
HAL Id: hal-01301235
https://hal.science/hal-01301235v1

Preprint submitted on 11 Apr 2016 (v1), last revised 3 May 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation of integral operators using
convolution-product expansions

Paul Escande, Pierre Weiss

To cite this version:
Paul Escande, Pierre Weiss. Approximation of integral operators using convolution-product expan-
sions. 2016. �hal-01301235v1�

https://hal.science/hal-01301235v1
https://hal.archives-ouvertes.fr


Approximation of integral operators using convolution-product

expansions

Paul Escande∗ Pierre Weiss†

April 11, 2016

Abstract

We consider a class of linear integral operators with impulse responses varying regularly
in time or space. These operators appear in a large number of applications ranging from
signal/image processing to biology. Evaluating their action on functions is a computation-
ally intensive problem necessary for many practical problems. We analyze a technique called
convolution-product expansion: the operator is locally approximated by a convolution, al-
lowing to design fast numerical algorithms based on the fast Fourier transform. We design
various types of expansions, provide their explicit rates of approximation and their com-
plexity depending on the time varying impulse response smoothness. This analysis suggests
novel wavelet based implementations of the method with numerous assets such as optimal
approximation rates, low complexity and storage requirements as well as adaptivity to the
kernels regularity. The proposed methods are an alternative to more standard procedures
such as panel clustering, cross approximations, wavelet expansions or hierarchical matrices.

Keywords: Integral operators, wavelet, spline, structured low rank decomposition, numerical
complexity, approximation rate, fast Fourier transform.
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1 Introduction

We are interested in the compact representation and fast evaluation of a class of space or time
varying linear integral operators with regular variations. Such operators appear in a large
number of applications ranging from wireless communications [RR04, HDMF10] to seismic data
analysis [GST77], biology [GVH06] and image processing [Saw72].

In all these applications, a key numerical problem is to efficiently evaluate the action of the
operator and its adjoint on given functions. This is necessary - for instance - to design fast
inverse problems solvers. The main objective of this paper is to analyze the complexity of a set
of approximation techniques coined convolution-product series.

We are interested in bounded linear integral operator H : L2(Ω) → L2(Ω) defined from a
kernel K by:

Hu(x) =

∫
Ω
K(x, y)u(y) dy. (1.1)

for all u ∈ L2(Ω), where Ω ⊂ Rd. Evaluating integrals of type (1.1) is a major challenge in
numerical analysis and many methods have been developed in the literature. Nearly all methods
share the same basic principle: decompose the operator kernel as a sum of low rank matrices
with a multi-scale structure. This is the case in panel clustering methods [HN89], hierarchical
matrices [BGH03], cross approximations [OT10] or wavelet expansions [BCR91]. The method
proposed in this paper basically shares the same idea, except that the time varying impulse
response T of the operator is decomposed instead of the kernel K. The time varying impulse
response (TVIR) T of H is defined by:

T (x, y) = K(x+ y, y). (1.2)

The TVIR representation of H allows formalizing the notion of regularly varying integral op-
erator: the functions T (x, ·) should be “smooth” for all x ∈ Ω. Intuitively, the smoothness as-
sumption means that two neighboring impulse responses should only differ slightly. Under this
assumption, it is tempting to approximate H locally by a convolution. Two different approaches
have been proposed in the literature to achieve this. The first one is called product-convolution
expansion of order m and consists of approximating H by an operator Hm of type:

Hmu =

m∑
k=1

wk � (hk ? u), (1.3)

where� denotes the standard multiplication for functions and the Hadamard product for vectors,
and ? denotes the convolution operator. The second one, called convolution-product expansion
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of order m, is at the core of this paper and consists of using an expansion of type:

Hmu =
m∑
k=1

hk ? (wk � u). (1.4)

These two types of approximations have been used for a long time in the field of imaging (and
to a lesser extent mobile communications and biology) and progressively became more and more
refined [TF92, NO98, FR05, GVH06, HDMF10, HSSH10, MP12, DTS+15]. In particular, the
recent work [DTS+15] provides a nice overview of existing choices for the functions hk and wk
as well as new ideas leading to significant improvements. Many different names have been used
in the literature to describe expansions of type (1.3) and (1.4) depending on the communities:
sectional methods, overlap-add and overlap-save methods, piecewise convolutions, anisoplanatic
convolutions, filter flow, windowed-convolutions,... The term product-convolution comes from
the field of mathematics [BS81]. We believe that it precisely describes the set of expansions of
type (1.3) and therefore chose this naming. Now that convolution-product expansions have been
described, natural questions arise:

i) How to choose the functions hk and wk?

ii) What is the numerical complexity of evaluating products of type Hmu?

iii) What is the resulting approximation error ‖Hm−H‖, where ‖ · ‖ is a norm over the space
of operators?

iv) How many operations are needed in order to obtain an approximation Hm such that
‖Hm −H‖ ≤ ε?

Elements i) and ii) have been studied thoroughly and improved over the years in the men-
tioned papers. The main questions addressed herein are points iii) and iv). To the best of our
knowledge, they have been ignored until now. They are however necessary in order to evaluate
the theoretical performance of different convolution-product expansions and to compare their
respective advantages precisely.

The main outcome of this paper is the following: under smoothness assumptions of type
T (x, ·) ∈ Hs(Ω) for all x ∈ Ω (the Hilbert space of functions in L2(Ω) with s derivatives in L2(Ω)),
most methods proposed in the literature - if implemented correctly - ensure a decay of type
‖Hm−H‖HS = O(m−s), where ‖·‖HS is the Hilbert-Schmidt norm. Moreover, this bound cannot
be improved uniformly on the considered smoothness class. By adding a support condition
of type supp(T (x, ·)) ⊆ [−κ/2, κ/2], the bound becomes ‖Hm − H‖HS = O(

√
κm−s). More

importantly, bounded supports allow reducing the computational burden. After discretization
on n time points, we show that the number of operations required to satisfy ‖Hm −H‖HS ≤ ε

vary from O
(
κ

1
2sn log2(n)ε−1/s

)
to O

(
κ

2s+1
2s n log2(κn)ε−1/s

)
depending on the choices of wk

and hk. We also show that the compressed operator representations of Meyer [Mey95] can be
used under additional regularity assumptions.

The paper is organized as follows. In section 2, we describe the notation and introduce
a few standard results of approximation theory. In section 3, we precisely describe the class
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of operators studied in this paper, show how to discretize them and provide the numerical
complexity of evaluating convolution-product expansions of type (1.4). Sections 4 and 5 contain
the full approximation analysis for two different kinds of approaches called linear or adaptive
methods. Section 6 contains a summary and a few additional comments.

