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Hand-Dorsa Vein Recognition by Matching Local

Features of Multisource Keypoints
Di Huang, Member, IEEE, Yinhang Tang, Yiding Wang, Liming Chen, Senior Member, IEEE,

and Yunhong Wang, Member, IEEE

Abstract—As an emerging biometric for people identification,
the dorsal hand vein has received increasing attention in recent
years due to the properties of being universal, unique, permanent,
and contactless, and especially its simplicity of liveness detection
and difficulty of forging. However, the dorsal hand vein is usually
captured by near-infrared (NIR) sensors and the resulting image
is of low contrast and shows a very sparse subcutaneous vascu-
lar network. Therefore, it does not offer sufficient distinctiveness
in recognition particularly in the presence of large population.
This paper proposes a novel approach to hand-dorsa vein recog-
nition through matching local features of multiple sources. In
contrast to current studies only concentrating on the hand vein
network, we also make use of person dependent optical char-
acteristics of the skin and subcutaneous tissue revealed by NIR
hand-dorsa images and encode geometrical attributes of their
landscapes, e.g., ridges, valleys, etc., through different quantities,
such as cornerness and blobness, closely related to differential
geometry. Specifically, the proposed method adopts an effective
keypoint detection strategy to localize features on dorsal hand
images, where the speciality of absorption and scattering of the
entire dorsal hand is modeled as a combination of multiple (first-,
second-, and third-) order gradients. These features comprehen-
sively describe the discriminative clues of each dorsal hand. This
method further robustly associates the corresponding keypoints
between gallery and probe samples, and finally predicts the iden-
tity. Evaluated by extensive experiments, the proposed method
achieves the best performance so far known on the North China
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University of Technology (NCUT) Part A dataset, showing its
effectiveness. Additional results on NCUT Part B illustrate its
generalization ability and robustness to low quality data.

Index Terms—Hand-dorsa vein recognition, multilevel key-
point detection, optical properties of dorsa hand subcutaneous
tissue, oriented gradient maps (OGMs).

I. INTRODUCTION

D
RIVEN mainly by increasing requirements in public

security against terrorist activities, sophisticated crimes,

and electronic frauds, biometric solutions have witnessed an

accelerated pace of growth in the global market of secu-

rity over the past several decades. Recently, the vein has

emerged as a new biometric trait for the purpose of people

identification, and has received growing attention within the

community.

Anatomically, veins are blood carrying vessels interweaved

with muscles and bones, and the key function of the vascular

system is to supply oxygen to each part of the body. The spatial

arrangement of vascular network in the human body is stable

and unique, and vein patterns of individuals are different, even

between identical twins [1]. In this paper, we focus on the vein

pattern of the back of the hand (i.e., dorsal hand) because it

is distinctly visible, easy to acquire, and efficient to process.

As compared with other popular biometric traits, such as face

or fingerprint, the hand vein has several distinguished merits,

in particular the following ones.
1) Direct Liveness Detection: Hand veins are sensed using

far or near-infrared (NIR) lighting to capture the tem-

perature difference between hot blood flow inside vein

vessels and the surrounding skin, therefore, they can

only be imaged on the live body and the images taken

on nonlive bodies do not contain their spatial vein

arrangement.

2) Safety: Blood vessel patterns are hardwired underneath

the skin at birth; they are hence much harder for

intruders to forge.
The pattern of vein as a biometric trait is relatively recent. It

was not presented until 1990 when MacGregor and Welford [2]

came up with the system named “vein check” for identifica-

tion. Despite the vast vascular network in the human body,

hand veins are favored for their simplicity in terms of acqui-

sition and processing. In last decades, there exist increasing

amount of research works focusing on hand vein recognition

using the vein pattern in the palm part [3]–[5], the back of the

hand [6]–[8], or fingers [9].
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Fig. 1. Framework of the proposed approach, including comprehensive representation of optical properties through multiorder gradient quantities and robust
matching with scale-invariant feature transform (SIFT) based features.

Although there have been already several attempts on hand

vein recognition by adopting holistic techniques, e.g., prin-

cipal component analysis (PCA) [10], linear discriminant

analysis (LDA) [11], etc., the changes of viewpoint, lighting

intensity, distortion, and occlusion largely imped their devel-

opment. In contrast, local feature based approaches become

dominant due to its robustness to the aforementioned dis-

turbing factors. Most of the methods in the literature follow

the framework that first segments the region of interest and

the hand subcutaneous vascular network from the hand vein

image, and then extracts local geometric features for matching

such as the positions and angles of short straight vectors [12],

vein minutiae and knuckle shapes [1], endpoints and cross-

ing points [13], dominant points [3], etc. All these methods

demonstrate reasonable recognition rates on small databases

ranging from 32 [3] to 100 subjects [1], [7]. However,

when regarding the problem of dorsal hand vein recognition,

the above techniques suffer from very limited local features

because compared with the palm and finger part, the num-

ber of vein minutiae on the dorsal hand is really few, directly

leading to the deficiency in capturing the difference of hand

vein networks between subjects. Hand dorsa vein images are

mostly sensed by the NIR imaging system, irradiating the hand

dorsa with the NIR light. In delivering the vein pattern of

the hand dorsa, these images hence also convey the optical

properties, i.e., the absorption and scattering speciality, of the

skin and subcutaneous tissue which mainly consists of three

different layers, namely epidermis, dermis, and hypodermis.

The randomly inhomogeneous distribution of blood and vari-

ous chromophores and pigments produces variations of optical

properties of these skin layers that are subject dependent [14].

These optical properties are investigated as such in medicine

for various purposes, e.g., diagnostics, surgery, therapy. In this

paper, we propose to make full use of these optical properties

of the hand dorsa for people identification.

