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1 Introduction

Biological sequence analysis has been largely studied from the 1990’s Altschul et al. , 1990; Watson ,
1995. In practice a biological sequence is considered as a succession of letters which belong to a finite set
{A1,..., A}t A score is a function s that gives a real number to any letter A;. For sequences of a given
type, the score permits to determine their physico-chemical properties, such as hydrophobicity. The local
score H,, of a sequence (Ay)1<kgn of length n, also called Smith and Waterman score, is defined by

J
H, = X 1
" odisisn kz: . ()
=1
where Xy = 0 and X, = s(Ag) for k > 1. It is usually supposed that the random variables (X;)1<i<n are
independent and identically distributed (i.i.d.). The random variable H,, plays a central role in the analysis
of biological sequences and therefore the calculation of its statistical significance is crucial. Using classical

tools of Markov chains, the authors in Mercier and Daudin , 2001 have proven that
P(H, >a)=(1,0,...,0)- 11" - (0,...,0,1), (2)

where Il is a (a+1)-square matrix linked to the distribution of (X;);>1 and the sign ’ stands for the transpose
of a matrix.

Relation (2) is usable when n is “small”. While n goes to infinity, the asymptotic behaviour of H,, depends
on the mean score value E[X]. It is a transition phase parameter Arratia and Waterman , 1994 because the
score grows as log(n) for E[X] < 0 Watson , 1995, as n for E[X] > 0 Watson , 1995 and as y/n for E[X] =0
Daudin et al. , 2003.

In the case where the mean score is negative and n is large, a Gumbel distribution fits to the asymptotic
distribution of H, minus a logarithmic term, namely

A n—00

1
P(Hn< Og”+a> ~ exp(—K* e, (3)

where A and K* depend on the distribution of (X;);>1. The proof of (3) is based on arguments coming
from renewal theory Karlin and Altschul , 1990; Karlin and Dembo , 1992.

When E[X] = 0, the asymptotic behaviour of the local score is derived using Brownian motion theory in
Daudin et al. , 2003 and
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with the rate of convergence established in Etienne and Vallois , 2003. The authors also derive an asymptotic
result whatever the sign of E[X] for large values of a:

2no O0p —a/v/n 2
P, 20) ~ 2/ exp <20/*f) , 5)

where 6, := y/n - E[X] and o := /Var(X).
The statistical analysis of the local score is still an active and challenging field, see reviews Lesk , 2005;
Karlin , 2005; Borodovsky and Ekisheva , 2006; Mitrophanov and Borodovsky , 2006 and recent articles
Wolfsheimer et al. , 2011; Xia et al. , 2015. Naturally, the length of the segment which realises the local score
is also of interest. More generally, motivated by sequences comparison, Arratia and Waterman Arratia and
Waterman , 1989 considered the longest head run larger than a given threshold. An asymptotic behaviour
of the length of segments of (X ), with cumulative score exceeding a given threshold is established when
E[X] < 0 in Dembo and Karlin , 1991,?. In Karlin and Ost , 1988, the author established a classical extremal
type limit law for the length of common words among a set of random sequences. More recently, Reinert
and Waterman Reinert and Waterman , 2007 proposed a result on the distribution for the length of the
longest exact match for a random sequence across another sequence.
In Chabriac et al. , 2014, the authors proposed a slightly different local score H, defined on adequately
truncated sequence, and introduced the associated length L (see Section 4 for details). When E[X] = 0,
using Brownian motion theory, they derived the asymptotic behaviour of

P(H; > vna; L, <nf), a>0,0<l<1. (6)
Moreover, it has been proven in Lagnoux et al. , 2015 that P(H,, = H}:) converges to an explicit value as
n — oo that traduces the fact that the probability that H,, is achieved on a final part of the sequence is
quite constant when n is large.
The goal of this paper is to illustrate the results based on the pair local score-length and the one on the
local score position. In Section 2, we measure with statistical tests how different approximations of the local
score distribution fit simulated sequences. In Section 3) we add the local score the length of the segment
that realises it and we study the induced changes with numerical simulations. In Section 4, we introduce
a new one dimensional statistic which is a function of the two above variables and we test its distribution.
Finally in different settings, we compare the classical local score with the one calculated over adequately
truncated sequences. This leads us to illustrate the result on the local score position.