2 Notation

Let a and b denote functions depending on some parameters. The relationship a � b means that
a and b are equivalent, i.e. that there exists 0 < c1 ≤ c2 such that c1a ≤ b ≤ c2a. Constants
appearing in inequalities will be denoted by C and may vary at each occurrence. If a dependence
on a parameter exists (e.g. ε), we will use the notation C(ε).

In most of the paper, we work on the unit circle Ω = R\Z sometimes identified with the
interval

[
−1

2 ,
1
2

]
. This choice is driven by simplicity of exposition and the results can be extended

to bounded domains such as Ω = [0, 1]d (see section 6.2). Let L2(Ω) denote the space of square
integrable functions on Ω. The Sobolev space Hs(Ω) is defined as the set of functions in L2(Ω)
with weak derivatives up to order s in L2(Ω). The k-th weak derivative of u ∈ Hs(Ω) is denoted
u(s). The norm and semi-norm of u ∈ Hs(Ω) are defined by:

‖u‖Hs(Ω) =
s∑

k=0

‖u(k)‖L2(Ω) and |u|Hs(Ω) = ‖u(s)‖L2(Ω). (2.1)

The sequence of functions (ek)k∈Z where ek : x 7→ exp(−2iπkx) is a Hilbert basis of L2(Ω) (see
e.g. [Kat04]).

Definition 2.1. Let u ∈ L2(Ω) and ek : x 7→ exp(−2iπkx) denote the k-th Fourier atom. The
Fourier series coefficients û[k] of u are defined for all k ∈ Z by:

û[k] =

∫
Ω
u(x)ek(x) dx. (2.2)

The space Hs(Ω) can be characterized through Fourier series.

Lemma 2.1 (Fourier characterization of Sobolev norms).

‖u‖2Hs(Ω) �
∑
k∈Z
|û[k]|2(1 + |k|2)s. (2.3)

Definition 2.2 (B-spline of order α). Let α ∈ N and m ≥ α+ 2 be two integers. The B-spline
of order 0 is defined by

B0,m = 1[−1/(2m),1/(2m)]. (2.4)

The B-spline of order α ∈ N∗ is defined by recurrence by:

Bα,m = mB0,m ? Bα−1,m = mαB0,m ? . . . ? B0,m︸ ︷︷ ︸
α times

. (2.5)
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The set of cardinal B-splines of order α is denoted Bα,m and defined by:

Bα,m =

{
f(·) =

m−1∑
k=0

ckBα,m(· − k/m), ck ∈ R, 0 ≤ k ≤ m− 1

}
. (2.6)

In this work, we use Daubechies wavelet bases on L2(R) [Dau88]. We let φ and ψ denote the
scaling and mother wavelets and assume that the mother wavelet ψ has α vanishing moments,
i.e.

∀0 ≤ m < α,

∫
[0,1]

tmψ(t)dt = 0. (2.7)

Daubechies wavelets satisfy supp(ψ) = [−α+1, α], see [Mal99, Theorem 7.9, p. 294]. Translated
and dilated versions of the wavelets are defined, for all j > 0 by

ψj,l(x) = 2j/2ψ
(
2jx− l

)
. (2.8)

The set of functions (ψj,l)j∈N,l∈Z , is an orthonormal basis of L2(R) with the convention ψ0,l =
φ(x − l). There are different ways to construct a wavelet basis on the interval [−1/2, 1/2]
from a wavelet basis on L2(R). Here, we use boundary wavelets defined in [CDV93]. We refer to
[Dau92, Mal99] for more details on the construction of wavelet bases. This yields an orthonormal
basis (ψλ)λ∈Λ of L2(Ω), where

Λ =
{

(j, l), j ∈ N, 0 ≤ l ≤ 2j
}
. (2.9)

We let Iλ = supp(ψλ) and for λ ∈ Λ, we use the notation |λ| = j.
Let u and v be two functions in L2(Ω), the notation u⊗ v will be used both to indicate the

function w ∈ L2(Ω× Ω) defined by

w(x, y) = (u⊗ v)(x, y) = u(x)v(y), (2.10)

or the Hilbert-Schmidt operator w : L2(Ω)→ L2(Ω) defined for all f ∈ L2(Ω) by:

w(f) = (u⊗ v)f = 〈u, f〉v. (2.11)

The meaning can be inferred depending on the context. Let H : L2(Ω)→ L2(Ω) denote a linear
integral operators. Its kernel will always be denoted K and its time varying impulse response
T . The linear integral operator with kernel T will be denoted J .

The following result is an extension of the singular value decomposition to operators.

Lemma 2.2 (Schmidt decomposition [Pin12, Theorem 2.2] or [Hel06, Theorem 1 p. 215]). Let
H : L2(Ω)→ L2(Ω) denote a compact operator. There exists two finite or countable orthonormal
systems {e1, . . .}, {f1, . . .} of L2(Ω) and a finite or infinite sequence σ1 ≥ σ2 ≥ . . . of positive
numbers (tending to zero if it is infinite), such that H can be decomposed as:

H =
∑
k≥1

σk · ek ⊗ fk. (2.12)

A function u ∈ L2(Ω) is denoted in regular font whereas its discretized version u ∈ Rn is
denoted in bold font. The value of function u at x ∈ Ω is denoted u(x), while the i-th coefficient
of vector u ∈ Rn is denoted u[i]. Similarly, an operator H : L2(Ω) → L2(Ω) is denoted in
upper-case regular font whereas its discretized version H ∈ Rn×n is denoted in upper-case bold
font.
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3 Preliminary facts

In this section, we gather a few basic results necessary to derive approximation results.

3.1 Assumptions on the operator and examples

All the results stated in this paper rely on the assumption that the TVIR T of H is a sufficiently
simple function. By simple, we mean that i) the functions T (x, ·) are smooth for all x ∈ Ω and
ii) the impulse responses T (·, y) have a bounded support or a fast decay for all y ∈ Ω.

There are numerous ways to capture the regularity of a function. In this paper, we assume
that T (x, ·) lives in the Hilbert spaces Hs(Ω) for all x ∈ Ω. This hypothesis is deliberately
simple to clarify the proofs and the main ideas.

Definition 3.1 (Class T s). We let T s denote the class of functions T : Ω × Ω → R satisfying
the smoothness condition: T (x, ·) ∈ Hs(Ω), ∀x ∈ Ω and ‖T (x, ·)‖Hs(Ω) is uniformly bounded in
x, i.e:

sup
x∈Ω
‖T (x, ·)‖Hs(Ω) ≤ C < +∞. (3.1)

Note that if T ∈ T s, then H is a mere Hilbert-Schmidt operator since:

‖H‖2HS =

∫
Ω

∫
Ω
K(x, y)2 dx dy (3.2)

=

∫
Ω

∫
Ω
T (x, y)2 dx dy (3.3)

=

∫
Ω
‖T (x, ·)‖2L2(Ω) dx < +∞. (3.4)

We will often use the following regularity assumption.