Specifically, in this paper, we propose a novel and effec-

tive approach to hand-dorsa vein recognition based on local

feature matching. Unlike the overwhelming majority of state

of the art techniques which only focus on the venous net-

work, the proposed method makes full use of discriminative

clues as offered by the optical properties of NIR dorsal hand

images that cover not only the vein areas but also their sur-

rounding skin and subcutaneous regions. In the same way

as the retinal image [15], the optical properties conveyed by

NIR dorsal hand images are interpreted as landscapes or sur-

faces, consisting of geometric features like ridges, valleys,

summits, etc. Their properties are comprehensively analyzed

using differential geometry quantities, resulting in a set of

keypoints of multiple-order gradient cues (from the first to

third order). More precisely, we introduce the Harris–Laplace

detector to characterize the elasticity, i.e., length and angle

variations, of the underlying surface, through the corner-

ness measurement of the first order gradients [16]. We then

describe the hand-dorsa vein areas which coincide with the

valley regions of the underlying landscape because of their

absorption and scattering properties. They are identified using

the Hessian–Laplace detector [17] which relies on the blob-

ness measurement of the Hessian matrix of the second order

gradients. In order to further thoroughly highlight shape

changes, i.e., the changes in optical properties, of the whole

hand dorsa skin and subcutaneous tissue, we also compute a

human vision inspired representation, namely oriented gradi-

ent maps (OGMs) [18], of the original image and then identify

feature points through the difference of Gaussian (DoG) [19].

Because OGMs are first order gradient based and DoG (an

approximation of Laplace of Gaussian, LoG) is second order

gradient based, these features are essentially third order gra-

dient based and correspond to the points whose curvatures

change most on the surfaces. Finally, the keypoints as detected

by the previous process between the hand-dorsa images of

the same subject are robustly associated using local feature

matching for decision making, accounting for moderate geo-

metrical transformations and possible lighting variations that

often occur in image acquisition. See Fig. 1 for the approach
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framework. The proposed approach is extensively evaluated

on North China University of Technology (NCUT) Part A

and NCUT Part B, both of which are among the largest dorsal

hand vein datasets so far known in the literature. Experimental

results clearly demonstrate the effectiveness of the proposed

method.

The contributions of this paper can be summarized as

follows.
1) We prove that dorsal hand vein based people identifica-

tion can not only rely on the vascular network, but also

depend on the optical characteristics, i.e., the absorption

and scattering properties, of surrounding skin as well

as subcutaneous tissue, since the randomly inhomoge-

neous distribution of blood and various chromophores

and pigments is subject dependent.

2) We interpret NIR dorsal hand images as landscapes

and surfaces and identify these keypoints of their optical

properties using geometric features through the quantities

of multiorder (i.e., the first-, second-, and third-order)

gradient cues, namely Harris cornerness measurement,

Hessian blobness measurement, and curvature extrema

by operating the DoG detector on a human vision inspired

image representation, OGMs, which are closely related

to the quantities in differential geometry.

3) We demonstrate that these keypoints as localized by

the aforementioned multiorder gradient based quantities

capture different geometric attributes corresponding to

complementary facets of the optical properties of the

vein network as well as its surrounding skin and subcuta-

neous tissue. As a result, we further propose to combine

these local features for identification and achieve the best

recognition accuracy so far known on the NCUT Part A

dataset.
Preliminary results appear in [20] and [21]. This paper

includes previous results but significantly extends them in the

following ways. Firstly, according to recent studies of optical

techniques for medicine, we state the motivation and the rational

of using both the hand vein area and the optical properties

of the surrounding skin and subcutaneous tissue in people

identification. Secondly, in the same way as retinal images, we

interpret hand dorsa vein images as landscapes or surfaces and

explain why the different facets of the optical properties of

the skin and subcutaneous tissue can be captured by geometric

features through quantities related with differential geometry.

Thirdly, because the keypoints are localized by multiorder

gradient quantities, i.e., Harris cornerness and Hessian blobness

measurements and OGMs with DoG, to represent different

optical characteristics of dorsal hand images, we further propose

an effective fusion approach that integrates and associates

these local features for matching. Fourthly, we comprehensively

evaluate the approach considering not only the identification

scenario as did in [20] and [21], but also the verification scenario,

thereby illustrating the general nature of the proposed method

for the most common applicative conditions. Finally, we also

assess and discuss the time complexity of the system.

The remainder of this paper is organized as follows.

Section II introduces the acquisition process of NIR dorsal

hand vein images. Section III presents the multilevel keypoint

Fig. 2. Illustration of the NIR imaging system.

Fig. 3. Hand-dorsa vein images. From the NCUT (a) Part A dataset and
(b) Part B dataset.

detection method and Section IV describes the OGMs based

dorsal hand representation. The local matching step is shown

in Section V. The experimental results of both scenarios in dor-

sal hand vein recognition and verification are displayed and

analyzed in Section VI. Section VII concludes this paper.

II. VEIN IMAGE ACQUISITION

Fig. 2 illustrates the system setup where an LED array

lamp is exploited to shine infrared light onto the back

of the hand. The incident infrared light can penetrate into

the biological tissue with an approximate depth of 3 mm,

and the randomly inhomogeneous distribution of blood and

various chromophores and pigments produces optical char-

acteristics, i.e., absorption and scattering properties that are

subject dependent [14]. Since the flow of hot blood inside

the vein network generally absorbs and scatters more infrared

radiation than the surrounding skin and subcutaneous tissue,

its curvilinear structures are imaged through a CCD camera

associated with an IR filter where the veins appear darker val-

leys whereas the surrounding skin and subcutaneous tissue

displays a landscape or surface, containing various features,

e.g., cliffs, ridges, plateaux, basins, etc., (see Fig. 3). The spec-

tral responses or the variations of these optical attributes of the

hand-dorsa skin and the subcutaneous tissue, including in par-

ticular the vascular network, are thus perfectly modeled by

using differential geometric quantities.

Using such a hardware setup depicted in Fig. 2, a database

of 2040 dorsal hand vein images of both hands of 102 subjects

was built by North China University of Technology in 2010,

and it was marked as the NCUT Part A database. In order to

make the device more practical, another sensor was proposed

by NCUT, in which a trade-off was considered between the

expenditure of hardware and the quality of hand vein images.
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The CCD camera and IR optical filter were substituted, leading

to around half reduction in total cost. Another dataset, namely

NCUT Part B, was collected through this novel device in 2011.

It consists of 2020 dorsal hand vein images of 101 subjects,

each of which owns 20 images; half for the left hand and half

for the right hand. In contrast to the NCUT Part A database,

NCUT Part B dataset is composed of dorsal hand vein images

under different acquisition conditions, and the images are more

noisy. Since the vein patterns are best described when the skin

on the dorsal hand is taut, a handle was mounted at the bottom

of the device to position the hand, and the images were thereby

roughly aligned. Fig. 3 shows samples of NCUT Part A and

Part B captured with a resolution of 640 by 480 pixels. There

were no major illumination variations, but moderate changes

in viewpoint (i.e., differing by rotations as well as translations)

still can occur since these images were collected in different

periods and environmental situations.

