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PRECONDITIONING THE AUGMENTED LAGRANGIAN METHOD FOR
INSTATIONARY MEAN FIELD GAMES WITH DIFFUSION

ROMAN ANDREEV

Abstract. We apply the augmented Lagrangian method to the convex optimization problem
of the instationary variational mean field games with diffusion. The system is first discretized
with space-time tensor product piecewise polynomial bases. This leads to a sequence of linear
problems posed on the space-time cylinder that are second order in the temporal variable and
fourth order in the spatial variable. To solve these large linear problems with the preconditioned
conjugate gradients method we propose a parameter-robust preconditioner that is based on a
temporal transformation coupled with a spatial multigrid. Numerical examples illustrate the
method.

1. Introduction

Mean field games and related models describe a wide range of social phenomena such as crowd
motion, opinion dynamics, vaccination rates, stability of marriage, etc., and, moreover, appear as
the equations to be solved in each time-step of the so-called JKO time-stepping scheme for gradient
flows. In the instationary stochastic case introduced in [17], mean field games is a coupled system
of a transport-diffusion equation for a density (of crowd, opinion, etc.) with a nonlinear equation
for the value function running in the opposite temporal direction. Existing numerical methods
for mean field games are based for instance on finite volumes [1, 2, 3], the dynamic programming
principle [10, 12], or on convex duality [8]; further references can be found in [9]. In this work we
reconsider the convex duality formulation of [11] and the ALG2 splitting method of [15, 8] including
nonzero diffusion. This leads to a sequence of linear problems posed on the space-time cylinder
that are second order in time and fourth order in space. To solve these space-time problems with
an iterative method such as conjugate gradients, we develop a preconditioner based on a temporal
decoupling transformation and a spatial multigrid. The resulting preconditioner is robust in all
parameters, including the diffusion coefficient.

The paper is structured as follows. In Section 2 we introduce the mean field games model, its
convex formulation and the ALG2 method. In Section 3 we describe the discrete version of ALG2.
In Section 4 we comment on preconditioning of the space-time linear problems. The numerical
experiments in Section 5 conclude the paper.

2. ALG2 with diffusion

2.1. Mean field games. Let D ⊂ Rd be a cube. Let T > 0. An in [11, 8] we consider the coupled
system of partial differential equations

KFP[ρ, φ] := ∂tρ− ν2∆ρ+ div(ρ∇H(t, x,∇φ)) = 0,(1a)

HJB[ρ, φ] := ∂tφ+ ν2∆φ+H(t, x,∇φ) = A′(t, x, ρ),(1b)

s.t. ρ(0) = ρ0 and φ(T ) = −Γ′(x, ρ(T )).(1c)

We will refer to this system as the mean field games (MFGs) equations. Here, A and Γ are convex
real valued functions of the third variable ρ ≥ 0 (equal to +∞ for negative ρ) and the indicated
derivatives are with respect to this variable. The essential assumption on the Hamiltonian H is
convexity with respect to the third variable. The unknowns are the density ρ and the cost φ, both
space-time dependent real valued functions. We omit the dependence on (t, x) in the notation
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2 ROMAN ANDREEV

where convenient. Periodic boundary conditions are often assumed but here we will be interested
in no-flow boundary conditions on the density ρ. These are implemented by requiring

∇H(t, x,∇φ) · n = 0 and ∇ρ · n = 0 on ∂D(2)

where n is the outward normal to the spatial boundary. In particular, the total mass
∫
D
ρ is

conserved in time, and we assume that ρ0 ≥ 0 with nonzero total mass. We restrict ourselves to
radially symmetric Hamiltonians (in the third variable); hence the first condition of (2) amounts to

∇φ · n = 0 on ∂D.(3)

The main innovation of this work with respect to the numerical method proposed in [8] is the
presence of the diffusion coefficient

ν > 0,(4)

which is a positive constant, uniform in space-time.
The principal feature of the MFGs equations is that the Kolmogorov–Fokker–Planck (KFP)

equation evolves forward in time with an explicit initial condition at t = 0 and the Hamilton–
Jacobi–Bellman (HJB) equation evolves backward in time with a possibly implicit initial condition
at t = T . The general mathematical interpretation of the KFP is in the weak sense and that of the
HJB is in the viscosity sense, but we will mostly proceed in a formal way, in particular assuming
the regularity (10)–(11) below.

The MFGs equations arise as follows. Consider the transport equation (slightly overloading the
notation) KFP[ρ,v] := ∂tρ− ν2∆ρ+ div(ρv) = 0, where the space-time dependent vector field v
is a control variable. We fix v by minimizing the functional

J2(ρ,v) :=

∫ T

0

∫
D

{L(t, x,v)ρ+A(t, x, ρ)}+

∫
D

Γ(x, ρ(T )),(5)

where L is the Lagrangian related to the Hamiltonian by convex duality,

H(p) := L?(p) := sup
v∈Rd

{p · v − L(v)}.(6)

To that end we look for saddle points of the space-time Lagrangian J2(ρ,v) + 〈φ,KFP[ρ,v]〉.
Proceeding in a formal way, the derivative with respect to v gives the relation ∇L(v) = ∇φ, at
least where ρ 6= 0. By duality H = L?, this implies the feedback strategy

v = ∇H(∇φ)(7)

and the representation H(∇φ) = v · ∇φ − L(v). Employing the latter in the derivative of the
space-time Lagrangian with respect to ρ gives the HJB equation with its terminal condition.