2 Accuracy of the results for H,

2.1 First illustrations

In sequence comparison, the asymptotic behaviour of the empirical distribution of the local score H,,, when
n is large, is usually represented by the regression line of (z,log(—logP(H,, > x))). The approximation (3)
of Karlin et al. Karlin and Altschul , 1990 implies that

1
log (—logIP’ <Hn < Oin + a>> ~ log(nK™*) — Aa.

We determine regression lines for different values of n, where P(H,, < z) is calculated using the exact
method. We recover two facts (see Fig. 1): a common slope for the different lines and the value at the
origin that depends on n. However, to our knowledge, goodness-of-fit tests have never been done.

2.2 Goodness-of-fit tests for the local score

Now, we consider a N-sample of sequences of length n. For any sequence 1 < ¢ < N, we determine its
local score and then we perform Kolmogorov-Smirnov tests (see reminders in the Appendix) with different
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Figure 1: Three regression lines (z,log(—logP(H, > z))) obtained for n = 100, 1000 and 3000, where
P(H,, > z) has been calculated with the exact method. We observe a common slope while the value at the
origin log(nK™) differs according to of the sequence length n.

theoretical cumulative distribution functions F' (F(z) = P(H, < x)) and several distributions for X. We
consider three cases:

i the Karlin et al. limit, i.e. F(z) is equal to the right hand side of (3) with z = log(n)/\ + a and
E[X] < 0; We also consider its improvement proposed by Cellier et al. in Cellier et al. , 2003.

ii F(x) is defined as the right hand side of (4) and E[X] = 0;
iii the exact method: F' is the distribution function of (2) valid whatever the sign of the mean local score.

In case ii, i.e. when E[X] = 0, we consider the theoretical distribution of (2) defined by the right hand side
of (4) and (5). For different values of n, we compare these results with the ones obtained by the exact
method and we display them via a graphical representation in Fig. 2.

We now deal with the case E[X] # 0, i.e. items i and ii The results are given in Fig. 3, where N = 10%,
a = 99% and E[X] = —2. The horizontal line corresponds to the Kolmogorov-Smirnov 1%-quantile. The
graphs show that the exact method is always accepted as expected and the improved method introduced
by Cellier et al. is accepted as soon as the sequence length n is larger than 103. However, when the limit
distribution is the one of Karlin et al., the test is surprisingly often rejected even if n is large. For E[X] =0
and (4) and (5), the Kolmogorov-Smirnov distances for n < 4000 are much larger than in Fig. 3. The
adjustment hypothesis to the theoretical distribution is always rejected.

In Fig. 4, we observe how the Kolmogorov-Smirnov distance Dy is realised. For small local scores which
are not interesting in our context: the maximum distance (0.12) is attained at x such that the empirical
distribution of the sample ~ 70% or 90%. Recall that the Kolmogorov-Smirnov distance takes into account
the whole distribution: a local tool, centered to the extreme probabilities, will be more adapted.

3 Taking into account the length of the local score
The aim of this section is first to determine the sequences that are statistically interesting and second to

compare the results using the single local score H,, and the pair (H,, L,) where L,, is the length of the
(last) segment that realises the local score H,.
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Figure 2: Representation of P(H, < z) for each observed local score z in the sample using the exact
distribution given by (2) (z-axis) and the theoretical results based on (4) and (5) (y-axis). The logarithmic
scale allows to focus on the distribution tail.
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Figure 3: Goodness-of-fit tests for the local score for different theoretical distributions and E[X] = —2. The
approximation of Karlin et al. is very often rejected. Its improvement (denoted MCC) is rapidly accepted
while the exact method is always accepted as expected.
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Figure 4: Comparison of the approximated distribution for the local score H,, proposed by Karlin et al. and
an empirical one based on a Monte Carlo approach for 10° i.i.d. simulated sequences of length n = 3000. The
Kolmogorov distance (0.12) is realised for a local score corresponding to an exact probability about 70%.
Notice that considering only local scores with probabilities less than 5% (to focus on the region of interest),

the maximum distance is reduced to 0.013. The logarithmic scale allows us to focus on the distribution tail
but the Kolmogorov-Smirnov distance is not highlighted.