As we can see from Fig. 3, the pattern of the dorsal hand

vein is captured and it appears darker within the NIR image.

The widths of these vein profiles change in the range of

30 to 50 pixels. Even though the vein spatial arrangement

is visible, it is not very distinguishable from the surround-

ing bio-tissue. Furthermore, the number of local features,

e.g., endpoints and crossing points, is quite limited and usu-

ally varies from 5 to 10, thereby making local feature-based

approach questionable for the discriminative power as directly

applied to these dorsal hand images. On the other hand, the

spectral response of the surrounding skin as well as subcuta-

neous tissue translates the subject-dependent inhomogeneous

compositions of blood and various chromophores and pig-

ments, and their variations are also imaged by the NIR sensor.

In interpreting the hand vein image as a landscape or a sur-

face in the same way as retinal images [15], the key features of

these variations in absorption and scattering characteristics can

be perfectly captured through differential geometric properties,

e.g., cliffs, ridges, plateaux, basins, including in particular the

valley which corresponds to the vascular network. In order to

localize these geometric features and hence increase the num-

ber of local features for more distinctiveness, we propose to

make use of quantities closely related to differential geometry,

namely Harris cornerness and Hessian blobness measurements

grouped under the multilevel keypoint detection on the dorsal

hand image, and DoG based curvature extrema on a human

vision inspired representation, i.e., OGMs. They describe com-

plementary geometric attributes, and we introduce them in the

subsequent two sections, respectively.

III. MULTILEVEL KEYPOINT DETECTION

For local feature-based matching approaches, keypoint

detection is a critical step which is expected to locate a suf-

ficient number of local feature points for a comprehensive

description of the target image while providing some prop-

erties of invariance, e.g., scale, translation, rotation, etc. There

exist several state of the art keypoint detection methods, such

as DoG, Harris, Hessian, Harris–Laplace, Hessian–Laplace,

whose properties on textured gray level images have been

explicitly investigated by Roth and Winter [22] in object

TABLE I
COMPARISON OF DIFFERENT LOCAL FEATURE DETECTORS

retrieval (see Table I). However, due to the optical properties,

the dorsal hand vein image contains very few texture details.

In this section, we are interested in the geometric attributes of

these keypoint detectors when the underlying hand vein images

are interpreted as surfaces. This geometric analysis results in

the design of our multilevel keypoint detection for hand vein

images.

A. DoG Detector

DoG, proposed by Lowe [19], is one of the most widely

used detectors, and it serves the scale-invariant feature trans-

form (SIFT) feature extraction and matching.

The image is first repeatedly convolved with Gaussian filters

of different scales separated by a constant factor, k, to generate

an octave in the scale space. As for an input image, I(x, y),

its scale space is defined as a function, L(x, y, α), produced

by a convolution of a variable scale Gaussian G(x, y, α) with

the input image I, and the DoG function D(x, y, α) can be

computed from the difference of two nearby scales

D(x, y, α) = (G(x, y, kα) − G(x, y, α)) × I(x, y)

= L(x, y, kα) − L(x, y, α). (1)

The extrema of D(x, y, α) can be detected by compar-

ing each pixel value with those of its 26 neighbors within

a 3 × 3 area at the current and adjacent scales. At each

scale, gradient magnitude and orientation, m(x, y) and θ(x, y)

[as shown in (2) and (3)], are computed by exploiting pixel

differences. The confirmed stable extremes are regarded as the

scale-invariant keypoints located by DoG

m2(x, y) = (L(x + 1, y) − L(x − 1, y))2

+ (L(x, y + 1) − L(x, y − 1))2 (2)

θ(x, y) = tan−1 L(x + 1, y) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)
. (3)

DoG has proved competent at blob detection on gray level

images. In hand vein analysis, the optical properties of the vein

and its nearby tissue result in images with very limited texture

details. Therefore, DoG locates very few feature points which

are not located on hand vein regions [see Fig. 4(a)]. However,

when the dorsal hand image is considered as a surface, we can

give a geometric interpretation of these local features detected

by using DoG. In our implementation, DoG can be regarded

as an approximation of the Laplacian of Gaussian (LoG) with

the ratio of the scales equal to 1.6. In this case, the Laplacian

calculates the addition of these second partial derivatives and

delivers the sum of both the curvatures in the x and y direction.

Keeping this property in mind, we can see from Fig. 4(a) that

DoG has actually located a few points on the surface displayed
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Fig. 4. Distribution of keypoints detected by (a) DoG, (b) Harris–Laplace,
and (c) Hessian–Laplace (1000 clusters), on a hand-dorsa surface. DoG locates
very few feature points whose sums of x and y curvatures are extrema;
Harris–Laplace identifies the keypoints whose elasticities are greater than a
threshold; Hessian–Laplace detects the keypoints which carry shape informa-
tion in terms of curvatures, and localizes in particular the ones which densely
populate the valley regions corresponding to veins.

through the dorsal hand image whose sums of the curvatures in

the x and y directions are extrema either on ridges or on basins.

Of course, the number of these feature points is not sufficient

to comprehensively capture the whole geometric attributes of

the underlying surface. We therefore study other state of the art

local feature detection techniques and analyze their geometric

properties.

B. Harris and Hessian Keypoint Detection

From Table I, we can see that compared with DoG, the

other detectors, i.e., Harris, Hessian, Harris–Laplace, and

Hessian–Laplace, not only have high repeatability, but also

locate more keypoints on the gray level image. Both the

Harris–Laplace and Hessian–Laplace are similar with DoG

in the performance of scale invariance. Instead of Laplacian

approximation, Harris- and Hessian–Laplace apply the scale

normalized Laplacian to create the scale space which gives

the benefit to local feature extraction and matching.

Specifically, the Harris detector was proposed by

Harris and Stephens who defined the product of two

first derivation matrices [22]

µ =

[

I2
x (p) IxIy(p)

IxIy(p) I2
y (p)

]

=

[

A B

B C

]

(4)

and it responds to corner features on gray level images.