Assumption 3.1. The TVIR T of H belongs to T s.

In many applications, the impulse responses have a bounded support, or at least a fast spatial
decay allowing to neglect the tails. This property will be exploited to design faster algorithms.
This hypothesis can be expressed by the following assumption.

Assumption 3.2. T (x, y) = 0, ∀|x| > κ/2.

3.2 Examples

We provide 3 examples of kernels that may appear in applications. Figure 1 shows each kernel
as a 2D image, the associated TVIR and the spectrum of the operator J (the linear integral
operator with kernel T ) computed with an SVD.

Example 3.1. A typical kernel that motivates our study is defined by:

K(x, y) =
1√

2πσ(y)
exp

(
−(x− y)2

2σ2(y)

)
. (3.5)
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The impulse responses K(·, y) are Gaussian for all y ∈ Ω. Their variance σ(y) > 0 varies
depending on the position y. The TVIR of K is defined by:

T (x, y) =
1√

2πσ(y)
exp

(
− x2

2σ2(y)

)
. (3.6)

The impulse responses T (·, y) are not compactly supported, therefore, κ = 1 in assumption 3.2.
However, it is possible to truncate them by setting κ = 3 supy∈Ω σ(y) for instance. This kernel
satisfies assumption 3.1 only if σ : Ω→ R is sufficiently smooth. In figure 1, left column, we set
σ(y) = 0.08 + 0.02 cos(2πy).

Example 3.2. The second example is given by:

T (x, y) =
2

σ(y)
max(1− 2σ(y)|x|, 0). (3.7)

The impulse responses T (·, y) are cardinal B-splines of degree 1 and width σ(y) > 0. They
are compactly supported with κ = supy∈Ω σ(y). This kernel satisfies assumption 3.2 only if
σ : Ω → R is sufficiently smooth. In figure 1, central column, we set σ(y) = 0.1 + 0.3(1 − |y|).
This kernel satisfies assumption 3.1 with s = 1.

Example 3.3. The last example is a discontinuous TVIR. We set:

T (x, y) = gσ1(x)1[−1/4,1/4](y) + gσ2(x)(1− 1[−1/4,1/4](y)), (3.8)

where gσ(x) = 1√
2π

exp
(
−x2

σ2

)
. This corresponds to the last column in figure 1, with σ1 = 0.05

and σ2 = 0.1. For this kernel, both assumptions 3.1 and 3.2 are violated. Notice however that T
is the sum of two tensor products and can therefore be represented using only four 1D functions.
The spectrum of J should have only 2 non zero elements. This is verified in figure 1i up to
numerical errors.

3.3 Convolution-product expansions as low-rank approximations

Though similar in spirit, product-convolution (1.3) and convolution-product (1.4) expansions
have a quite different interpretation captured by the following lemma.

Lemma 3.1. The TVIR of the product-convolution expansion Tm in (1.3) is given by:

Tm(x, y) =

m∑
k=1

hk(x)wk(x+ y). (3.9)

The TVIR of the convolution-product expansion Tm in (1.4) is given by:

Tm(x, y) =

m∑
k=1

hk(x)wk(y). (3.10)
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Figure 1: Different kernels K, the associated TVIR T and the spectrum of the op-
erator J . Left column corresponds to example 3.1. Central column corresponds to
example 3.2. Right column corresponds to example 3.3.
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Proof. We only prove (3.10) since the proof of (3.9) relies on the same arguments. By definition:

(Hmu)(x) =

(
m∑
k=1

hk ? (wk � u)

)
(x) (3.11)

=

∫
Ω

m∑
k=1

hk(x− y)wk(y)u(y) dy. (3.12)

By identification, this yields:

Km(x, y) =
m∑
k=1

hk(x− y)wk(y), (3.13)

so that

Tm(x, y) =
m∑
k=1

hk(x)wk(y). (3.14)

As can be seen in (3.10), convolution-product expansions consist of finding low-rank approx-
imations of the TVIR. This interpretation was already proposed in [DTS+15] for instance and
is the key observation to derive the forthcoming results. The expansion (3.9) does not share this
simple interpretation and we do not investigate it further in this paper.

3.4 Discretization

In order to implement a convolution-product expansion of type 1.4, the problem first needs to be
discretized. Discretization is a hard problem in itself and we treat it superficially in this paper
with a Galerkin formalism. Let (ϕ1, . . . , ϕn) be a basis of a finite dimensional vector space V n of
L2(Ω). Given an operator H : L2(Ω) → L2(Ω), we can construct a matrix Hn ∈ Rn×n defined
for all 1 ≤ i, j ≤ n byHn[i, j] = 〈Hϕj , ϕi〉. Let Sn : H 7→Hn denote the discretization operator.
From a matrix Hn, an operator Hn can be reconstructed using, for instance, the pseudo-inverse
Sn,+ of Sn. We let Hn = Sn,+(Hn). For instance, if (ϕ1, . . . , ϕn) is an orthonormal basis of
V n, the operator Hn is given by:

Hn = Sn,+(Hn) =
∑

1≤i,j≤n
Hn[i, j]ϕi ⊗ ϕj . (3.15)

This paper is dedicated to analyzing methods denoted Am that provide an approximation
Hm = Am(H) of type (1.4), given an input operator H. Our analysis provides guarantees on
the distance ‖H −Hm‖HS depending on m and the regularity properties of the input operator
H, for different methods. Depending on the context, two different approaches can be used to
implement Am.
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• Compute the matrix Hn
m = Sn(Hm) using numerical integration procedures. Then create

an operator Hn
m = Sn,+(Hn

m). This approach suffers from two defects. First, it is only
possible by assuming that the kernel of H is given analytically. Moreover it might be
computationally intractable. It is illustrated below.

H -
Am

Hm
-

Sn
Hn

m
-

Sn,+
Hn
m

• In many applications, the operator H is not given explicitly. Instead, we only have access
to its discretization Hn. Then it is possible to construct a discrete approximation algo-
rithm Am yielding a discrete approximation Hn

m = Am(Hn). This matrix can then be
mapped back to the continuous world using the pseudo-inverse: Hn

m = Sn,+(Hn
m). This is

illustrated below. In this paper, we will analyze the construction complexity of Hn
m using

this second approach.

H -Sn
Hn -Am

Hn
m

-Sn,+
Hn
m

Ideally, we would like to provide guarantees on ‖H −Hn
m‖HS depending on m and n. In the

first approach, this is possible by using the following inequality:

‖H −Hn
m‖HS ≤ ‖H −Hm‖HS︸ ︷︷ ︸

εa(m)

+ ‖Hm −Hn
m‖HS︸ ︷︷ ︸

εd(n)

, (3.16)

where εa(m) is the approximation error studied in this paper and εd(n) is the discretization
error.