3.1 Wrongly classified sequences

We compare P(H,, > h; L, < ¢) and P(H,, > h) for some values of h and ¢ using a Monte Carlo scheme. For
a sequence (Xg)ogkgn, it is easy to determine H,, and L,,. The simulation of a sample of N sequences of
length n gives rise to (h”7i7€”7i)1gi<N' Naturally, P(H,, > hy, ;) (resp. P(Hy, = hyi; Ly, < £y,5)) is estimated
by its empirical probability i.e.

1 1
N Z UH, >h, ) (7“@519- N Z Vg, >h,3 1 {Lnéén,i}> :

i=1 i=1
The results can be seen in Fig. 5. Note that the inequality

implies that all the points of the scatter plot are above first bisector.
According to statistical significance based on the tool of p-values (see the Appendix for more details), a
sequence with H,, = h and L,, = ¢ is said a-wrongly classified if it is a-(H,, Ly,) significant but not a-H,,
ie.

P(H, > h) >a>P(H, > h; L, <{),

for a given level a € [0, 1]. Table 1 gives the percentage of wrongly classified simulated sequences for different
levels « and values of n.

3.2 Lists of the best significant sequences

We consider the 606 sequences of the SCOP file? and use the hydrophobic scale of Kyte and Doolitle Kyte
and Doolittle , 1982. For any sequence ¢, 1 < i < 606, n; stands for its length and h,,, (resp. l,,) denotes
its score (resp. the length that realises the local score). In this data set, the minimal value of n; is 18, the
maximal one is 404 and the mean of all the n;’s is 115.3. Fig. 6 gives the 606 observed local score and length
(hn;;ln; ) 1<i<eo6- Then, we estimate the probability P(H,,, > h,,) for all ¢, via the exact method based on

2CF scop2dom 20140205aa. http://scop2.mrc-lmb.cam.ac.uk/downloads/
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Figure 5: Each point represents one od the N = 10° simulated sequences of common length n = 100 with
coordinates the estimations of P(H,, > hy, ;; Ly, < l,,;) and P(H,, > h,, ;). Naturally, all the points are above
the z = y line by (7); but many are far from it.

Table 1: Percentage of wrongly classified sequences among simulated sequences for different levels o with
a distribution on {—5,...,45} such that E[X] = 0. For a = 5%, more than one third of the simulated
sequences are wrongly classified. Simulations have been done for i.i.d. simulated sequences with different
length n.

N n a=01% 1% 5%

10° 100 1.62% 11.70% 33.84%
5-10* 350 2.05% 12.44% 34.89%
104 1000 2.09% 12.61% 34.57%

(2)3. In order to compare the test based on the local score and the one making use of the local score-length,
we only consider the ten sequences i1, ...,i19 with the smallest probabilities for the local score:

P(Hn, >hn, )<...<P(H,, >h, ).
i1 i1 i10 i10

Then, for any k, 1 < k < 10, we simulate N = 10° i.i.d. sequences of length n;, and we estimate IP’(an >
b, s Ly, < by, ). The characteristics of the top ten sequences are gathered in Table 2. Three sequences,
called i11, 712 and 413, are added at the bottom of Table 2. Then we have ordered ]P’(Hnik > hnik ; Lnik <
h”k) for all 1 < k < 13 and mention the rank of each sequence in the last column. The new ordered list
based on the local score-length is different from the one considering the local score only. For instance, the
sequences of the bottom of Table 2 have a high local score probability but they have a low one considering
the local score-length. It would be possible to determine all the a-wrongly classified sequences but it would
be an heavy computationally task. Our purpose is just to show that the lists of ranked sequences using
either the local score or the local score-length are very different and thus the best significant sequences are
not the same.

3In that view, we need to estimate the distribution which is done on the 606 sequences.