Ix and Iy denote the first derivation of the image I at posi-

tion p in the x and y direction, respectively. The corner

response threshold c calculated by avoiding the eigenvalue

decomposition of the second moment matrix above by

c =Det(µ) − k × Tr(µ)2
= (AC − B2) − k × (A + C)2. (5)

The Hessian matrix-based detector is similar with the

Harris detector but presents strong responses on blob features,

instead of the corner ones, because the Hessian matrix-based

detector replaces the elements of (4) with the second

derivation

MHe =

[

Ixx(p) Ixy(p)

Ixy(p) Iyy(p)

]

(6)

where Ixx and Iyy are the second derivatives of the image I at

the position p in the x and y direction, respectively; and Ixy is

the mixed derivative in both directions.

The two detectors above, i.e., Harris and Hessian, only

own the property of rotation invariance. To achieve scale

invariance, the scale normalized Laplacian S defined in (7) is

introduced as a scale selection criterion by Harris–Laplace and

Hessian–Laplace, and both detectors thus possess the property

of scale invariant as DoG does

S = s2
×

∣

∣Ixx(p) + Iyy(p)
∣

∣. (7)

While the Harris and Hessian keypoint detectors are mostly

analyzed in terms of properties of cornerness and blobness

on gray level images, they can also be described as geometri-

cal attributes on surfaces because of their close relationships

with the first and second fundamental forms in differential

geometry [23]. Indeed, the matrix of the Harris detector as

defined in (4) is related to the symmetric matrix of the fun-

damental form which characterizes the metric properties of

a surface, i.e., how the length and area are changed on the

surface with regard to the ambient space. In other words, the

matrix of Harris in (4) and the cornerness response in (5) char-

acterize somehow the elasticity of a surface as we can see in

Fig. 4(b). In this figure, the Harris–Laplacian detector locates

much more keypoints in comparison with DoG. Furthermore,

these keypoints cover the whole hand vein image and iden-

tify those points on the hand-dorsa surface whose elasticity is

greater than a given threshold. They can thereby contribute to

people identification using the optical properties of the hand

dorsa subcutaneous tissue.

In regard to the Hessian–Laplace detector, the matrix in (6)

with the second derivatives is related to the matrix of the sec-

ond fundamental form which characterizes how an embedded

surface is curved in the ambient space using curvature met-

rics, e.g., principal curvatures, mean, and Gaussian curvatures.

The Hessian–Laplace detector hence delivers keypoints on the

hand dorsa surface with shape clues in terms of curvatures.

As we can see in Fig. 4(c), the keypoints densely populate the

valley regions, i.e., the hand vein regions.

C. Design of Multilevel Keypoint Detection

Given the fact that both the vein and the optical attributes

of the surrounding subcutaneous tissue are subject dependent,

an effective way to characterize a person is to adopt the key-

points localized by the Harris–Laplace and Hessian–Laplace

detectors. The former captures the elasticity of the underly-

ing surface of the dorsal hand whereas the latter delivers the

points of shape information, in particular those populating the

valley regions of hand veins. The resulting method for locating

these keypoints is called in the subsequent multilevel keypoint

detector.

Some statistical analysis has been conducted along with

the experiments in this paper using the images on the NCUT

Part A database. DoG only detects less than ten keypoints on

each hand-dorsa image, and such a sparsity in local features

cannot provide sufficient distinctiveness and thus fails to result

in a reasonable recognition accuracy. When exploiting the

Harris–Laplace detector, we can averagely locate 640 keypoints,

and this number is indeed much larger than that of DoG.

Regarding Hessian–Laplace, around 3000 local features can

be found on each dorsal hand image, and this amount causes
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Fig. 5. 1000 selected keypoints located by the Hessian–Laplace detector,
based on (a) clustering and (b) strongest responses.

a sharp increase of computational cost in matching. We hence

consider selecting a subset of the most representative features.

Generally, it is straightforward to choose the strongest points

in terms of their responses in detection. However, those points,

achieved in this operation whose responses are higher than the

others, only distribute on the partial dorsal hand vein network

[as in Fig. 5(b)], leading to a loss in discriminative power. As a

result, to reduce the number of Hessian–Laplace based points

while keeping the distinctiveness, the number of keypoints is

reduced through clustering [as shown in Fig. 5(a)], where only

their locations (i.e., x and y coordinates) are considered. In our

case, the k-means algorithm is employed to randomly cluster

the points into 500, 700, and 1000, respectively, to balance

the performance and efficiency.

IV. OGMS BASED REPRESENTATION

In the previous section, we analyze the geometric proper-

ties of several state of the art keypoint detectors when dorsal

hand vein images are interpreted as surfaces, and propose a

multilevel keypoint detector to localize features not only on the

vein but also on its surrounding subcutaneous tissue. In this

section, we further increase the descriptive completeness of

these local features through an approach inspired by human

vision, using OGMs which are originally applied to repre-

sent the texture as well as shape information for 3-D face

recognition [24].

The objective of the OGMs is to provide a visual description

simulating the operation of human complex cells in the visual

cortex [25]. These complex neurons respond to a gradient at

a particular orientation and spatial frequency, but the location

of the gradient is allowed to shift over a small receptive field

rather than being precisely localized.

A. Representation of Complex Neuron Response

The proposed OGM based representation simulates the

response of complex neurons through a convolution of gradi-

ents in specific directions within a predefined neighborhood.

Since the scale of the dorsal hand vein image changes slightly

thanks to the hardware setup, we only employ a circular neigh-

borhood R, as demonstrated in Fig. 6. The precise radius value

of the circular area needs to be fixed experimentally. The

response of a complex neuron at a given pixel location is a

set of gradient maps in different orientations convolved by a

Gaussian kernel.

Specifically, given an input image (a dorsal hand vein

image in our case) I, a certain number of gradient maps

Fig. 6. Neighborhood of the complex neutrons is a circular area and its
radius can be changed according to the scale.

G1, G2,. . . ,Go, one for each quantized direction o, are firstly

computed. They are defined as

Go =

(

∂I

∂o

)+

. (8)

The “+” sign indicates that only the positive values are

kept to preserve the polarity of the intensity changes, and the

negative ones are set to zero.

Each of gradient maps describes gradient norms of the input

image in an orientation o at every pixel. We further simulate

the response of the complex neurons by convolving its gradient

maps with a Gaussian kernel G, and its standard deviation is

proportional to the radius value of the given neighborhood, R,

as in

ρR
o = GR ∗ Go. (9)

The purpose of the convolution with Gaussian kernels is to

allow the gradients to shift in a neighborhood without abrupt

changes.

