is the problematic one. But
T, S Ty + Ty, holds provided CFLyy, < 1 by an argument similar to [5, (3.20)]. See
Figure 1 (right).

We believe that the CFL conditions are fundamental to the good performance of the overall
method, because the “continuous Galerkin” P(p + 1)-D(p) temporal discretization is used in
(36a)—(36b) to solve the parabolic evolution equation (1b) for ¢, with test functions like p,.
Perhaps adapting the unconditionally stable discretization variant from [5, Sec. 3.4] could
alleviate at least the parabolic CFL restriction.

The inversion of this preconditioner becomes more tractable by passing to a temporal basis
of P2 in (36a) that is orthogonal with respect to both scalar products

(6,0),:=(6",6"),+6(T)O(T) and (0,6),:=(0,0),. (51)
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Such a basis {8,,},, is obtained by solving the generalized eigenvalue problem
Find (0,,w)€P2xR st (6,,0); =w?(6,,0), VO ep2. (52)

Note that the first pairing is positive definite on H*(0, T) due to the T-term, hence the eigen-
values are indeed positive. In this temporal basis, the first two terms of (33) amount to the
multiplication by w?. The preconditioner ), is therefore block-diagonal and each block is the
B2? discretization C,°, given by C;°v := (B®“V)|py2, of the spatial symmetric positive definite
biharmonic operator C := w? — A + v*A? with the homogeneous Neumann boundary condi-
tions (and parameterized by the temporal frequency w > 0). Thus, applying the inverse of the
discrete space-time preconditioner %, amounts to solving a series of independent problems of
the form C;°u = f, which can be done in parallel. This is especially relevant as the quality of
the preconditioner improves with the temporal mesh refinement (see Figure 1).

What makes this block-diagonalization possible is the fact that in (33) the differential or
evaluation operators do not act on the temporal and the spatial variable simultaneously. This is
not the case for the operator .« itself in (32) because of the mixed term V¢ (0). This was our
motivation for omitting this term in the definition of the operator (33).

4.2. Multigrid-in-space preconditioner. Instead of solving C;°u = f one can replace the
inverse of C; by a multigrid cycle (or another approximation such as the incomplete Cholesky
factorization). We follow the geometric multigrid procedure of [21, Section 4.1]. Starting
with the finest spatial mesh with 25x x 2y uniform rectangular elements, the mesh hierarchy
is defined by isotropic coarsening of the mesh until there is a dimension with at most two
elements. As the prolongation operator we use the natural embedding, the restriction operator
is its adjoint. For the pre- and post-smoother we use the “scaled mass matrix smoother”, defined
as the preconditioned Richardson iteration v+— v+ (A;"laXM)_l(f — C“v), where M is the spatial
mass matrix, C® = w?M + A + v*B is the discretization of C;° on the current level and for the
given temporal frequency w, and A is the maximal eigenvalue (precomputed numerically)
of the generalized eigenvalue problem C*v = A2 Mv. Note that the choice of the basis is
irrelevant here. For the computation of Ay , the observation A" = A?nax + w? is useful.

The contraction factor of this multigrid is robust in the parameters v and w, as well as in

the mesh width: see Figure 3.

4.3. Modified preconditioner. We obtained the basic preconditioner in Section 4.1 as
the restriction of the operator € designed in §2.5.1 to be equivalent to . = A’A. Could
one start directly with the discrete operator .o%, = Aj A;? As in §2.5.1 one obtains [|A,¢ ||\2( =
18,912, + VIPLAGIZ, , + PV I2,, + 1T + PV for ¢ € X,,. We again omit
the last term to define a “template” operator 9, remp- Let p; : P2 — D1 and p, : P2 — DO
denote the “temporal parts” of the projections P; and P,. We switch to the temporal basis
defined by the eigenvalue problem (52) with the new scalar products (-,-)] := (p;-,p;-); and
(,)y := (-,*);. In that temporal basis, the operator Zj, i,,, would be block-diagonal with
spatial blocks 1 + (w’)?(v*A? — A) if p; and p, mapped into the same space. Let us define
the preconditioner 2, as this operator. As shown in Figure 2, the condition number of the
preconditioned system is of order one, provided CFLy,y, < 1. In particular, the condition numbers
are robust in v, requiring fewer temporal refinements. Of course, the spatial blocks can again
be replaced by multigrid.