In the second approach, the error analysis is more complex since there is an additional bias
due to the algorithm discretization. This bias is captured by the following inequality:

‖H −Hn
m‖HS ≤ ‖H −Hn‖HS︸ ︷︷ ︸

εd(n)

+ ‖Hn −Am(Hn)‖HS︸ ︷︷ ︸
εa(m)

+ ‖Am(Hn)−Hn
m‖HS︸ ︷︷ ︸

εb(m,n)

. (3.17)

The bias εb(m,n) = ‖Am(Sn,+(Sn(H))) − Sn,+(Am(Sn(H)))‖HS accounts for the difference
between using the discrete or continuous approximation algorithm.

In all the paper, we assume - without mention - that εd(n) and εb(m,n) are negligible compared
to εa(m).

3.5 Implementation and complexity

Let F n ∈ Cn×n denote the discrete inverse Fourier transform and F ∗n denote the discrete Fourier
transform. Matrix-vector products F nu or F ∗nu can be evaluated in O(n log2(n)) operations
using the fast Fourier transform (FFT). The discrete convolution product v = h ? u is defined
for all i ∈ Z by v[i] =

∑n
j=1 u[i− j]h[j], with circular boundary conditions.
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Discrete convolution products can be evaluated in O(n log2(n)) operations by using the
following fundamental identity:

v = F n · ((F ∗nh)� (F ∗nu)). (3.18)

Hence a convolution can be implemented using three FFTs (O(n log2(n)) operations) and a
point-wise multiplication (O(n) operations). This being said, it is straightforward to implement
formula (1.4) with an O(mn log2(n)) algorithm.

Under the additional assumption that wk and hk are supported on bounded intervals, the
complexity can be improved. We assume that, after discretization, hk and wk are compactly
supported, with support length qk ≤ n and pk ≤ n respectively.

Lemma 3.2. A matrix-vector product of type (1.4) can be implemented with a complexity that
does not exceed O (

∑m
k=1(pk + qk) log2(min(pk, qk))) operations.

Proof. A convolution product of type hk ? (wk�u) can be evaluated in O((pk +qk) log(pk +qk))
operations. Indeed, the support of hk ? (wk � u) has no more than pk + qk contiguous non-
zeros elements. Using the Stockham sectioning algorithm [Sto66], the complexity can be further
decreased to O((pk+qk) log2(min(pk, qk))) operations. This idea was proposed in [HSSH10].

4 Projections on linear subspaces

We now turn to the problem of choosing the functions hk and wk in equation (1.4). The idea
studied in this section is to fix a subspace Em = span(ek, k ∈ {1, . . . ,m}) of L2(Ω) and to
approximate T (x, ·) as:

Tm(x, y) =

m∑
k=1

ck(x)ek(y). (4.1)

For instance, the coefficients ck can be chosen so that Tm(x, ·) is a projection of T (x, ·) onto Em.
We propose to analyze three different different family of functions ek: Fourier atoms, wavelets
atoms and B-splines. We analyze their complexity and approximation properties as well as their
respective advantages.

4.1 Fourier decompositions

It is well known that functions in Hs(Ω) can be well approximated by linear combination of
low-frequency Fourier atoms. This loose statement is captured by the following lemma.

Lemma 4.1 ([DL93, DeV98]). Let f ∈ Hs(Ω) and fm denote its partial Fourier series:

fm =
m∑

k=−m
f̂ [k]ek, (4.2)

where ek(y) = exp(−2iπky). Then

‖fm − f‖L2(Ω) ≤ Cm−s|f |Hs(Ω). (4.3)
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The so-called Kohn-Nirenberg symbol N of H is defined for all (x, k) ∈ Ω× Z by

N(x, k) =

∫
Ω
T (x, y) exp(−2iπky) dy. (4.4)

Illustrations of different Kohn-Nirenberg symbols are provided in figure 2.

Corollary 4.1. Set ek(y) = exp(−2iπky) and define Tm by:

Tm(x, y) =
∑
|k|≤m

N(x, k)ek(y). (4.5)

Then, under assumptions 3.1 and 3.2

‖Hm −H‖HS ≤ C
√
κm−s. (4.6)

Proof. By lemma 4.1 and assumption 3.1, ‖Tm(x, ·) − T (x, ·)‖L2(Ω) ≤ Cm−s for some constant
C and for all x ∈ Ω. In addition, by assumption 3.2, ‖Tm(x, ·)− T (x, ·)‖L2(Ω) = 0 for |x| > κ/2.
Therefore:

‖Hm −H‖2HS =

∫
Ω

∫
Ω

(Tm(x, y)− T (x, y))2 dx dy (4.7)

=

∫
Ω
‖Tm(x, ·)− T (x, ·)‖2L2(Ω) dx (4.8)

≤ κC2m−2s dx (4.9)

(4.10)

As will be seen later, the convergence rate (4.6) is optimal in the sense that no convolution-
product expansion of order m can achieve a better rate under the sole assumptions 3.1 and
3.2.

Corollary 4.2. Let ε > 0 and set m = dCε−1/sκ1/2se. Under assumptions 3.1 and 3.2, Hm

satisfies ‖H −Hm‖HS ≤ ε and products with Hm and H∗m can be evaluated with no more than
O(κ1/2sn log nε−1/s) operations.

Proof. Since Fourier atoms are not localized in the time domain, the modulation functions wk

are supported on intervals of size p = n. The complexity of computing a matrix vector product
is therefore O(mn log(n)) operations by lemma 3.2.

Finally, let us mention that computing the discrete Kohn-Nirenberg N costs O(κn2 log2(n))
operations (κn discrete Fourier transforms of size n). The storage cost of this Fourier represen-
tation is O(mκn) since one has to store κn coefficients for each of the m vectors hk.

In the next two sections, we show that replacing Fourier atoms by wavelet atoms or B-splines
preserves the optimal rate of convergence in O(

√
κm−s), but has the additional advantage of

being localized in space, thereby reducing complexity.
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Figure 2: Kohn-Nirenberg symbols of the kernels given in examples 3.1, 3.2 and 3.3
in log10 scale. Observe how the decay speed from the center (low frequencies) to the
outer parts (high frequencies) changes depending on the TVIR smoothness. Note: the
lowest values of the Kohn-Nirenberg symbol have been set to 10−4 for visualization
purposes.

4.2 Spline decompositions

Theorem 4.1 ([BV01, p. 87] or [DL93, p. 420]). Let f ∈ Hs(Ω) and define its projection on
Bα,m by:

fm = arg min
f̃∈Bα,m

‖f̃ − f‖22. (4.11)

If α ≥ s, then

‖f − fm‖2 ≤ C
√
κm−s‖f‖W s,2 . (4.12)

The following result directly follows.