At a given pixel location (x, y), we collect all values of

the convolved gradient maps at that location and form the

vector ρR(x, y), and it hence possesses a response value of

complex neurons for each orientation o

ρR(x, y) =
[

ρR
1 (x, y), . . . , ρR

O(x, y)
t
. (10)

ρR(x, y), is then normalized to an unit norm vector, which

is called response vector and denoted by ρR.

B. OGMs by Response Vectors

According to the definition of the response vector, the dor-

sal hand vein image can be represented by its perceived values

of complex neurons. Specifically, given a hand vein image I,

we generate an OGM Jo using complex neurons for each

orientation o defined as in

Jo(x, y) = ρR

o
(x, y). (11)

Fig. 7 depicts such a process applied to a dorsal hand vein

image. In this paper, we generate eight OGMs for eight pre-

defined quantized directions. Instead of the original NIR hand

dorsa images, these OGMs are thus exploited in the subsequent

local feature extraction and matching for identification.
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Fig. 7. OGMs describe a perceived near-infrared hand-dorsa vein image in
eight orientations.

C. Properties of Distinctiveness and Invariance

The OGMs potentially offer high distinctiveness since they

highlight the details of local texture changes. Meanwhile, they

also possess some interesting properties of robustness to affine

lighting variations.

When applied OGMs to dorsal hand vein images, they offer

the property of being robust to affine illumination transforma-

tions. Indeed, each OGM, Jo, is simply normalized convolved

gradient maps at the orientation o, while monotonic illumina-

tion change often adds a constant intensity value, as a result,

it does not affect the computation of gradients. Furthermore, a

change in image contrast in which the intensities of all pixels

are multiplied by a constant will lead to the multiplication of

gradient computation; however, such a contrast change will be

canceled by the normalization of response vectors.

OGMs can be made even rotation invariant if we choose to

quantize directions starting from that of the principal gradient

of all the gradients within the neighborhood, and the tolerance

to scale variations can also be largely improved by embedding

the multiscale strategy. Nevertheless, we do not perform such

steps to save computational cost as the dorsal hand vein images

in our study were already roughly aligned.

D. Design of the OGM Based Keypoint Detector

After the OGMs of a dorsal hand vein image are computed

to highlight the details of optical properties of the underly-

ing vein network and its nearby subcutaneous tissue, they are

then interpreted as retinal images [15], i.e., surfaces or land-

scapes, and their geometric attributes can be further analyzed.

In this paper, we concentrate on the variations of shape of

these OGM-based surfaces and employ DoG which identi-

fies the keypoints whose sums of curvatures in the x and y

directions change the most.

Fig. 8 demonstrates the distribution of the keypoints

detected by DoG, from the hand-dorsa vein image and its

corresponding OGMs, respectively. Because OGMs simulate

the operation of complex cells of the visual cortex and

therefore highlight the details of the vein patterns and their

surrounding subcutaneous tissue, DoG locates much more key-

points, including in particular the dorsal hand vein minutia,

on these OGM-based surfaces in comparison with the smooth

Fig. 8. Comparison in keypoint detection by DoG in the raw hand-dorsa vein
image (center) and its corresponding OGMs in the eight predefined quantized
orientations (around).

raw hand-dorsa vein surface, which comprehensively describe

these optical characteristics. The statistics that we computed

show that the average number of keypoints extracted from each

of OGM can rise up to 627, while that from the original dorsal

hand vein image is less than ten as stated in Section III. Fig. 8

illustrates this phenomenon.

Recall that the Harris–Laplace detector locates the key-

points whose elasticities are greater than a threshold from the

hand-dorsa surface and the Hessian–Laplace detector mostly

localizes the keypoints in the valley regions, i.e., the vein

areas. As compared to these features located by the multi-

level detector, i.e., Harris–Laplace as well as Hessian–Laplace,

DoG identifies the keypoints whose shape changes the most

at a given OGM-based surface. In the viewpoint of differen-

tial calculus, Harris–Laplace provides the first order gradient

information; Hessian–Laplace offers the second order gradient

information; whereas DoG associated with OGMs generates

the third order gradient information from an input hand-

dorsa surface. These keypoints are thus complementary for a

comprehensive description of the hand-dorsa vein image and

can be used for people identification through a local feature

matching process.

V. LOCAL FEATURE MATCHING

Once identified the keypoints using the multilevel keypoint

detection and DoG with OGM as described in the previous two

sections, we further extract the widely-used SIFT features [19]

at these positions to enable the matching between two dorsal

hand vein images for similarity measure computation and final

decision making.

A. SIFT-Feature Based Matching

For each detected keypoint, a feature vector is extracted as

a descriptor from these gradients of sampling points within its

neighborhood. In order to obtain the orientation invariance, the

coordinates and gradient orientations of sampling points in the

neighborhood are rotated relative with the keypoint orientation.

Then a Gaussian function is employed to assign a weight to the
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gradient magnitude of each point. Points close to the keypoint

are given more emphasis than the ones far from it (see [19] for

more details about the SIFT parameter setting). The orientation

histograms of 4×4 sampling regions are calculated, each with

eight orientation bins. Thus, a feature vector with a dimension

of 128 (4 × 4 × 8) is produced.

Given these local features extracted from the original image

pair or each of their corresponding OGM pairs in the gallery

and probe sets, respectively, the two sets of keypoints on dorsal

hands can be associated. Matching one keypoint to another is

accepted only if the similarity distance is below a predefined

threshold t times the distance to the second closest match. In

this paper, t is empirically set at 0.6 as in [19]. The number of

matched keypoints is accounted as the similarity measurement

between the gallery and probe samples, and a larger matching

score indicates a bigger probability that the hand-dorsa images

are from the same hand.

B. Score Level Fusion

For a hand-dorsa vein image, we extract a set of keypoints

of multiple sources, i.e., the multilevel detection based ones

directly localized on the original image by the Harris–Laplace

and Hessian–Laplace detectors as well as the ones detected by

DoG on its corresponding OGMs at different orientations. As

a result, multisource keypoint matches can be associated for

identification. We then combine their similarity measurements

at the matching score level to take all these contributions into

account for final decision making.