Table 2: Topl0 local score list for the SCOP file? (top) and three wrongly classified significant sequences
(bottom). Exact proba. refers to the one of P(H,, > h,,), pair estimation means the estimation of
P(H,, > hn,,Ln, < {,,) and (Hp, L,) order is the order given by the probability of the pair. As those
observations are extremes, the estimations are not precised even for 10° simulated sequences.

ng  hp, A, p-value H, Pair (H,,L,)
order Estimation order
173 185 169 10°° 1 <1076 1
103 106 88 3.13-107* 2 5-107° 2
80 93 76 4.17-107¢ 3 3.10-10~* 4
94 100 85 4.03-10~* 4 2.50-10~*4 3
93 88 8 1.68-107* 5 1.24-1073 5
111 82 107 6.41-1073 6 5.81-1073 9
129 76 127 1.75-1072 7 1.69 - 1072 13
227 93 102 1.84-1072 8 2.94.1073 8
145 73 130 2.98-1072 9 2.64-1072 12
109 67 79 2.56-1072 10 1.37-1072 11
113 49 22 126-100T 33 1.37-1073 6
133 44 18 228-107!' 67 1.53-.1073 7
227 40 19 4.96-107!' 192 8.21-107° 10

Scop file (606 sequences) and hydrophobic scale

246
Top10 list for
Hn probability

8 247 | —— Wrongly classified

236 235%* 173
27

5
30% Qiss

Local score length Ln

Number = sequence length n

T T T T
0 50 100 150

Local score Hn

Figure 6: The values of (H,, L,) for the 606 sequences of the SCOP file! and the 10 sequences with the
lowest local score probability (red) and three sequences among the wrongly classified ones (green).

4 Accuracy of the results for the pair
4.1 Background and notation
The local score of Smith and Waterman defined by (1) can be rewritten as

H,, = max U, (8)

0<ysn
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Figure 7: Here, the local score is realised in a complete excursion: H, = H\.

where U; = Juax D hmint Xk =Dy Xk — min > Xp. (Ug)rso is the Lindley process defined recur-
A 1<igy

sively by
Up:=0 and U := Up_1+ Xp)", k> 1.

Let us define the maximum on complete excursions up to time n:

Hn = Hgn = 0gi‘a<)§n Uk? (9)

where g,, := max {k < n; Uy = 0}. The last time that achieves the maximum of U before g, is:

fri=max{k < gn; Uy =H}},

n

the left end-point of the excursion straddling f; is

gn =g =max{k < fr; Uy =0}

and LY = f* — g’ stands for the length of the (last) segment that realises the local score on complete
excursions. Obviously, the local score is realised on a complete excursion if and only if H = H,,. All the
r.v.’s introduced above can be viewed in Fig. 7.

The approximation of the distribution of (H, L) given in Chabriac et al. , 2014, Theorem 2.4 is based
on Donsker’s theorem which tells us that the random walk (Zle X;)o<k<n normalised by the factor 1/y/n
converges in distribution as n — oo to the Brownian motion (B(s))ogs<1- Then, let us define the process
(U™ (s))ogs<1:

k 1
Ut — ) = —=U, 0< k< 10

(n) Vit ! 1o
and U"(t) is extended to [0, 1] through a linear interpolation. Then (U"(t)),<,;, converges® weakly to the
reflected Brownian motion (U(t)),<,<; started at 0 Chabriac et al. , 2014, Proposition 3.2:

Similarly to the random walk setting, let H*(1) be the “local score” evaluated over all the complete excur-
sions from 0 up to time 1. Then H*(1) = H(g(t)) where H(s) is the classical local score over [0, s] and
g(t) is the last zero of U up to time ¢. Proposition 2.1 and Theorem 2.4 in Chabriac et al. , 2014 give the
density of the pair (H*(1), L*(1)) providing an approximation of the distribution of (H}//n, L% /n) as n
goes to infinity.

4The accuracy of this convergence had been illustrated in Appendix.
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Figure 8: Log-log plot of the empirical value of P(H,; < hy) (left) and P(H;/\/L}, < by, ;/+/T; ;) (right)
versus the theoretical value of its limit derived from Chabriac et al. , 2014, Theorem 2.4 with n = 350 and
n = 10%.