2.2. The predual problem. We will work with the function spaces

H := L2(D), V := H1
Neu(D), W := H2(D) ∩ V.(8)

We write ‖ · ‖J×D / ‖ · ‖D to indicate the L2(J ×D) / L2(D) norm. On V , which incorporates
homogeneous Neumann boundary conditions, we use the norm given by

‖χ‖2V := ‖χ‖2D + ν2‖∇χ‖2D, χ ∈ V.(9)

Introducing the Bochner–Sobolev space

X := L2((0, T );W) ∩H1((0, T );H),(10)

we suppose that

φ ∈ X.(11)

We abbreviate L2 := L2((0, T )×D). Recall the canonical isometry L2
∼= L2((0, T );L2(D)). We

identify H ∼= H′ via the Riesz isomorphism, obtaining the Gelfand triple V ↪→ H ∼= H′ ↪→ V′, and in
particular the embedding V ↪→ V′. Set

Y := L2 × Ld2 × V.(12)
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Elements of Y will be denoted by

σ = (a, b, c) or λ = (ρ,m, e)(13)

and those of Y′ by λ̃ = (ρ̃, m̃, ẽ). Following [8] we define the linear operator

Λ : X→ Y, φ 7→ (∂tφ+ ν2∆φ,∇φ,−φ(T )).(14)

This operator is injective because testing ∂tφ + ν2∆φ = 0 by φ and integrating by parts gives
‖φ(t)‖H ≤ ‖φ(T )‖H, and therefore Λφ = 0 implies φ = 0. This argument motivates the third term
of Λ. The key observation made and exploited in [11, 8] is that the constrained optimization
problem

argmin
(φ,σ)∈X×Y

{F(φ) + G(σ)} s.t. σ = Λφ(15)

with

F(φ) :=

∫
D

φ(0)ρ0, G(σ) :=

∫ T

0

∫
D

A?(a+H(b)) +

∫
D

Γ?(c)(16)

is a reformulation of the MFGs equations (1). Here, A?/Γ? is the convex conjugate of A/Γ. More
precisely, the dual of this problem is the minimization problem discussed in the previous subsection.
Indeed, by the general theory of duality [14], the (usual) dual problem of (15) reads

inf
λ̃∈Y ′
{F?(−Λ′λ̃) + G?(λ̃)},(17)

where Λ′ : Y ′ → X ′ is the adjoint. Since H(b) = supm̃{b · m̃/ρ̃− L(m̃/ρ̃)} for any ρ̃ > 0, we have

A?(a+H(b)) = sup
ρ̃
{(a+H(b))ρ̃−A(ρ̃)} = sup

ρ̃,m̃
{(a, b) · (ρ̃, m̃)− [L(m̃/ρ̃)ρ̃+A(ρ̃)]},(18)

where the supremum over ρ̃ is restricted to ρ̃ > 0. Thus

G?(λ̃) = G?(ρ̃, m̃, ẽ) =

∫
(0,T )×D

{L(m̃/ρ̃)ρ̃+A(ρ̃)}+

∫
D

Γ(ẽ).(19)

Concerning F?, we observe

〈−Λφ, λ̃〉 = 〈φ, ∂tρ̃− ν2∆ρ̃〉 − 〈φ, ρ̃〉|t=Tt=0 + 〈φ, div m̃〉 + 〈φ(T ), ẽ〉 − BT,(20)

where the spatial boundary terms are collected in

BT :=

∫
J

∫
∂D

(
ν2ρ̃∇φ− (ν2∇ρ̃− m̃)φ

)
· n.(21)

Invoking the spatial homogeneous Neumann boundary conditions (3) we find that

F?(−Λ′λ̃) is finite (and equals zero)(22)

if and only if the equations

∂tρ̃− ν2∆ρ̃+ div m̃ = 0, ρ̃(0) = ρ0, ν2∇ρ̃ · n = m̃ · n and ρ̃(T ) = ẽ(23)

are satisfied in the weak sense. In other words, the optimization in (17) is really performed over
the variables ρ̃ and m̃ subject to these conditions. Writing v := m̃/ρ̃ we find that (17) is just the
problem of minimizing (5) subject to KFP[ρ,v] = 0 from the previous subsection.

2.3. On existence of minimizers. The following two classical results [14, Remark 4.2] concern
the optimization problems (15)–(17).

Theorem 2.1. Suppose F and G are convex. Suppose there exists φ0 such that F(φ0) and G(Λφ0)
are finite and G is continuous at Λφ0. Then inf (15) = inf (17) and (17) has a minimizer.

Theorem 2.2. (φ, λ̃) solves (15)–(17) and inf (15) = inf (17) iff (−Λ′λ̃, λ̃) ∈ ∂F(φ)× ∂G(Λφ).
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Typically, A? and Γ? will be convex nondecreasing functions, and together with convexity of H
those conditions suffice to show convexity of F and G directly. The two inclusions from Theorem
2.2 correspond to the KFP (1a) and the HJB (1b) equations, respectively.