Despite the superior performance of this modified preconditioner on coarse temporal meshes,
the variant from Section 4.1 might be more relevant for large scale computation because it is
easier to find a sparse transformation to a temporal basis where both scalar products (51) are
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approximately diagonal (cf. [4]). For example, in a standard B-spline wavelet basis they will
be approximately diagonal up to a block whose size is logarithmic in the number of temporal
degrees of freedom due to the boundary term in (51).

4.4. Discussion. It was noted in Section 2.5.1 that in Step A, essentially a PDE of the form
—02¢ + v*A%¢ — A¢ = RHS has to be solved on the space-time cylinder. Similar problems
appear in the literature on numerical methods for optimal control of parabolic PDEs, even though
the cost functional is usually simpler than (7). Take for example the work [11], where the
quadratic tracking functional ||y —z||§X o+ a||u||§x p is minimized subject to the heat equation
0,y —Ay = —u, ylsp = 0, for given initial value y(0) and desired state z. The first order
optimality system includes the equations (3, + A)p =z—y, p(T) = 0 and u = p. In this example,
¥, p correspond to p, ¢. Testing the equation for p by (8, + A)p and integrating in space-time
leads to (Ap, Ap) :=((3, + A)p, (3, + A)p) + a~*(p, p) = RHS. This is the analog of Equation
(29)-(30). With this definition, ||Ap||* = |8,pl|%, , + I1ApII2, , + a tlIpll2,, + IVp(O)I[3. Thus,
a preconditioner along the lines of §2.5.1 and §4.1 can be constructed (cf. also [4, Sec. 4.1.3]).
Vice versa, preconditioners developed in that context might apply here with some adaptations.

A number of preconditioners for the Newton iteration (see Section 3.1) were proposed in
[2]. At this point it is appropriate to recall that of [2, Algorithm C]. It consists in a) eliminating
p from the linear saddle point problem thus obtaining a linear PDE for ¢ ; b) applying a linear
solver such as BiCGstab; and c) using multigrid with Gauss—Seidel smoothing and spatial semi-
coarsening only. The principal part of the PDE in a) is again —8t2¢ +v*A2¢, but it also includes
a (symmetric nonnegative) term of the form —div(p®5,,H(V$*)V¢). The authors report
favorable results, but the interpretation and a meaningful comparison is difficult because the
number of BiCGstab iterations is used as an indirect measure of the condition number (with
possibly mesh-dependent norms in the stopping criterion), and the effect of temporal vs. spatial
refinement is not investigated separately. The quality of that preconditioner does seem to
improve with increasing diffusion v, at least for moderate values of v. By contrast,

o for the basic preconditioner from Section 4.1, the interplay of the equivalences (50)
and the discrete spaces (36) requires increasing the temporal resolution with increasing
diffusion until CFL,,, < 1 (and CFLyy, < 1) to guarantee good preconditioning.

o for the modified preconditioner from Section 4.3, the quality is robust in v, only
requiring CFLy,,, < 1. However, we do not have a solid theoretical justification.

5. Numerical examples.

5.1. Implementation. We give here some details on the implementation.
As the starting values for the ALG2 iteration we use the zero vector.
The solution to (46) is approximated by the preconditioned conjugate gradient method,

p = 1)+ PCGLaty, (b — ), €peg maxityeg, 6,71 ], 63

where 6, ! is the approximation of the inverse of the preconditioner as described in Section
4.1 (basic preconditioner) or Section 4.2 (multigrid preconditioner). The PCG iteration is
initialized with the zero vector. We use the relative residual tolerance €., = 107!, meaning
that the iteration terminates once the residual in the %, ' norm (defined by ||r||* := (6, 'r, 1))
is reduced by the factor €., The maximal iteration number maxit,., = 100 is never attained in
our computations.

The discrete spatial biharmonic problems in the basic preconditioner (§4.1) and on the
coarsest level of the multigrid preconditioner (§4.2) are solved in Matlab with “backslash”.
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(8§4.1) for different spatial resolutions and PCG tolerances in (53). Top to bottom: the discrete density p,&k) in Ly(J; Ly (D)),
the discrete cost function P1(1k) in H'(J; Ly(D)) and in Ly(J;H?(D)), and the terminal variable e:‘) in V. Left/Right:
diffusion coefficient v = 10"" and v = 1. The multigrid preconditioner (§4.2) leads to very similar results.