Specifically, we denote the number of the matched key-

points by NHarr for the ones localized using Harris–Laplace

and by NHess for the ones detected employing Hessian–Laplace

from the original hand-dorsa vein image pair; and by NOGMo

for the ones found exploiting DoG from each of their corre-

sponding OGM pairs at the oth direction. The bigger the value

of N is, the more likely that the two dorsal hand images belong

to the same subject, indicating that the similarity measure-

ments, i.e., NHarr, NHess, and NOGMo , are all with the positive

polarity (a bigger value means a better matching relationship).

A dorsal hand vein image in the probe set is compared with

the ones in the gallery set, respectively, leading to a matching

score vector. The nth element in a matching score vector corre-

sponds to the similarity between the probe and the nth gallery

sample. The score vectors from multiple sources are further

normalized to the interval of [0, 1] using the max-min rule.

These matching scores are finally fused by a basic weighted

sum rule

S =

o+2
∑

i=1

wi · Si. (12)

There are totally o + 2 similarity scores including the one

of SHarr, the one of SHess, and the ones (o) of SOGMo . The

corresponding weight wi is calculated dynamically during the

online step using the scheme as in [26]

wi =
max1(Si) − mean(Si)

max2(Si) − mean(Si)
(13)

where the operators max1(S) and max2(S) produce the first

and second maximum values of the score S, respectively. The

Fig. 9. Matching example between the dorsal hand vein images belonging to
the same person based on these keypoints detected using (a) Harris–Laplace
and (b) Hessian–Laplace. The matched keypoints marked in yellow boxes are
located in the vein region and the ones in red boxes are located in the nearby
subcutaneous tissue.

gallery dorsal hand vein image that holds the maximum value

is declared as the identity of the probe image.

C. Illustration of Matching Samples

Fig. 9 displays a matching example adopting multilevel

keypoint detection applied directly to the dorsal hand vein

image: i.e., Harris–Laplace [Fig. 9(a)] and Hessian–Laplace

[Fig. 9(b)]. According to the locations of the matched key-

points, they are highlighted by using two different colors. The

ones in the vein area are marked in yellow whilst the ones in

the surrounding subcutaneous tissue are marked in red. This

figure highlights the following facts: 1) the positions of the

keypoints provided by both the detectors, i.e., Harris–Laplace

and Hessian–Laplace, are different and the two sets of points

are complementary to each other and 2) these details out-

side the vein regions, i.e., these matched keypoints in the red

boxes, are as important as those within the vein regions in

final decision making.

Fig. 10 depicts a matching example between two hand-dorsa

images of the same subject utilizing OGMs with DoG. We

can observe a similar phenomenon and draw the same conclu-

sion, i.e., the clues conveyed within the vein region (marked

in yellow) and its surrounding subcutaneous tissue (marked

in red) are both discriminative; meanwhile, these OGMs at

different orientations contain complementary information.

VI. EXPERIMENTAL RESULTS

In order to comprehensively evaluate the proposed method,

we designed several experiments that are explicitly introduced

in the subsequent. The experiments (in Sections VI-A–VI-F)
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Fig. 10. Matching example using these OGM pairs of two left hands of the
same person. The left column from top to bottom: OGM1 to OGM4; while the
right column with the same order: OGM5 to OGM8. The matched keypoints
marked in yellow are located in the vein area and the ones marked in red are
detected in the nearby subcutaneous tissue.

were mainly conducted both in the scenarios of identification

and verification as in the state-of-the-art work using the NCUT

Part A database. In the meantime, to check the generalization

ability of the proposed approach, we also carried out additional

experiments (in Section VI-G) on NCUT Part B collected by

a device whose cost is only a half as that for Part A, and its

images are thus with more noise. Recall that both databases

are among the largest ones of NIR hand-dorsa vein images.

Part A contains ten right and ten left dorsal hand images,

respectively, for each of the 102 subjects (totally 2040 sam-

ples), while Part B consists of the same number of images from

both hands of 101 subjects (totally 2020 samples). All the hand

images were roughly aligned thanks to the hardware config-

uration, but they still have moderate viewpoint (i.e., rotation

and translation) and slight lighting intensity variations.

A. Effectiveness of Multilevel Keypoint Detection

We evaluated the effectiveness of the proposed multilevel

keypoint detection approach in terms of the rank-one recog-

nition rate in the scenario of identification. For experimental

setup, the first five images of a subject were used in the gallery

set and the remaining five images were exploited as probes.

Because it was found out that the hand vein pattern is unique

to some level for each person and each hand [27], we con-

sidered the left and right hand-dorsa vein images separately

as if we had 204 different subjects each of which possesses

ten samples in the dataset.

From the results in Table II, we can conclude in these points.
1) When we increase the number of these clustered cen-

ters (i.e., from 500 to 1000) for the keypoints detected

by Hessian–Laplace, the rank-one recognition rate is

improved, indicating that more keypoints lead to better

accuracy. As we continue to increase it, the improve-

ment is more and more limited. We thus set this number

at 1000 to balance the accuracy and time cost in the

following experiments to compute the performance of

Hessian–Laplace.

TABLE II
RESULTS OF DIFFERENT DETECTORS, i.e., HARRIS–LAPLACE AND

HESSIAN–LAPLACE AND THEIR DIFFERENT FUSION SCHEMES

FOR THE MULTILEVEL KEYPOINT DETECTION BASED

METHOD ON NCUT PART A

TABLE III
PERFORMANCE OF EACH OGM AND THEIR COMBINATION IN THE SETUP

OF LEFT-HAND ONLY, RIGHT-HAND ONLY, AND BOTH-HANDS

ON THE NCUT PART A DATABASE

2) Making use of a comparable number of detected

keypoints, the performance achieved by Harris–Laplace

is superior to that of Hessian–Laplace, demonstrat-

ing that the keypoints localized by Harris–Laplace,

including in particular the ones outside the vein areas,

provide more discriminative information than those

detected by Hessian–Laplace which mainly focuses on

the vein regions. This phenomenon further illustrates

the fact that these optical properties of subcutaneous

tissue surrounding the vein network convey subject

dependent cues.