The built-in regularity assumption φ ∈ X in (15) implies that φ(0) ∈ V, so that F (φ) is well-
defined even for ρ0 ∈ V′. Let σ = (a, b, c) = Λφ. Then a ∈ L2, b ∈ Vd and c ∈ V, and certain
growth conditions on A?, Γ? and H ensure that G(σ) is well-defined. Let us focus on d = 2 spatial
dimensions. Then we may assume quadratic growth for A? and Γ? and arbitrary polynomial
growth for H in the last variable. For an arbitrary σ ∈ Y not in the range of Λ we may extend
the definition of G by +∞ but this would preclude the usage of Theorem 2.1. Alternatively, we
could restrict Y, say Y = L2 × L2((0, T );H1(D)) × V, but we chose not follow this road in this
paper in order to simplify the numerics in Step B of ALG2 below. Another possibility is to assume
convexity and at most quadratic growth for A? and A? ◦H ensuring continuity of G on Y so that
Theorem 2.1 could be used but this would rule out the desirable situation of the standard quadratic
Hamiltonian H together with a quadratic cost A in (5). In any case Theorem 2.1 does not address
existence for the primal problem (15), and seeing (17)–(15) as the primal–dual pair is problematic
because F ? is discontinuous wherever it is finite (unless again, we modify Y suitably).

Existence and stability in space-time Lebesgue spaces have been obtained using Theorem 2.1 in
[11], and by operating directly on the MFGs equations for example in [18, Theorem 2.7] and [3,
Theorem 3.1].

Another approach to existence of minimizers in (15) is to verify coercivity of the functional
under suitable assumptions on the data (which would also play a role in establishing Γ-convergence
of numerical solutions [8, Section 3.1]). This, however, does not seem possible because the term∫
D

Γ?(−φ(T )) does not provide control on the spatial derivates of φ(T ), which would be necessary
to control the norm of φ in X (see e.g. [6, Theorem 4.1] for that kind of statement). We believe the
mesh-dependent convergence rate of ALG2, see Section 5.4, is a manifestation of this fact.

2.4. ALG2 formulation. In order to solve the optimization problem (15), in the augmented
Lagrangian method one looks for saddle points (φ, σ, λ) ∈ X× Y × Y of the augmented Lagrangian

Lr(φ, σ, λ) = F(φ) + G(σ) + (Λφ− σ, λ)Y + r
2‖Λφ− σ‖

2
Y,(24)

where r ≥ 0; these are characterized by

Lr(φ, σ, ·) ≤ Lr(φ, σ, λ) ≤ Lr(·, ·, λ).(25)

It is elementary to check that the Lagrangians Lr and L0 have the same saddle points. Moreover,
any saddle point furnishes a solution to (15) and (17). With the notation of the previous subsection
it would have been natural to have the duality pairing 〈Λφ− σ, λ̃〉 with λ̃ ∈ Y′ instead of the Y
scalar product but below it is more convenient to work with the Riesz representative λ ∈ Y given
by (λ, ·)Y = λ̃. The first two components of λ and λ̃ are the same.

Consider the function hr(λ) := infφ,σ Lr(φ, σ, λ). Then, λ in the saddle point characterization
(25) maximizes this function. At any point λ̄, its gradient ascent direction is (Λφ̄ − σ̄) where
(φ̄, σ̄) := argminLr(·, ·, λ̄). This suggests a steepest descent algorithm for finding the optimal λ.
This is the algorithm “ALG1” in [15, Section 3.1]. The subsequent algorithm “ALG2” [15, Section
3.2] is a modification where the minimization of φ and σ is decoupled. It proceeds by iterating the
following three steps.

A. Minimize Lr with respect to the first component by solving the elliptic problem

Find φ(k+1) ∈ X s.t. 〈∂Lr

∂φ (φ(k+1), σ(k), λ(k)), φ̃〉 = 0 ∀φ̃ ∈ X.(26)

B. Proximal step:

σ(k+1) := argmin
σ∈Y

{G(σ) + r
2‖σ̄

(k+1) − σ‖2Y} for σ̄(k+1) := Λφ(k+1) + 1
rλ

(k).(27)

C. Multiplier update:

λ(k+1) := λ(k) + r(Λφ(k+1) − σ(k+1)).(28)
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It is worth noting that convergence of the algorithm is robust under perturbations in Step A
and Step B if those perturbations decay sufficiently fast with the iteration [13, Theorem 8]. We
now comment on each of those steps separately.