The eigenvalue A in the scaled mass matrix smoother in Section 4.2 is obtained from
Amax = A2+ w?, where A2 __is approximated using the Matlab eigs routine on M~'C° with
flag ’LM’, the options opt.isreal = 1, opt.issym = 0, and with the default tolerance
(the matrices are assembled in the B-spline basis with a modification at the boundary ensuring
the homogeneous Neumann boundary condition). Unless specified otherwise, we use the W
cycle with ng, .., = 5 pre- and post-smoothing steps on each level.

The minimizer of (48) is approximated by a Newton iteration on the derivative of the
argument with 20 iterations initializing with the values of the prior. The use of the Newton
iteration (rather than the implementation of the proximal operator as in [9, Appendix]) is
justified because the second derivative of the functional is still continuous in our examples. This
allows to vectorize the Newton iteration in our Matlab implementation, so that Step B takes
significantly less time than Step A.

The minimization problem (49) is solved approximately by a Hessian trust-region algorithm
implemented in the Matlab routine fminunc, and the result is used as the starting value for the
same procedure until the relative improvement in the || - ||y norm is less than 1070,

5.2. Example 1. In this example the spatial domain is the interval D = (—2,2) and
T = 1. The initial density p, = 1(_,_;) is the indicator function of (—2,—1) C D. The
terminal cost is ['(p) = 10° x %(p —pr)?, where p; = 11 9 is the target terminal state. The
congestion cost is A(p) = % p2. Both, I' and A evaluate to +00 for p < 0. The Hamiltonian is
H(t,x,p) = %Ipl2 —10% X 1,3/41|,|<1/2, making the movement in the “no-go area” delimited by
|x| < 1/2 relatively costly as long as t < 3/4. This leads to the formation of a strong peak of the
density p(t,x) for t /' 3/4 and x /" —1/2. In order to resolve this behavior, we geometrically
refine the initial 28 x 28 equidistant mesh around t = 3/4 by halving the two temporal intervals
adjacent to t = 3/4 ten times; the same is done for t = 0 and for the spatial mesh around
x = —1/2. The resulting mesh has (28 + 30) x (28 + 20) = 78'936 space-time elements. We use
the basic preconditioner from Section 4.1 (since the spatial domain here is one-dimensional
and the mesh is nonuniform). We perform 1’000 ALG2 iterations. The diffusion coefficient is
first set to » = 1071, The resulting density p behaves as expected: the initial density p, and the
targeted terminal density p; are well-captured, and the “no-go area” {t < 3/4} x {|x| < 1/2}
remains almost mass-free. Now we change the diffusion to ¥ = 1. The density is now smoothed
out in space, in particular eliminating the peak at t = 3/4.

One interpretation of this example is as a model for the formation of passenger queue ahead
of boarding. The waiting lounge is represented by the interval (—2,—1), the airplane by the
interval (1,2), the gate is located at x = —1/2, and the gate opening time is t = 3/4. In the
functional (7), the cost T’ then represents the strong desire to board the plane before takeoff,
the A term models the discomfort during queuing, and the L term models the stress of rushing.

5.3. Example 2. Here D =(—2,2) x (—1/2,1/2). The initial density is p, = 1,<_; in the
left part of the domain. The terminal cost is T'(p) := 10% x %(p —pr)?, where py := 1,54 is
the target terminal state in the right part of the domain. The congestion cost is A(p) = % p2.
The Hamiltonian is H(t,x,p) = %| p|? —10% x 1, restricting the movement in the rectangular
area O := {|x| < 1/2} x {|y| < 1/4}. The computational mesh has 2° x (2° x 2°) space-time
elements. We use the basic preconditioner from Section 4.1. We perform 1’000 ALG2 iterations.
Temporal snapshots of the density for v = 10! and v = 1 are shown in Figure 5.

5.4. Empirical convergence study. We empirically investigate the convergence of the
ALG2 on the example from Section 5.3. As the reference solution we take the discrete solution
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computed on the finer mesh with 2° x (27 x 2°) space-time elements, 5000 ALG2 iterations and
the multigrid preconditioner (§4.2). Figure 6 shows the error of the discrete density p(” and the
discrete cost d)”‘) as the ALG2 iteration progresses, varying the spatial resolution (keeping the
temporal resolution at 25 elements), the PCG tolerance €peg 1N (53), and the diffusion coefficient
. The preconditioner used is the basic preconditioner (§4.1) but the multigrid preconditioner
produces (§4.2) essentially the same results. The convergence rate is clearly mesh dependent,
indicating nonuniform convexity properties (with respect to the discretization) of the functional
to be minimized, see the discussion in Section 2.4. Moreover, for the larger diffusion coefficient
v = 1 we observe a somewhat non-monotonic convergence and 1’000 ALG2 iterations seem
not enough; this indicates that even 5’000 ALG2 iterations for the reference solution might be
insufficient. The average number of PCG iterations is reported in Table 1.