Corollary 4.3. Set α ≥ s. For each x ∈ Ω, let (ck(x))0≤k≤m−1 be defined as the coefficients of
the projection of T (x, ·) on Bα,m:

(ck(x)) = arg min
(ck)

∥∥∥∥∥T (x, ·)−
m−1∑
k=0

ckBα,m(· − k/m)

∥∥∥∥∥
2

2

. (4.13)

Define Tm by:

Tm(x, y) =
m−1∑
k=0

ck(x)Bα,m(y − k/m). (4.14)

If α ≥ s, then, under assumptions 3.1 and 3.2,

‖Hm −H‖HS ≤ C
√
κm−s. (4.15)

Proof. The proof is similar to that of corollary (4.1).
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Corollary 4.4. Let ε > 0 and set m = dCε−1/sκ1/2se. Under assumptions 3.1 and 3.2 Hm

satisfies ‖H −Hm‖HS ≤ ε and products with Hm and H∗m can be evaluated with no more than

O
((
s+ κ1+1/2sε−1/s

)
n log2(κn)

)
(4.16)

operations. For small ε and large n, the complexity behaves like

O
(
κ1+1/2sn log2(κn)ε−1/s

)
. (4.17)

Proof. In this approximation, m B-splines are used to cover Ω. B-splines have a compact support
of size (α + 1)/m. This property leads to windowing vector wk with support of size p =
d(α+ 1) nme. Furthermore the vectors (hk) have a support of size q = κn. Combining these two
results with lemma 3.2 and corollary 4.3 yields the result for the choice α = s.

The complexity of computing the vectors ck is O(κn2 log(n)) (κn projections with complexity
n log(n), see e.g. [UAE93]).

As can be seen in corollary (4.4), B-splines approximations are preferable over Fourier de-
compositions whenever the support size κ is small.

4.3 Wavelet decompositions

Lemma 4.2 ([Mal99, Theorem 9.5]). Let f ∈ Hs(Ω) and fm denote its partial wavelet series:

fm =
∑

|µ|≤dlog2(m)e

cµψµ, (4.18)

where ψ is a Daubechies wavelet with α > s vanishing moments and cµ = 〈ψµ, f〉. Then

‖fm − f‖L2(Ω) ≤ Cm−s|f |Hs(Ω). (4.19)

A direct consequence is the following corollary.

Corollary 4.5. Let ψ be a Daubechies wavelet with α = s + 1 vanishing moments. Define Tm
by:

Tm(x, y) =
∑

|µ|≤dlog2(m)e

cµ(x)ψµ(y), (4.20)

where cµ(x) = 〈ψµ, T (x, ·)〉. Then, under assumptions 3.1 and 3.2

‖Hm −H‖HS ≤ C
√
κm−s. (4.21)

Proof. The proof is identical to that of corollary (4.1).

Proposition 4.1. Let ε > 0 and set m = dCε−1/sκ1/2se. Under assumptions 3.1 and 3.2 Hm

satisfies ‖H −Hm‖HS ≤ ε and products with Hm and H∗m can be evaluated with no more than

O
((
sn log2

(
ε−1/sκ1/2s

)
+ κ1+1/2snε−1/s

)
log2(κn)

)
(4.22)

operations. For small ε, the complexity behaves like

O
(
κ1+1/2sn log2(κn)ε−1/s

)
. (4.23)
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Figure 3: “Wavelet symbols” of the operators given in examples 3.1, 3.2 and 3.3
in log10 scale. The red bars indicate separations between scales. Notice that the
wavelet coefficients in kernel 1 rapidly decay as scales increase. The decay is slower for
kernels 2 and 3 which are less regular. The adaptivity of wavelets can be visualized
in Kernel 3: some wavelet coefficients are non zero at large scales, but they are all
concentrated around discontinuities. Therefore only a few number of couples (cµ, ψµ)
will be necessary to encode the discontinuities. This was not the case with Fourier or
B-spline atoms.

Proof. In (4.20), the windowing vectors wk are wavelets ψµ of support of size min((2s +

1)n2−|µ|, n). Therefore each convolution has to be performed on intervals of size |ψµ| + q + 1.
Since there are 2j wavelets at scale j, the total number of operations is:∑

µ | |µ|<log2(m)

(|ψµ|+ q + 1) log2(min(|ψµ|, q + 1)) (4.24)

≤
∑

µ | |µ|<log2(m)

((2s+ 1)n2−|µ| + κn) log2(κn) (4.25)

=

log2(m)−1∑
j=0

2j
(
(2s+ 1)n2−j + κn

)
log2(κn) (4.26)

=

log2(m)−1∑
j=0

(
(2s+ 1)n+ 2jκn

)
log2(κn) (4.27)

≤ ((2s+ 1)n log2(m) +mκn) log2(κn) (4.28)

=
(

(2s+ 1)n log2(ε−1/sκ1/2s) + ε−1/sκ1+1/2sn
)

log2(κn). (4.29)

Computing the vectors cµ costsO(κsn2) operations (κn discrete wavelet transforms of size n).
The storage cost of this wavelet representation is O(mκn) since one has to store κn coefficients
for each of the m functions hk.

As can be seen from this analysis, wavelet and B-spline approximations roughly have the
same complexity over the class T s. The first advantage of wavelets compared to B-splines is
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that the coefficients cµ(x) have a simple analytic expression, while B-splines coefficients ck are
found by solving a linear system. This is slightly more complicated to implement.

The second significant advantage of wavelets compared to B-splines with fixed knots is that
they are known to characterize much more general function spaces than Hs(Ω). For instance, if
all functions T (x, ·) have a single discontinuity at a given y ∈ Ω, only a few coefficients cµ(x) will
remain of large amplitude. Wavelets will be able to efficiently encode the discontinuity, while
B-splines with fixed knots - which are not localized in nature - will fail to well approximate
the TVIR. It is therefore possible to use wavelets in an adaptive way. This effect is visible on
figure 3c: despite discontinuities, only wavelets localized around the discontinuities yield large
coefficients. In the next section, we propose two other adaptive methods, in the sense that they
are able to automatically adapt to the TVIR regularity.

4.4 Interpolation VS approximation

In all previous results, we constructed the functions wk and hk in 1.4 by projecting T (x, ·)
onto linear subspaces. This is only possible if the whole TVIR T is available. In very large
scale applications, this assumption is unrealistic, since the TVIR contains n2 coefficients, which
cannot even be stored. Instead of assuming a full knowledge of T , some authors (e.g. [NO98])
assume that the impulse responses T (·, y) are available only at a discrete set of points yi = i/m
for 1 ≤ i ≤ m.