2.4.1. Step A. Since F is linear, (26) amounts to

Find φ(k+1) ∈ X : (Λφ(k+1),Λφ̃)Y = (σ(k) − 1
rλ

(k),Λφ̃)Y − 1
rF(φ̃) ∀φ̃ ∈ X.(29)

The only term involving the unknown φ(k+1) is (we suppress the iteration index)

(Λφ,Λφ̃)Y = 〈(∂t + ν2∆)φ, (∂t + ν2∆)φ̃〉 + 〈∇φ,∇φ̃〉 + (φ(T ), φ̃(T ))V.(30)

Expanding the first term on the right hand side we obtain

〈(∂t + ν2∆)φ, . . .〉 = 〈∂tφ, ∂tφ̃〉 + ν4〈∆φ,∆φ̃〉 − ν2〈∇φ(t),∇φ̃(t)〉|t=Tt=0 ,(31)

having used integration by parts in time and space on the term 〈∂tφ,∆φ̃〉. The boundary
term ν2

∫
J×∂D(φ∇φ̃− φ̃∇φ) · n disappears for any combination of homogeneous/periodic Dirich-

let/Neumann spatial boundary conditions. The negative ν2 term cancels by the definition of the
norm on V, so we are left with

‖Λφ‖2Y = ‖∂tφ‖2J×D + ν4‖∆φ‖2J×D + ‖∇φ‖2J×D + ‖φ(T )‖2D + ν2‖∇φ(0)‖2D.(32)

Consider the operator A := Λ′Λ : X → X′, where the adjoint is with respect to the Y scalar
product; hence 〈Aφ, φ̃〉 = (32). Below we will iteratively invert a discretized version of A, and
will therefore require a good preconditioner. To that end observe that the symmetric operator
C : X→ X′ defined by omitting the last term, viz.

〈Cφ, φ〉 := ‖∂tφ‖2J×D + ‖φ(T )‖2D + ‖∇φ‖2J×D + ν4‖∆φ‖2J×D,(33)

is equivalent to A by the argument given in [4, Section 2.5] for −∆ instead of ν4∆2.

2.4.2. Step B. Recall the notation σ = (a, b, c) and λ = (ρ,m, e). Step B consists of two decoupled
proximal subproblems, the first one being

(a(k+1), b(k+1)) := argmin
(a,b)∈L2×Ld

2

{∫
D
A?(a+H(b)) + r

2‖(ā
(k+1), b̄(k+1))− (a, b)‖2

L2×Ld
2

}
(34)

with the “priors” ā(k+1) := (∂t + ν2∆)φ(k+1) + 1
rρ

(k) and b̄(k+1) := ∇φ(k+1) + 1
rm

(k), and the second
one being

c(k+1) := argmin
c∈V

{∫
D

Γ?(c) + r
2‖c̄

(k+1) − c‖2V
}

(35)

with the “prior” c̄(k+1) := −φ(k+1)(T ) + 1
r e

(k). The first subproblem is as in [8, Section 4.2] but the
second is not due to the non-L2 norm, which is a consequence of the choice (12) of the space Y.

2.4.3. Step C. Step C is a straightforward update.

3. Discretization

3.1. Discrete spaces. We discretize the quantities (φ, σ, λ) in (24) using tensor products of
piecewise polynomial functions on an interval. We use the following notation, leaving the underlying
mesh to be specified separately:

P1. Continuous piecewise affine functions (hat functions);
P2. Continuous piecewise quadratic functions;
D0. Piecewise constant functions (top functions);
D1. Piecewise polynomials of degree one with no interelement continuity;
B2. Piecewise polynomials of degree two with C1 continuity.



6 ROMAN ANDREEV

For simplicity, we assume here that the spatial dimension is d = 2. We write P2⊗ B2(2) for the
function space spanned by the products of P2 functions in time with B2 functions in each spatial
dimension, etc. We will look for a discrete saddle point (φh, σh, λh) as follows

φh ∈ Xh := P2⊗ B2(2)(36a)

ah, ρh ∈ Ah := D1⊗D0(2)(36b)
bh,mh ∈ Bh := D0⊗ [(P1⊗D0)× (D0⊗ P1)](36c)

ch, eh ∈ Ch := B2(2).(36d)

Furthermore, we set Yh := Ah ×Bh ×Ch with the norm Y. The motiation for taking B2 in (36a) is
mainly H2(D)-conformity required for the regularity (11). It also interacts well with the choice
D0 in (36b) because D0 simulaneously approximates functions in B2 and their second derivatives
well, which plays a role in (42) and leads to the dimension formula (38) below. An alternative to
the P2–D1 combination in (36a)–(36b) is to take P(p+ 1)–D(p) for any degree p ≥ 0, so that (42)
below corresponds to a so-called continuous Galerkin time-stepping scheme. The choice of the
spatial component in (36c) allows integration by parts in space in an expression like 〈mh,−∇φh〉
and approximates ∇φh well. Finally, the space in (36d) is simply the trace of (36a) at t = T , and
is sufficiently regular for the proximal step (48) to be well-defined.

We impose the no-flux boundary conditions for the density ρ through (cf. Section 2.1):

homogeneous Neumann spatial boundary conditions on Xh;(37a)
homogeneous Dirichlet boundary conditions on the P1 components of Bh.(37b)

With these boundary conditions, the number of spatial degrees of freedom of Xh (i.e., dimB2(2))
and those of Ah (i.e., dimD0(2)) coincide, and therefore

dimXh = dimAh + dimCh.(38)

The operator Λ is approximated by the (injective) operator

Λh : Xh → Yh, Λhφ := (Q1(∂t + ν2∆)φ), Q2∇φ,−φ(T )),(39)

where Q1 is the L2-orthogonal projection onto Ah and Q2 is the componentwise L2-orthogonal
projection onto Bh. These projections have no effect in the term (Λφh−σh, λh)Y but they do affect
the r-term of the augmented Lagrangian (24).