4.2 First illustrations

First, we consider the first marginal H of the pair (H}, L) and a sample of N = 10* sequences of length
n with E[X] = 0. The observed local scores on complete excursions are (h,*”) L<cicn- We represent in Fig. 8
(left) the log-log plot associated to the estimation of P(H, < h; ) and the theoretical value of its limit
derived from Chabriac et al. , 2014, Theorem 2.4. This picture may be linked to Fig. 2. We observe that

the “distance” between the “curve” and the diagonal decreases as n grows.

4.3 Goodness-of-fit tests for the pair

A statistical test based on the two-dimensional random variables (H}, L¥) is not easy to perform because
there are no satisfactory 2D-extensions of the Kolmogorov-Smirnov tests Peacock , 1983; Fasano and Frances-
chini , 1987; Lopes et al. , 2007; Justel et al. , 1997. All proposals fail on at least one of the points: being
independent of a reference basis on the space and/or being distribution-free.

One way to tackle the problem is to go back to dimension one using random projections Cuesta-Albertos
et al. , 2006; considering for instance the random variable H:/,/L%. The first reason comes from the scaling

property of the Brownian motion: for any A > 0, (B M)V t > O) remains a Brownian motion. Roughly

speaking the normalisation is in space over the square root of time. In our context, we are interested by
sequences which have a high local score and a small length. In that case, the ratio H}/\/LZ is large.

1

Consequently, a statistical test based on H:/ \/LT‘L takes into account exceptional sequences with respect to
the criterion local score/length.

We consider a N-sample of (H*, L) with N = 10%. As done previously, we represent in Fig. 8 (right) the log-
log plot associated to the empirical value of P(H}:/+/L¥ < hy, ./+/T; ) and the theoretical value of its limit
Chabriac et al. , 2014, Theorem 2.4. The convergence appears to be even slower than considering H;:. Then,
we perform a classical Kolmogorov-Smirnov test to check the adjustment of H}/+/L% to H*(1)//L*(1)
using the theoretical result in Chabriac et al. , 2014, Theorem 2.4. The results are summarized in Table 3.
Working with a = 1%, the threshold is 1.62810~2 and the null hypothesis is always rejected as in Subsection
2.2 and cases i with Karlin approximation and ii.

5 Local score position

Here we study how H; and the usual local score H,, may differ i.e. when the local score is realised on the
last incomplete excursion. Let us note p. = P(H, = H}). When E[X] = 0, Theorem 1.1 in Lagnoux et al. ,
2015 proves that p. = 30%: the probability that the local score is achieved at the final part of the sequence



Table 3: Kolmogorov-Smirnov distances for H;:/+/L? and the theoretical distribution derived in Chabriac
et al. , 2014, Theorem 2.4.

KS-stat. /n 100 350 500 1000 2000 5000 10000
H:/\/L} 0.80 087 0.89 090 091 092 093
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1
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0 2000 4000 6000 8000 10000

Sequence length n

Figure 9: Evolution of p. for different sequence lengths and E[X] values.

Table 4: Percentage of sequences achieving their local score on a complete excursion (SCOP
files?9).

Data base Nb of sequences Average length (max) [E[X] Percentage
SCOPT® 780 292 (1506) 2002 40%
SCOP22 606 115 (404) 023 64%

is about 70%. Note that it is also non intuitive that p. is quite constant for the centered case even if the
sequence length n increases and the number of complete excursions increases.

Here we illustrate this non-intuitive result when E[X] = 0. We also investigate numerically the case
E[X] < 0. We consider both simulated and real sequences: SCOP1° and SCOP2? datasets using the
hydrophobic scale Kyte and Doolittle , 1982. The results are represented in Table 4 and Fig. 9.