3) No matter which score level fusion scheme (sum,

product, max, and min rule) we take, the recogni-

tion rate is better than either of the Harris–Laplace or

Hessian–Laplace, proving that the two detectors pro-

vide complementary clues to each other and highlighting

the effectiveness of the multilevel keypoint detection

approach. To keep the consistency in our approach,

the sum rule was used in the following experiments to

combine the results of Harris- and Hessian–Laplace.

B. Discriminative Power of OGMs

We then tested the discriminative power of the OGM based

image representation in terms of the rank-one recognition rate

in the identification scenario as well, following the same pro-

tocol as in the previous experiment. We calculated recognition

rates of each OGM (for different quantized orientations) and

their combination as displayed in Table III.

As we discussed in Section IV, each dorsal hand image has

quite limited number of keypoints if DoG is directly applied to

the original data, thus leading to a very partial description for

the following matching step. This observation was our major
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Fig. 11. Accuracy curves based on multilevel keypoint detection with respect
to the gallery size of each subject on NCUT Part A.

motivation to develop OGMs which simulate the response of

complex cells in the visual cortex in highlighting the gradients

at different orientations. In Table III, we can see that the fusion

of all these OGMs reaches a much better result than any of the

single one. Such a fact accords with our preliminary study for

this issue in adopting subspace techniques [28]. Unfortunately,

in that work, due to the sensitivity of holistic methods to NIR

intensity variations and hand geometric transformations, only

about 70%–80% rank-one recognition rates were reported even

with an easier experimental setup. Obviously, that performance

is not accurate enough for a biometric system.

Meanwhile, we can see that the results of these OGMs are

different, and the ones of OGM-1 and 5 are largely better

than the others. The reason lies in that most of the dorsal

hand veins are vertically distributed as shown in Fig. 8, which

can be best highlighted by the horizontal gradient responses,

i.e., OGM-1 and 5. Moreover, there exist a few horizontal and

oblique vein furcations, and their corresponding best gradient

responses are also necessary to comprehensively represent the

entire venous network. As a result, the joint use of all these

OGMs leads to the final highest score, indicated by the fusion

performance.

On the other hand, we compared these results in the three

columns of Table III, and found out that the performance only

using left hand images was comparable to that only using right

hand images. When left and right hand vein images were both

used and considered as captured from different subjects, the

result generally remains stable, showing that our method works

well as the class size is doubled.

C. Impact of Gallery Size

An important property of a biometric system is its sta-

bility when the gallery size changes. For this purpose, we

varied the number of gallery samples of each person from

1 to 9 (since at least one sample per person should be used

in the probe set) to analyze the impact of the gallery size

on the proposed method, employing the predefined experi-

mental setup in identification. We can find that the rank-

one recognition rate based on multilevel keypoint detection

decreases from 97.55% to 85.57% (as in Fig. 11) and the

accuracy by combining these OGMs at all orientations falls

Fig. 12. Accuracy curves based on individual OGMs and their combination
with respect to the gallery size of each subject on NCUT Part A.

TABLE IV
RANK-ONE RECOGNITION RATES OF KEYPOINT MATCHING IN EACH

SOURCE AS WELL AS THEIR COMBINATION, i.e., MULTIPLE

SOURCES, WITH RESPECT TO THE GALLERY SIZE OF

EACH SUBJECT ON NCUT PART A

from 99.02% to 83.88% (as in Fig. 12) when the gallery size

drops from 5 to 1. It indicates that the problem of limited

enrolled samples seriously challenges the biometric system.

In the meantime, we can also see that they both display cer-

tain robustness to such a challenge, and achieve acceptable

rank-one recognition rates at 92.52% and 91.42%, respec-

tively, when only two samples were enrolled as gallery for

each subject.

We highlighted in the previous sections the complementarity

of the two solutions proposed in this paper, i.e., the detection of

multilevel keypoints which focuses on the elasticity and shape

changes on the original hand-dorsa surface and DoG applied to

its OGMs which simulate the response of complex cells in the

visual cortex in highlighting these details through gradients at

different orientations. A natural alternative to further improve

the accuracy of the approach is to combine these scores of the

two solutions to account for both their descriptive power. We

adopt the weighted sum rule as defined in (12) for fusion, and

final performance is significantly improved. The entire system

reports a rank-one recognition rate up to 91.29% (as shown in

Fig. 13 and Table IV) with only one image of each subject in

the gallery set. As we can see in Table. IV and Fig. 13, these

multisource keypoints are consistently complementary.

These cumulative match characteristic (CMC) curves related

to different numbers (from 1 to 9) of enrolled samples in the

gallery set of each subject are provided in Fig. 14.
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Fig. 13. Accuracy curves based on different sources of keypoint matching
with respect to the gallery size of each subject on NCUT Part A.

Fig. 14. CMC curves based on multisource keypoint matching of different
numbers of gallery samples of each subject on NCUT Part A.

TABLE V
PERFORMANCE IN THE SCENARIO OF VERIFICATION OF THE

PROPOSED METHOD ON THE NCUT PART A DATASET

D. Verification Validation

We also performed experiments in the scenario of veri-

fication with the three modalities, i.e., multilevel keypoint

detection on the original images, DoG based keypoint detec-

tion on these OGMs of the images, as well as the combination

of the previous two modalities. For each subject, the first

image was regarded as the gallery and the remaining images

were treated as the probe samples to calculate the verification

rates (VR) at the false acceptance rate (FAR) of 0.001 and the

equal error rate (EER). Table V and Figs. 15 and 16 display

these results, from which we can draw similar conclusions as

in identification.

E. Comparison with the State of the Art

We compared the proposed method with the state of the art

ones on NCUT Part A as illustrated in Table VI. Specifically,

Wang et al. [29] firstly localized the vein network on the

Fig. 15. Receiver operating characteristic (ROC) curves between FAR and
VR of the proposed method on the NCUT Part A dataset.

Fig. 16. ROC curves between FAR and false rejection rate (FRR) of the
proposed method on the NCUT Part A dataset.