Our aim is therefore to solve the discrete optimization problem (cf. (15))

argmin
(φh,σh)∈Xh×Yh

{Fh(φh) + Gh(σh)} s.t. σh = Λhφh(40)

with Fh := F and Gh := G from (16) (or convex approximations thereof). The analog of the
continuous dual problem (17) now reads

inf
λ̃h∈Y′

h

{F?h(−Λ′hλ̃h) + G?h(λ̃h)},(41)

with F?h(−Λ′hλ̃h) =

sup
φh∈Xh

{−〈ρh, (∂t + ν2∆)φh〉 − 〈mh,∇φ〉 − 〈ρ0, φh(0)〉 + 〈ẽh, φh(T )〉},(42)

where, notably, the supremum is taken over discrete functions only. Here, λ̃h = (ρh,mh, ẽh). It is
possible to integrate by parts in space on the term 〈mh,−∇φh〉 owing to the choice of the discrete
spaces (36a) and (36c). Therefore, the supremum (42) is finite (and equals zero) if and only if the
triple (ρh,mh, ẽh) ∈ Y′h satisfies the following discrete analog of (1a),

〈ρh, (−∂t − ν2∆)φ〉 = 〈− divmh, φ〉 + 〈ρ0, φ(0)〉 − 〈ẽh, φ(T )〉 ∀φ ∈ Xh.(43)

In particular, fixing mh and restricting the test functions to φ(T ) = 0, the dimension count (38)
suggests that ρh is well-defined by (43) and approximates the solution ρ of ∂tρ− ν2∆ρ = − divmh

with ρ(0) = ρ0 and ν2∇ρ · n = 0 on ∂D in the space-time ultraweak sense (spatial and temporal
derivatives are on the discrete test function; the analysis can be done along the lines of [7, 5]). The
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initial condition and the no-flux boundary condition are thereby injected naturally. Integration by
parts in time shows that admitting nonzero φ(T ) additionally ensures 〈ẽh, χ〉 = 〈ρh(T ), χ〉 for all
χ ∈ Ch, that is ẽh is determined as the L2(D)-orthogonal projection of ρh(T ) onto Ch.

Consider φ := bn ⊗ (1⊗ 1), where bn ∈ P2 is a quadratic (nonzero) bubble on the n-th temporal
element that vanishes outside that element. Using this φ in (43) yields

∫
J
bn∂t

∫
D
ρh = 0. Since

∂t
∫
D
ρh is constant, it must equal zero. This implies mass conservation for the discrete density.

3.2. Discretized ALG2. We run ALG2 from Section 2.4 on the discrete augmented Lagrangian

Lr(φh, σh, λh) = Fh(φh) + Gh(σh) + (Λhφh − σh, λh)Y + r
2‖Λhφh − σh‖

2
Y(44)

obtained from (40).

3.2.1. Discrete Step A. The iterate φ(k+1)

h ∈ Xh is defined by the linear variational problem

(Λhφ
(k+1)

h ,Λhφ̃)Y = (σ(k)

h −
1
rλ

(k)

h ,Λhφ̃)Y − 1
rFh(φ̃) ∀φ̃ ∈ Xh.(45)

With Ah := Λ′hΛh, where the adjoint is with respect to the Y scalar product, this can be written as

Ahφ
(k+1)

h = b(k+1)

h := Λ′h(σ(k)

h −
1
rλ

(k)

h )− 1
rFh.(46)

3.2.2. Discrete Step B. The prior is σ̄(k+1)

h = (ā(k+1)

h , b̄(k+1)

h , c̄(k+1)

h ) := Λhφ
(k+1)

h + 1
rλ

(k)

h . The mini-
mization problem (34) is a pointwise minimization in space-time. Even if the data are discrete
functions, the minimizer need not lie in the discrete spaces. We first perform the minimization on
collocation nodes on each space-time element that are together unisolvent for a piecewise polynomial
space. Specifically, we use the 2-node Gauss–Legendre quadrature points on each one-dimensional
element (hence 8 nodes per space-time element) to characterize a function in the discrete space
Zh := D1×D12. We write N (Zh) ⊂ J ×D for those collocation nodes. Then we project the result
onto the original discrete spaces. The procedure is thus as follows.

(1) For each collocation node n ∈ N (Zh) let (ah(n), bh(n)) denote the solution to the pointwise
minimization problem

argmin
(a,b)∈R×Rd

{
A?(a+H(b)) + r

2 |(ā
(k+1)

h (n), b̄(k+1)

h (n))− (a, b)|2
}
.(47)

(2) Construct the intermediate (ah, bh) ∈ Zh × Z2
h from the values on the collocation nodes.

(3) Project (orthogonally in L2 × [L2]d) the intermediate (ah, bh) onto Ah × Bh to obtain the
new iterates (a(k+1)

h , b(k+1)

h ).
Let I1 denote the operator that constructs a D12 function from its values on the spatial collocation

nodes N (D12) ⊂ D. The minimization problem (35) is replaced by

c(k+1)

h := argmin
c∈Ch

{∫
D

I1Γ?(c) + r
2‖c̄

(k+1)

h − c‖2V
}
.(48)

3.2.3. Discrete Step C. This is the update λ(k+1) := λ(k) + r(Λhφ
(k+1)

h − σ(k+1)

h ). Since the range of
Λh is contained in Yh by the definition (39), we have λ(k+1) ∈ Yh whenever λ(k) ∈ Yh.