In that case, it is possible to interpolate the impulse responses instead of approximating
them. Given a linear subspace Em = span(ek, k ∈ {1, . . . ,m}), where the atoms ek are assumed
to be linearly independent, the functions ck(x) in (4.1) are chosen by solving the set of linear
systems:

m∑
k=1

ck(x)ek(yi) = Tm(x, yi) for 1 ≤ i ≤ m. (4.30)

In the discrete setting, under assumption 3.2, this amounts to solving dκne linear systems of
size m×m. We do not discuss the rates of approximation for this interpolation technique since
they are usually expressed in the L∞-norm under more stringent smoothness assumptions than
T ∈ T s. We refer the interested reader to [Sch73, DL93, Don92] for results on spline and wavelet
interpolants.

4.5 On Meyer’s operator representation

Up to now, we only assumed a regularity of T in the y direction, meaning that the impulse
responses vary smoothly in space. In many applications, the impulse responses themselves are
smooth. In this section, we show that this additional regularity assumption can be used to
further compress the operator. Finding a compact operator representation is a key to treat
identification problems (e.g. blind deblurring in imaging).

Since (ψλ)λ∈Λ is a Hilbert basis of L2(Ω), the set of tensor product functions (ψλ⊗ψµ)λ∈Λ,µ∈Λ

is a Hilbert basis of L2(Ω× Ω). Therefore, any T ∈ L2(Ω× Ω) can be expanded as:

T (x, y) =
∑
λ∈Λ

∑
µ∈Λ

cλ,µψλ(x)ψµ(y). (4.31)
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The main idea of the construction in this section consists of keeping only the coefficients cλ,µ
of large amplitude. A similar idea was proposed in the BCR paper [BCR91]1, except that the
kernel K was expanded instead of the TVIR T . Decomposing T was suggested by Beylkin at
the end of [Bey92] without a precise analysis.

In this section, we assume that T ∈ Hr,s(Ω× Ω), where

Hr,s(Ω×Ω) = {T : Ω×Ω→ R, ∂α1
x ∂α2

y T ∈ L2(Ω×Ω), ∀α1 ∈ {0, . . . , r},∀α2 ∈ {0, . . . , s}}. (4.32)

This space arises naturally in applications, where the impulse response regularity r might differ
from the regularity s of their variations. Notice that H2s(Ω× Ω) ⊂ Hs,s(Ω× Ω) ⊂ Hs(Ω).

Theorem 4.2. Assume that T ∈ Hr,s(Ω×Ω) and satisfies assumption 3.2. Assume that ψ has
max(r, s) + 1 vanishing moments. Let cλ,µ = 〈T, ψλ ⊗ ψµ〉. Define

Hm1,m2 =
∑

|λ|≤log2(m1)

∑
|µ|≤log2(m2)

cλ,µψλ ⊗ ψµ. (4.33)

Let m ∈ N, set m1 = dms/(r+s)e, m2 = dmr/(r+s)e and Hm = Hm1,m2. Then

‖H −Hm‖HS ≤ C
√
κm−

rs
r+s . (4.34)

Proof. First notice that

T∞,m2 =
∑

|µ|≤dlog2(m2)e

cµ ⊗ ψµ, (4.35)

where cµ(x) = 〈T (x, ·), ψµ〉. From corollary 4.5, we get:

‖T∞,m2 − T‖L2(Ω×Ω) ≤ C
√
κm−s2 . (4.36)

Now, notice that cµ ∈ Hr(Ω). Indeed, for all 0 ≤ k ≤ r, we get:∫
Ω

(∂kxcµ(x))2 dx (4.37)

=

∫
Ω

(
∂kx

∫
Ω
T (x, y)ψµ(y) dy

)2

dx (4.38)

=

∫
Ω

(∫
Ω

(∂kxT )(x, y)ψµ(y) dy

)2

dx (4.39)

≤
∫

Ω
‖(∂kxT )(x, ·)‖2L2(Ω)‖ψµ‖

2
L2(Ω) dx (4.40)

= ‖(∂kxT )‖L2(Ω×Ω) < +∞. (4.41)

Therefore, we can use lemma 4.2 again to show:

‖T∞,m2 − Tm1,m2‖L2(Ω×Ω) ≤ C
√
κm−r1 . (4.42)

1This was also the basic idea in our recent paper [EW15].
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Finally, using the triangle inequality, we get:

‖T − Tm1,m2‖HS ≤ C
√
κ(m−r1 +m−s2 ). (4.43)

By setting m1 = m
s/r
2 , the two approximation errors in the right-hand side of (4.43) are balanced.

This motivates the choice of m1 and m2 indicated in the theorem.

The approximation result in inequality (4.34) is worst than the previous ones. For instance if
r = s, then the bound becomes O(

√
κm−s/2) instead of O(

√
κm−s) in all previous theorems. The

great advantage of this representation is the operator storage: until now, the whole set of vectors
(cµ) had to be stored (O(κnm) values), while now, only m coefficients cλ,µ are required. For
instance, in the case r = s, for an equivalent precision, the storage cost of the new representation
is O(κm2) instead of O(κnm).

In addition, evaluating matrix-vector products can be achieved rapidly by using the following
trick:

Hmu =
∑

|λ|≤log2(m1)

∑
|µ|≤log2(m2)

cλ,µψλ ? (ψµ � u) (4.44)

=
∑

|µ|≤log2(m2)

 ∑
|λ|≤log2(m1)

cλ,µψλ

 ? (ψµ � u). (4.45)

By letting c̃µ =
∑
|λ|≤log2(m1) cλ,µψλ, we get

Hmu =
∑

|µ|≤log2(m2)

c̃µ ? (ψµ � u). (4.46)

which can be can be computed in O(m2κn log2(κn)) operations. This remark leads to the
following proposition.

Proposition 4.2. Assume that T ∈ Hr,s(Ω × Ω) and that it satisfies assumption 3.2. Set

m =

⌈(
ε

C
√
κ

)−(r+s)/rs
⌉

. Then the operator Hm defined in theorem 4.2 satisfies ‖H−Hm‖HS ≤ ε

and the number of operations necessary to evaluate a product with Hm or H∗m is bounded above

by O
(
ε−1/sκ

2s+1
2s n log2(n)

)
.

Notice that the complexity of matrix-vector products is unchanged compared to the wavelet
or spline approaches with a much better compression ability. However, this method requires a
preprocessing to compute c̃µ with complexity ε−1/sκ1/2sn.

5 Adaptive decompositions

In the last section, all methods shared the same principle: project T (x, ·) on a fixed basis for
each x ∈ Ω. Instead of fixing a basis, one can try to find a basis adapted to the operator at
hand. This idea was proposed in [FR05] and [DTS+15].
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Figure 4: Meyer’s representations of the operators in examples 3.1, 3.2 and 3.3 in
log10 scale.