6 Conclusion

We realise goodness-of-fit tests for the distribution of H,//n using simulated sequences. The numerical
results show that the limit distribution proposed by Karlin et al. and the one given by (4) are often rejected.
In the 2D-setting, we introduce a new r.v. that allows us to apply the 1D-methodology. Using biological
sequences and considering both the (modified) local score H;: and the length of the segment that realises
it permits to exhibit new significant sequences. We observe on simulated sequences, that the local score
is achieved on a complete excursion with a probability that is an increasing function of n and E[X] (with

5SP scop2dom 20140205aa. http://scop2.mrc-lmb.cam.ac.uk/downloads/
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E[X] < 0) as well. In the biological setting of SCOP files, around half of the sequences realises its local score
on a complete excursion. Such new results are really promising for biologists and will lead to go further in
theoretical understanding.

Acknowledgement

Appendix

Statistical significance and p-values

In our context, a statistically significant or a biologically interesting sequence is a sequence presenting an
atypical segment that cannot be attributed to chance. It is then natural to introduce the following testing
procedure:

Ho : “The sequence is common and ordinary.”
H1 : “The sequence contains an atypical segment.”

Here, an exceptional local score H,, or a non-common value of the pair (H,, L,) means that the related
segment is atypical and contains relevant biological information. Significance in statistical hypothesis testing
is classically measured by the p-value. It is a function of the observed sample which is defined as the
probability of obtaining a result more “extreme” than what was actually observed, assuming that the null
hypothesis under consideration is true. In practice, we choose a level a and reject the null hypothesis H
as soon as p < .

Approximation validations

The goal is to give numerical values of the sample size N and the sequence length n necessary to achieve
“good” approximations in a sense to be precised.
First, consider a sample (X;)1<i<n of one-dimensional r.v. X and

N
KN = Zaxl (11)
i=1

be the associated empirical measure, where §, is the Dirac measure at x. According to Theorems 3.1 and
3.2 in Bobkov and Ledoux , 2014,

B0 = 0 (<) (12)

where g is the law of X and Wi(un,p) stands for the Wasserstein distance between ppy and pu. Note
that (12) implies that P(Wy(un,p) = ) = O (ﬁ) When X is a 2D-r.v., the rate of convergence of
E[Wi (un, 1)) is log(1 + N)/v/N Fournier and Guillin , 2015, Theorem 1.

Second, we study the linear interpolation (U"(t))o<;<; of (Uk)ocr, defined by (10). We perform a two-
sample Kolmogorov-Smirnov test and consider three different distributions driving the r.v. X:

i a standard Gaussian r.v.;
il a uniform distribution on [0,1], that is then standardized;
iii ar.v.on [—2,2] with probabilities (0.075,0.2,0.45,0.2,0.075).

Then we simulated three different processes (U"(t))y<;<, according to (10). In each case, we compute the
local score associated to the i-th interpolated sequence ((U;(?))y<,<; and the empirical c.d.f. Fiy (cf. (13))
associated with the sample. Then we perform a two sample Kolmogorov-Smirnov test as recalled below. In
practice, the simulations suggest to take a sample size N = 5000 and a sequence with length n = 2000 at

level 5%.
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Kolmogorov-Smirnov test

Goodness-of-fit tests of Kolmogorov—Smirnov type are the most widely used to decide whether it is rea-
sonable to assume that some one-dimensional data come from a given distribution. The problem is the
following: given a N-sample (X;)1<i<n of a r.v. X, can we accept that their underlying common distribu-
tion is a given F'? The null hypothesis H is naturally “The sample (X;)1<;cn is distributed as F”. To
carry out this test, Kolmogorov Kolmogorov , 1933 introduced the following distance between cumulative
distribution functions:
Dy =sup|Fn(z) — F(z)]
x

where Fly is the empirical c.d.f. associated to the sample

N
1
Fy(z) =+ D Uixia) (13)
=1

and F' is the cumulative distribution function we want to test the goodness-of-fit with. # is then rejected
at level a if VNDy > K, n where K, y is the a-quantile of vV NDy.

The Kolmogorov-Smirnov test is also used to test whether two samples share the same distribution Kol-
mogorov , 1941; Smirnov , 1934. In this case, the test statistic is

Dy n» = sup |Fi n(x) — Fon/ ()],

where F y and F5 ¢ are the empirical distribution functions of the first and second sample respectively of

size N and N’. The null hypothesis is then rejected at level « if Dy v > c(a)y/ 2. The value of c(a)

can be computed numerically.
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