4. Preconditioning the Step A of ALG2

4.1. Basic preconditioner. In Section 2.4.1 we introduced the symmetric operator C : X→ X′,

〈Cφ, φ〉 := ‖∂tφ‖2J×D + ‖φ(T )‖2D + ‖∇φ‖2J×D + ν4‖∆φ‖2J×D,(33)

and argued that it is equivalent to the operator A := Λ′Λ. We discretize this operator to obtain Ch,
defined by Chφh := (Cφh)|Xh

, and use it as a preconditioner for the discrete operator Ah = Λ′hΛh
in (46)–(51). The inversion of this preconditioner becomes more tractable by passing to a temporal
basis of P2 in (36a) that is orthogonal with respect to both scalar products

(θ, θ̃)1 := (θ′, θ̃′)L2(0,T ) + θ(T )θ̃(T ) and (θ, θ̃)0 := (θ, θ̃)L2(0,T ).(49)

Such a basis {θω}ω is obtained by solving the generalized eigenvalue problem

Find (θω, ω) ∈ P2× (0,∞) s.t. (θω, θ̃)1 = ω2(θω, θ̃)0 ∀θ̃ ∈ P2.(50)
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The first pairing is indeed positive definite on H1(0, T ) due to the T -term. In this temporal
basis, the preconditioner Ch is block-diagonal and each block is the B22 discretization Cωh , given
by Cωh v := (Bωv)|B22 , of the spatial symmetric positive definite biharmonic operator Cω :=
ω2 − ∆ + ν4∆2 with the homogeneous Neumann boundary conditions (and parameterized by
the temporal frequency ω > 0). Thus, applying the inverse of the space-time preconditioner Ch
amounts to solving a series of independent problems of the form Cωh u = f , which can be done in
parallel.

4.2. Multigrid-in-space preconditioner. Instead of solving Cωh u = f one can replace the
inverse of Cωh by a multigrid cycle (or another approximation such as the incomplete Cholesky
factorization). We follow the geometric multigrid procedure of [16, Section 4.1]. Starting with the
finest spatial mesh with 2Lx × 2Ly uniform rectangular elements, the mesh hierarchy is defined
by isotropic coarsening the mesh until there is a dimension with at most two elements. As the
prolongation we use the natural embedding, the restriction is its adjoint. For the pre- and post-
smoother we use the “scaled mass matrix smoother”, defined as the preconditioned Richardson
iteration v 7→ v + (λωmaxM)−1(f −Cωv), where M is the mass matrix, Cω = ω2M + A + ν4B
is the discretization of Cωh on the current level and for the given temporal frequency ω, and
λωmax is the maximal eigenvalue (precomputed numerically) of the generalized eigenvalue problem
Cωv = λωmaxMv. Note that the choice of the basis is irrelevant here. For the computation of λωmax,
the observation λωmax = λ0max + ω is useful.

The contraction factor of this multigrid is robust in the parameters ν and ω, as well as in the
mesh width: see Figure 1.

The multigrid method (with semi-coarsening in space) as proposed in [2] for preconditioning
linearized mean field games systems did not seem to be robust in ν.

5. Numerical examples

5.1. Implementation. We give here some details on the implementation.
As the starting values for the ALG2 iteration we use the zero vector.
The solution to (46) is approximated by the preconditioned conjugate gradient method,

φ(k+1)

h := φ(k)

h + PCG[Ah, (b
(k+1)

h −Ahφ(k)

h ), εpcg,maxitpcg, C
−1
h ],(51)

where C−1h is the approximation of the inverse of the preconditioner as described in Section 4.1
(basic preconditioner) or Section 4.2 (multigrid preconditioner). The PCG iteration is initialized
with the zero vector. We use the relative residual tolerance εpcg = 10−1, meaning that the iteration
terminates once the residual in the C−1h norm (defined by ‖r‖2 := 〈C−1h r, r〉) is reduced by the
factor εpcg. The maximal iteration number is set to maxitpcg = 100, but it is never attained in our
computations.

The discrete spatial biharmonic problems in the basic preconditioner (§4.1) are solved in Matlab
with the backslash operator.

The eigenvalue λωmax in the scaled mass matrix smoother in Section 4.2 is obtained from
λmax = λ0max +ω, where λ0max is approximated using the Matlab eigs routine on M−1C0 with flag
’LM’, the options opt.isreal = 1, opt.issym = 0, and with the default tolerance (the matrices
are assembled in the B-spline basis with a modification at the boundary ensuring the homogeneous
Neumann boundary condition). Unless specified otherwise, we use the W cycle with nsmooth = 5
pre- and post-smoothing steps on each level.

The minimizer of (47) is approximated by a Newton iteration on the derivative of the argument
with 20 iterations initializing with the values of the prior. The use of the Newton iteration (as
opposed to the implementation of the proximal operator as in [8, Appendix]) is justified because
the second derivative of the functional is still continuous in our examples. This allows to vectorize
the Newton iteration in our Matlab implementation, so that Step B takes significantly less time
than Step A.