5.1 Singular value decompositions

The authors of [FR05] proposed to use a singular value decomposition (SVD) of the TVIR in
order to construct the functions hk and wk. In this section we first detail this idea and then
analyze it from an approximation theoretic point of view. Let J : L2(Ω) → L2(Ω) denote the
linear integral operator with kernel T ∈ T s. First notice that J is a Hilbert-Schmidt operator
since ‖J‖HS = ‖H‖HS . By lemma 2.2 and since Hilbert-Schmidt operators are compact, there
exists two Hilbert bases (ek) and (fk) of L2(Ω) such that J can be decomposed as

J =
∑
k≥1

σk · ek ⊗ fk, (5.1)

leading to

T (x, y) =
+∞∑
k=1

σkfk(x)ek(y). (5.2)

The following result is a standard.

Theorem 5.1. For a given m, a set of functions (hk)1≤k≤m and (wk)1≤k≤m that minimizes
‖Hm −H‖HS is given by:

hk = σkfk and wk = ek. (5.3)

Moreover, if T (x, ·) satisfies assumptions 3.1 and 3.2, we get:

‖Hm −H‖HS = O
(√
κm−s

)
. (5.4)

Proof. The proof of optimality (5.4) is standard. Since Tm is the best rank m approximation of
T , it is necessarily better than bound (4.6), yielding (5.4).

Theorem 5.2. For all ε > 0 and m < n, there exists an operator H with TVIR satisfying 3.1
and 3.2 such that:

‖Hm −H‖HS ≥ C
√
κm−(s+ε). (5.5)
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Proof. In order to prove, (5.5), we construct a “worst case” TVIR T . We first begin by con-
structing a kernel T with κ = 1 to show a simple pathological TVIR. Define T by:

T (x, y) =
∑
k∈Z

σkfk(x)fk(y), (5.6)

where fk(x) = exp(2iπkx) is the k-th Fourier atom, σ0 = 0 and σk = σ−k = 1
|k|s+1/2+ε/2 for

|k| ≥ 1. With this choice,

T (x, y) =
∑
|k|≤N

2σk cos(2π(x+ y)) (5.7)

is real for all (x, y). We now prove that T ∈ T s. The k-th Fourier coefficient of T (x, ·) is given
by σkfk(x) which is bounded by σk for all x. By lemma 2.1, T (x, ·) therefore belongs to Hs(Ω)
for all x ∈ Ω. By construction, the spectrum of T is (|σk|)k∈N, therefore for any rank 2m + 1
approximation of T , we get:

‖T − T2m+1‖2HS ≥
∑

|k|≥m+1

1

|k|2s+1+ε
(5.8)

≥
∫ ∞
m+1

2

t2s+1+ε
dt (5.9)

=
1

2s+ ε

2

(m+ 1)2s+ε
(5.10)

= O(m−2s−ε), (5.11)

proving the result for κ = 1. Notice that the kernel K of the operator with TVIR T only depends
on x:

K(x, y) =
∑
|k|≤N

2σk cos(2πx). (5.12)

Therefore the worst case TVIR exhibited here is that of a rank 1 operator H. Obviously, it
cannot be well approximated by product-convolution expansions.

Let us now construct a TVIR satisfying assumption 3.2. For this, we first construct an
orthonormal basis (f̃k)k∈Z of L2([−κ/2, κ/2]) defined by:

f̃k(x) =

{
1√
κ
fk
(
x
κ

)
if |x| ≤ κ

2 ,

0 otherwise.
(5.13)

The worst case operator considered now is defined by:

T (x, y) =
∑
k∈Z

σ̃kf̃k(x)fk(y). (5.14)

Its spectrum is (|σ̃k|)k∈Z, and we get

|〈T (x, ·), fk〉| = |σ̃kf̃k(x)| = 1

κ
|σ̃k|. (5.15)
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By lemma 4.1, if σ̃k = κ
(1+|k|2)s|k|1+ε , then ‖T (x, ·)‖Hs(Ω) is uniformly bounded by a constant

independent of κ. Moreover, by reproducing the reasoning in (5.8), we get:

‖T − T2m+1‖2HS = O(κm−2s−ε). (5.16)

Even if the SVD provides an optimal decomposition, there is no guarantee that functions ek
are supported on an interval of small size. As an example, it suffices to consider the “worst case”
TVIR given in equation (5.6). Therefore, vectors wk are generically supported on intervals of
size p = n. This yields the following proposition.

Corollary 5.1. Let ε > 0 and set m = dCε−1/sκ1/2se. Then Hm satisfies ‖H−Hm‖HS ≤ ε and
a product with Hm and H∗m can be evaluated with no more than O(κ1/2sn log nε−1/s) operations.

Computing the first m singular vectors in (5.2) can be achieved in roughly O(κn2 log(m))
operations thanks to recent advances in randomized algorithms [HMT11]. The storage cost for
this approach is O(mn) since the vectors ek have no reason to be compactly supported.

5.2 The optimization approach in [DTS+15]

In [DTS+15], the authors propose to construct the windowing functions wk and the filters hk
using constrained optimization procedures. For a fixed m, they propose solving:

min
(hk,wk)1≤k≤m

∥∥∥∥∥T −
m∑
k=1

hk ⊗ wk

∥∥∥∥∥
2

HS

(5.17)

under an additional constraint that supp(wk) ⊂ ωk with ωk chosen so that ∪mk=1ωk = Ω. A
decomposition of type 5.17 is known as structured low rank approximation [CFP03]. This
problem is non convex and to the best of our knowledge, there currently exists no algorithm
running in a reasonable time to find its global minimizer. It can however be solved approximately
using alternating minimization like algorithms.

Depending on the choice of the supports ωk, different convergence rates can be expected.
However, by using the results for B-splines in section 4.2, we obtain the following proposition.

Proposition 5.1. Set ωk = [(k − 1)/m, k/m + s/m] and let (hk, wk)1≤k≤m denote the global
minimizer of (5.17). Define Tm by Tm(x, y) =

∑m
k=1 hk(x)wk(y). Then:

‖T − Tm‖2HS ≤ C
√
κm−s. (5.18)

Set m = dκ1/2sCε−1/se, then ‖Hm −H‖HS ≤ ε and the evaluation of a product with Hm or H∗m
is of order

O(κ1+1/2sn log(n)ε−1/s). (5.19)

Proof. First notice that cardinal B-Splines are also supported on [(k− 1)/m, k/m+ s/m]. Since
the method in [DTS+15] provides the best choices for (hk, wk), the distance ‖Hm − H‖HS is
necessarily lower than that obtained using B-splines in corollary 4.3.

Finally, let us mention that - owing to corollary 4.5 - it might be interesting to use the
optimization approach (5.17) with windows of varying sizes.
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6 Summary and extensions

6.1 A summary of all results

Table 1 summarizes the results derived so far under assumptions 3.1 and 3.2. In the particular
case of Meyer’s methods, we assume that T ∈ Hr,s(Ω × Ω) instead of assumption 3.1. As can
be seen in this table, different methods should be used depending on the application. The best
methods are:

• Wavelets: they are adaptive, have a relatively low construction complexity, and matrix-
vector products also have the best complexity.