The application of the preconditioner consumes the bulk of the time. The basic precondi-
tioner (with backslash for the solution of the bi-Laplace equations) takes around 7.5s on the
2% x (2° x 2°) mesh and around 375s on the 2° x (27 x 2°) mesh; the multigrid preconditioner
0.9s and 8s, respectively.

y=10"1 | Basic, Epeg? MG, €4, y=1 Basic, €p,: MG, €p,:

(L,,L,) [ 107! 107 107" 1072 (L,,L,) | 107" 10* 10" 1072
(4,3) 3.0 5.0 3.0 5.4 (4,3) | 3.0 4.0 46 9.8
(5,4) 3.0 5.3 3.0 6.9 (5,4) | 3.0 47 3.7 97
(6,5) 3.0 6.7 3.0 7.0 (6,5) | 3.0 4.7 3.0 7.2

TABLE 1
Average number of PCG iterations over the first 500 ALG2 steps in the convergence study in Section 5.4. Left: v=1071.
Right: v =1. For v =1 with the MG preconditioner, the number of PCG iterations tends to increase in the course of the
ALG2 iteration.

5.5. Intermediate instantaneous costs. Instead of (7) we now minimize

In(p,v) = f {L(v)p+A(p)}+Z f L(p(7))) (54)
JxD

subject to the same transport equation KFP[p,v] =0. Here, {0 =: 7, < 7; <...< 7Ty =T} are
temporal nodes where some information on the density p is available. Take, say, [;(x, p(7;)) :=
%(pfi (x)— p(r;,x))? for some given spatial densities Pr,- Then the functional (54) selects an
evolution of p which is propelled by a “lenient” optimal transport starting from p, along the
P, and subject to congestion and diffusion effects. The resulting density p is not the same as
would be obtained by optimizing (7) on the successive temporal intervals [7;_;, T;] because
more concession in meeting p, is potentially made with (54).

To construct a numerical method, the functional framework is modified as follows. We
assume ¢ € XX {$l;:, .1:¢ €X}and A,0 € L, x [L,]¢ x V. The operator A is now

Ap = (0, +v*D)p, Ve, [9]e,,... [$]:,), (55)

where [¢ ], := ¢(t+) — ¢ (t—) denotes the jump across t with the convention ¢(T+) := 0, and

the temporal derivative is understood to act on each temporal window [7;_;, T;] separately.

While & in (16) remains the same, ¢ becomes ¥(a,b,cq,...,cy) = JxDA*(a + H(b)) +

Zziv:l f » [7(¢;). The discretization is a simple adaptation of (36a)—(36d), allowing temporal
18



discontinuities in X}, at each 7; and setting Y} := A, x By, x CI,Y . The discrete operator Ay includes
the projections as in (39). Motivated by (55), the preconditioner for A; A, is constructed as in
Section 4.1 with the additional terms Zj”z‘f[e]ﬂ[é]ﬂ in the definition of (6, 6 ); in (51).

As in the example from Section 5.2 we take D = (—2,2) and the initial density p, =
I p—q). WesetT =2, v=1,A(p) = %pz and H(t,x,p) = %|p|2. We define the costs
[(p)=10x %(p —p;)? with p; = 1(1,2) and py = po. Thus we expect the density to accumulate
in the interval (1,2) at time t = 1 and then go back to (—2,—1) at time T = 2. We compute on
a 28 x 28 space-time mesh with the additional temporal tenfold geometric refinement around
t = 1. We use the basic preconditioner from Section 4.1 with the given modification and perform
1’000 ALG2 iterations. The algorithm appears to be very sensitive to the error incurred by the
PCG iteration (53). We start therefore with the initial tolerance €pcg = 10719 and increase it by
a factor of ten every 10 iterations, leaving it at €., = 1072 after 80 iterations. The computed
density and cost function are shown in Figure 7. The discontinuity of the cost function across
t =1 is clearly visible.

2

FIG. 7. Density (left) and cost (right) for the example from Section 5.5.
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