The minimization problem (48) is solved approximately by a trust-region algorithm with Hessian
implemented in the Matlab optimization toolbox routine fminunc, and the result is used as the
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starting value for the same procedure until the relative improvement in the ‖ · ‖V norm is less than
10−10.

5.2. Example 1. In this example we consider the interval D = (−2, 2). The initial density
ρ0 = 1(−2,−1) is the indicator function of (−2,−1) ⊂ D. The terminal cost is Γ(ρ) = 103× 1

2 (ρ−ρT )2,
where ρT = 1(1,2) is the target terminal state. The running cost is A(ρ) = 1

2ρ
2. The Hamiltonian

is H(t, x, p) = 1
2 |p|

2 − 103 × 1t≤3/41|x|≤1/2, making the movement in the “no-go area” delimited
by |x| ≤ 1/2 relatively costly as long as t ≤ 3/4. This leads to the formation of a strong peak of
the density ρ(t, x) for t↗ 3/4 and x↗ −1/2. In order to resolve this behavior, we geometrically
refine the initial 28 × 28 equidistant mesh around t = 3/4 by halving the two temporal intervals
adjacent to t = 3/4 ten times; the same is done for t = 0 and for the spatial mesh around x = −1/2.
The resulting mesh has (28 + 30) × (28 + 20) = 78′936 space-time elements. We use the basic
preconditioner from Section 4.1. We perform 1′000 ALG2 iterations. The diffusion coefficient is
first set to ν = 10−1. The resulting density ρ behaves as expected: the initial density ρ0 and
the targeted terminal density ρT are well-captured, and the “no-go area” {t ≤ 3/4} × {|x| ≤ 1/2}
remains almost mass-free. Now we change the diffusion to ν = 1. The density is now smoothed out
in space, in particular eliminating the peak at t = 3/4.

5.3. Example 2. Here D = (−2, 2)× (−1/2, 1/2). The initial density is ρ0 = 1x≤−1 in the left
part of the domain. The terminal cost is Γ(ρ) := 103 × 1

2 (ρ − ρT )2, where ρT := 1x≥1 is the
target terminal state in the right part of the domain. The running cost is A(ρ) = 1

2ρ
2. The

Hamiltonian is H(t, x, p) = 1
2 |p|

2 − 103 × 12, restricting the movement in the rectangular area
2 := {|x| ≤ 1/2} × {|y| ≤ 1/4}. The computational mesh has 25 × (26 × 25) space-time elements.
We use the basic preconditioner from Section 4.1. We perform 1′000 ALG2 iterations. Temporal
snapshots of the density for ν = 10−1 and ν = 1 are shown in Figure 3.

5.4. Empirical convergence study. We empirically investigate the convergence of the ALG2 on
the example from Section 5.3. As the reference solution we take the discrete solution computed on
the finer mesh with 26× (27×26) space-time elements with 5′000 ALG2 iterations and the multigrid
preconditioner (§4.2). In Figure 4 we show the error of the discrete density ρ(k)

h and the discrete
cost φ(k)

h as the ALG2 iteration progresses, varying the spatial resolution (keeping the temporal
resolution at 25 elements), the PCG tolerance εpcg in (51), and the diffusion coefficient ν. The
preconditioner used is the basic preconditioner (§4.1) but the multigrid preconditioner produces
(§4.2) essentially the same results. The convergence rate is clearly mesh dependent, indicating
nonuniform convexity (with respect to the discretization) of the functional to be minimized, see
the discussion in Section 2.3. Moreover, for the larger diffusion coefficient ν = 1 we observe a
somewhat nonmonotonic convergence and 1′000 ALG2 iterations seem insufficient; this indicates
that 5′000 ALG2 iterations for the reference solution were also not quite enough. The average
number of PCG iterations is reported in Table 1.

The application of the preconditioner typically consumes the bulk of the time. The basic
preconditioner (with backslash for the solution of the bi-Laplace equations) takes around 7.5s on
the 25 × (26 × 25) mesh and around 375s on the 25 × (27 × 26) mesh; the multigrid preconditioner
0.9s and 8s, respectively.
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Figure 1. Contraction factor ρ(Id−MG ◦OP) of the multigrid from Section
4.2 for OP := ω2 −∆ + ν4∆2 on a uniform 2L × 2L mesh. Left: as a function of
the refinement level L and for varying number nsmooth of pre- and post-smoothing
iterations (V and W cycle), computed as the maximum over ν = 2−5, . . . , 23 and
ω = 2−5, . . . , 220. Right: as a function of ω for the W cycle with nsmooth = 5
starting on L = 8 and for varying ν = 2−5, . . . , 23.
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Figure 2. The example from Section 5.2. Density ρ in space-time (top) and its
temporal snapshots (bottom) with diffusion coefficient ν = 10−1 (left) and ν = 1
(right).
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Figure 3. The example from Section 5.3. Temporal snapshots ρh(t, ·) of the
computed density at t = n/13 for n = 1, 4, 7, 10, 13 (top to bottom). Diffusion
coefficient ν = 10−1 (left) and ν = 1 (right).