• Meyer: this method has a big advantage in terms of storage. The operator can be repre-
sented very compactly with this approach. It has a good potential for problems where the
operator should be inferred (e.g. blind deblurring). It however requires stronger regularity
assumptions.

• The SVD and the method proposed in [DTS+15] both share an optimal adaptivity. The
representation however depends on the operator and it is more costly to evaluate it.

Method Approximation Product Construction Storage Adaptivity

Fourier 4.1 O
(
κ

1
2m−s

)
O
(
κ

1
2sn log(n)ε−

1
s

)
O(κn2 log(n)) O(mκn) 7

B-Splines 4.2 O
(
κ

1
2m−s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
O(κn2 log(n)) O(mκn) 7

Wavelets 4.3 O
(
κ

1
2m−s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
O(κsn2) O(mκn) 3

Meyer 4.5 O
(
κ

1
2m−

rs
r+s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
O(sn2) O(m) 3

SVD 5.1 O
(
κ

1
2m−s

)
O
(
κ

1
2sn log(n)ε−

1
s

)
O(κn2 log(m)) O(mn) 3

[DTS+15] 5.2 O
(
κ

1
2m−s

)
O
(
κ

2s+1
2s n log(n)ε−

1
s

)
High (iterative) O(mκn) 3

Table 1: Summary of the properties of different constructions. Approximation ≡
approximation rates in terms of m. Product ≡ matrix-vector product complexity to
get an ε approximation. Construction ≡ complexity of the construction of order m
representation. Storage ≡ cost of storage of a given representation. Adaptivity ≡
ability to automatically adapt to different input operators.

6.2 Extensions to higher dimensions

Most of the results provided in this paper are based on standard approximation results in 1D,
such as lemmas 4.1, 4.2 and 4.1. All these lemma can be extended to higher dimension and we
refer the interested reader to [DL93, Mal99, DeV98, Pin12] for more details.
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We now assume that Ω = [0, 1]d and that the diameter of the impulse responses is bounded
by κ ∈ [0, 1]. Using the mentioned results, it is straightforward to show that the approximation
rate of all methods now becomes

‖H −Hm‖HS = O(κd/2m−s/d). (6.1)

The space Ω can be discretized on a finite dimensional space of size nd. Similarly, all
complexity results given in table 1 are still valid by replacing n by nd, ε−1/s by ε−d/s and κ
by κd.

6.3 Extensions to least regular spaces

Until now, we assumed that the TVIR T belongs to Hilbert spaces (see e.g. assumption 3.1).
This assumption was deliberately chosen easy to clarify the presentation. The results can most
likely be extended to much more general spaces using nonlinear approximation theory results
[DeV98].

For instance, assume that T ∈ BV (Ω× Ω), the space of functions with bounded variations.
Then, it is well known (see e.g. [CDD+03]) that T can be expressed compactly on a Hilbert basis
of tensor-product wavelets. Therefore, the convolution-product expansion 1.4 could be used by
using the trick proposed in 4.46.

Similarly, most of the kernels found in partial differential equations (e.g. Calderòn-Zygmund
operators) are singular at the origin. Once again, it is well known [Mey95] that wavelets are
able to capture the singularities and the proposed methods can most most likely be applied to
this setting too.

A precise setting useful for applications requires more work and we leave this issue open for
future work.

6.4 Controls in other norms

In all the paper we only controlled the Hilbert-Schmidt norm ‖ · ‖HS . This choice simplifies the
analysis and also allows getting bounds for the spectral norm

‖H‖2→2 = sup
‖u‖L2(Ω)≤1

‖Hu‖L2(Ω), (6.2)

since ‖H‖2→2 ≤ ‖H‖HS . In applications, it often make sense to consider other operator norms
defined by

‖H‖X→Y = sup
‖u‖X≤1

‖Hu‖Y , (6.3)

where ‖ · ‖X and ‖ · ‖Y are norms characterizing some function spaces. We showed in [EW15]
that this idea could highly improve practical approximation results.

Unfortunately, it is not clear yet how to extend the extend the proposed results and algo-
rithms to such a setting and we also leave this question open for the future.
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7 Conclusion

In this paper, we analyzed the approximation rates and numerical complexity of convolution-
product expansions. This approach was shown to be efficient whenever the time or space varying
impulse response of the operator is well approximated by a low rank tensor. We showed that this
situation occurs under mild regularity assumptions, making the approach relevant for a large
class of applications. We also proposed a few original implementations of this methods based on
orthogonal wavelet decompositions and analyzed their respective advantages precisely. Finally,
we suggested a few ideas to further improve the practical efficiency of the method.
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[DTS+15] Löıc Denis, Eric Thiébaut, Ferréol Soulez, Jean-Marie Becker, and Rahul Mourya.
Fast approximations of shift-variant blur. International Journal of Computer Vision,
115(3):253–278, 2015.

[EW15] Paul Escande and Pierre Weiss. Sparse wavelet representations of spatially varying
blurring operators. SIAM Journal on Imaging Sciences, 8(4):2976–3014, 2015.

[FR05] Ralf C Flicker and François J Rigaut. Anisoplanatic deconvolution of adaptive optics
images. JOSA A, 22(3):504–513, 2005.

[GST77] LJ Griffiths, FR Smolka, and LD Trembly. Adaptive deconvolution: A new technique
for processing time-varying seismic data. Geophysics, 42(4):742–759, 1977.

[GVH06] Erez Gilad and Jost Von Hardenberg. A fast algorithm for convolution integrals with
space and time variant kernels. Journal of Computational Physics, 216(1):326–336,
2006.

[HDMF10] Tomasz Hrycak, Saptarshi Das, Gerald Matz, and Hans G Feichtinger. Low complex-
ity equalization for doubly selective channels modeled by a basis expansion. Signal
Processing, IEEE Transactions on, 58(11):5706–5719, 2010.

[Hel06] Aleksandr Yakovlevich Helemskii. Lectures and exercises on functional analysis,
volume 233. American mathematical society Providence, RI, 2006.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decom-
positions. SIAM review, 53(2):217–288, 2011.

[HN89] Wolfgang Hackbusch and Zenon Paul Nowak. On the fast matrix multiplication
in the boundary element method by panel clustering. Numerische Mathematik,
54(4):463–491, 1989.

[HSSH10] Michael Hirsch, Suvrit Sra, Bernhard Scholkopf, and Stefan Harmeling. Efficient
filter flow for space-variant multiframe blind deconvolution. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2010.

[Kat04] Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge University
Press, 2004.
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