ν = 10−1 Basic, εpcg = MG, εpcg =
(Lx, Ly) 10−1 10−2 10−1 10−2

(4, 3) 3.0 5.0 3.0 5.4
(5, 4) 3.0 5.3 3.0 6.9
(6, 5) 3.0 6.7 3.0 7.0

ν = 1 Basic, εpcg = MG, εpcg =
(Lx, Ly) 10−1 10−2 10−1 10−2

(4, 3) 3.0 4.0 4.6 9.8
(5, 4) 3.0 4.7 3.7 9.7
(6, 5) 3.0 4.7 3.0 7.2

Table 1. Average number of PCG iterations over the first 500 ALG2 steps in
the convergence study in Section 5.4. Left/Right: ν = 0.1 / ν = 1. For ν = 1 with
the MG preconditioner, the number of PCG iterations tends to increase in the
course of the ALG2 iteration.
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Figure 4. Convergence of the discrete ALG2 iteration on the example from
Section 5.3 with the basic preconditioner (§4.1) for different spatial resolutions and
PCG tolerances in (51). Top to bottom: the discrete density ρ(k)

h in L2(J ;L2(D)),
the discrete cost function ρ(k)

h in H1(J ;L2(D)) and in L2(J ;H2(D)), and the
terminal variable e(k)

h in V. Left/Right: diffusion coefficient ν = 10−1 and ν = 1.
The multigrid precondtioner (§4.2) leads to very similar results.



PRECONDITIONING MEAN FIELD GAMES 13

References

[1] Yves Achdou and Italo Capuzzo-Dolcetta. Mean field games: numerical methods. SIAM J. Numer. Anal.,
48(3):1136–1162, 2010. 1

[2] Yves Achdou and Victor Perez. Iterative strategies for solving linearized discrete mean field games systems.
Netw. Heterog. Media, 7(2):197–217, 2012. 1, 8

[3] Yves Achdou and Alessio Porretta. Convergence of a Finite Difference Scheme to Weak Solutions of the System
of Partial Differential Equations Arising in Mean Field Games. SIAM J. Numer. Anal., 54(1):161–186, 2016. 1,
4

[4] Roman Andreev. Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations. SIAM J.
Sci. Comput., 38(1):A216–A242, 2016. 5

[5] Roman Andreev and Julia Schweitzer. Conditional space-time stability of collocation Runge–Kutta for parabolic
evolution equations. Electron. Trans. Numer. Anal., 41:62–80, 2014. 6

[6] Wolfgang Arendt and Ralph Chill. Global existence for quasilinear diffusion equations in isotropic nondivergence
form. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(3):523–539, 2010. 4

[7] Ivo Babuška and Tadeusz Janik. The h-p version of the finite element method for parabolic equations. II. The
h-p version in time. Numer. Meth. Part. D. E., 6:343–369, 1990. 6

[8] Jean-David Benamou and Guillaume Carlier. Augmented Lagrangian methods for transport optimization, mean
field games and degenerate elliptic equations. J Optimiz Theory App, pages 1–26, 2015. 1, 2, 3, 4, 5, 8

[9] Jean-David Benamou, Guillaume Carlier, and Filippo Santambrogio. Variational mean field games, 2016. To be
published in a special volume on “active particles”. 1

[10] Fabio Camilli and Francisco Silva. A semi-discrete approximation for a first order mean field game problem.
Netw. Heterog. Media, 7(2):263–277, 2012. 1

[11] Pierre Cardaliaguet, P. Jameson Graber, Alessio Porretta, and Daniela Tonon. Second order mean field games
with degenerate diffusion and local coupling. NoDEA Nonlinear Differential Equations Appl., 22(5):1287–1317,
2015. 1, 3, 4

[12] Elisabetta Carlini and Francisco J. Silva. A fully discrete semi-Lagrangian scheme for a first order mean field
game problem. SIAM J. Numer. Anal., 52(1):45–67, 2014. 1

[13] Jonathan Eckstein and Dimitri P. Bertsekas. On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Math. Programming, 55(3, Ser. A):293–318, 1992. 5

[14] Ivar Ekeland and Roger Témam. Convex analysis and variational problems, volume 28 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. 3

[15] Michel Fortin and Roland Glowinski. Augmented Lagrangian methods, volume 15 of Studies in Mathematics
and its Applications. North-Holland Publishing Co., Amsterdam, 1983. 1, 4

[16] Wolfgang Hackbusch. Multigrid methods and applications, volume 4. Springer-Verlag, Berlin, 1985. Second
printing 2003. 8

[17] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R.
Math. Acad. Sci. Paris, 343(10):679–684, 2006. 1

[18] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):229–260, 2007. 4

(R. Andreev) Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205
Paris, France

E-mail address: roman.andreev@upmc.fr


	1. Introduction
	2. ALG2 with diffusion
	2.1. Mean field games
	2.2. The predual problem
	2.3. On existence of minimizers
	2.4. ALG2 formulation

	3. Discretization
	3.1. Discrete spaces
	3.2. Discretized ALG2

	4. Preconditioning the Step A of ALG2
	4.1. Basic preconditioner
	4.2. Multigrid-in-space preconditioner

	5. Numerical examples
	5.1. Implementation
	5.2. Example 1
	5.3. Example 2
	5.4. Empirical convergence study

	References