TABLE VI
COMPARISON WITH THE STATE OF THE ART IN RANK-ONE

RECOGNITION RATE ON THE NCUT PART A DATASET

dorsal hand; then represented the detection result as a binary

image, and finally applied SIFT for the matching step. Such

an approach was originally introduced by Ladoux et al. [5] for

the purpose of hand-palm vein identification. As we can see

from that table, when only the vein regions are used as in [29],

the accuracy is only 78.68% with the first four samples in the

gallery and the other six as probes, thereby far behind the per-

formance achieved by the proposed approach. This comparison

confirms once more the importance of considering the optical

properties of the whole hand-dorsa image. Our result is also

higher than the best one reported in [29] that was achieved

by adopting the relationship of multiple gallery samples of

each subject. Wang et al. [8] employed an improved version
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TABLE VII
COMPARATIVE SUMMARY OF RELATED WORK ON DORSAL HAND VEIN BASED IDENTIFICATION AND VERIFICATION ON DIFFERENT DATABASES

TABLE VIII
RESULTS OF LEFT HAND ONLY, RIGHT HAND ONLY, AND THEIR

FUSION USING DIFFERENT NUMBERS OF GALLERY SAMPLES

ON THE NCUT PART A DATASET

of the local binary patterns (LBP), namely circular partition

local binary patterns (CP-LBP), and achieved a recognition

rate of 90.88% with five hand vein images in the gallery set

and the remaining 5 ones used as probes. With this protocol,

Zhu and Huang [30] evaluated their approach via hierarchi-

cally combining the LBP based texture features and graph

matching based geometric features, and a rank-one recogni-

tion rate of 97.67% was reported. In our case, a better result

is obtained by using such an experimental setup. A compara-

ble performance was generated in [6], but in their experiments

only a subset of the dataset (150 gallery and probe images of

15 persons) was exploited for evaluation. These facts clearly

demonstrate the effectiveness of the proposed approach for

dorsal hand vein recognition.

For further information and comparison, Table VII summa-

rizes major state of the art approaches for the issue of dorsal

hand vein based people identification and verification. As we

can see, the proposed method achieves competitive results in

both the scenarios of identification and verification while using

a more comprehensive dataset.

F. Complementarity of Left and Right Hands

Since vein patterns are different to some level for both hands

of the same individual [27], intuitively, the left and right hands

of one person should possess complementary information for

recognition. In the experiment, we further investigated such

an answer to this problem by fusing the similarity measure-

ment of each hand using the weighted sum rule as the other

fusion steps in this paper. We can see from Table VIII that the

accuracy based on the fusion of both hands (in the third col-

umn) always outperforms that based on either of single hand

TABLE IX
RANK-ONE RECOGNITION RATES OF KEYPOINT MATCHING IN

EACH SOURCE AS WELL AS THEIR COMBINATION, i.e.,
MULTIPLE SOURCES, WITH RESPECT TO THE GALLERY

SIZE OF EACH SUBJECT ON NCUT PART B

TABLE X
PERFORMANCE IN THE SCENARIO OF VERIFICATION OF THE

PROPOSED METHOD ON THE NCUT PART B DATASET

(in the first and second columns), and we can achieve a rank-

one recognition rate of 98.15% even using one enrolled sample

per hand for each subject. These results thus suggest that the

use of left and right hands can further reinforce the robust-

ness and the performance of the proposed hand vein based

biometric system.

G. Evaluation on Generalization Ability

The previous experimental results suggest that the proposed

method achieves very good performance on the NCUT Part A

dataset. A key question, nevertheless, is whether it generalizes

to other databases. We aim to answer this question using the

novel NCUT Part B dataset. It roughly keeps the same size as

NCUT Part A, but the hand vein images are more noisy since

they were captured using a low cost device. We conducted both

scenarios of identification as well as verification, and adopted

the same protocols as in Tables IV and V, respectively.

We can observe from Tables IX and X that the conclu-

sions achieved on NCUT Part B are consistent with the

ones on Part A, i.e., the joint utilization of multiple key-

points to characterize these optical attributes of entire dor-

sal hand images improves the performance in comparison

with those local feature-based approaches using single ones.
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Fig. 17. Matching the keypoints across (a) scale variations and (b) translations (in both sub-figures, left column from top to bottom: Harris–Laplace, DoG
on OGM1, DoG on OGM3, DoG on OGM5, and DoG on OGM7 and right column from top to bottom: Hessian–Laplace, DoG on OGM2, DoG on OGM4,
DoG on OGM6, and DoG on OGM8).

TABLE XI
AVERAGE CONSUMED TIME OF EACH COMPONENT OF THE

DORSAL HAND VEIN RECOGNITION SYSTEM

Furthermore, when we compare the accuracies on NCUT

Part A and NCUT Part B (i.e., Table IV versus Table IX and

Table V versus Table X), it can be seen that the proposed

method reports competitive accuracies on NCUT Part B as

well, quite close to the ones achieved on NCUT Part A. These

results thereby suggest a quite good generalization skill of

the proposed approach to dorsal hand vein recognition which

further displays the robustness to noise caused by the cost

decrease in the device of data acquisition.

H. Complexity Analysis

Real-life applications require a fast runtime in field deploy-

ment. The major cost centers in our system lie in multisource

keypoint detection, SIFT feature extraction, and matching. We

therefore focused our attention on optimizing these procedures.

Primarily, we optimally coded them using C++. Given the fact

that each process on a single type of keypoints, i.e., the ones

provided by Harris–Laplace, Hessian–Laplace, and OGMs, is

separated, we then utilized multithreading implementation of

the entire system so that they can operate in parallel. In each

process, the matching stage was further optimized and made

20 times faster in efficiency through GPU. Finally, the overall

time cost is the maximum of the individual processes (i.e., the

Hessian–Laplace based process). Table XI shows the details.

As we can see in Table XI, the method currently costs about

128 ms to achieve a 1-to-1 verification, including multisource

keypoint detection (72 ms for the Hessian–Laplace based step)

and SIFT feature extraction (52 ms) on the given probe and

its matching with the gallery (4 ms), by using a machine

equipped with two Intel (R) Xeon E5-2620 v2 CPUs (12-core,

2.6 GHz), 16 GB RAM, and a GTX 780 graphics card. When

dealing with recognition, keypoint detection and local feature

extraction on the probe are conducted online only once, while

the time cost in matching is multiplied by the number of the

gallery samples (1-to-N matching), leading to the computation

cost of 524 ms (72 + 52 + 100 × 4 ms) of a 1-to-100 system.

I. Discussion

According to the experimental results, the proposed method

outperforms its counterparts, thus proving more discriminative

to distinguish NIR dorsal hand vein images, which is supported

by two principal theoretical foundations. On the one hand, it

depends on recent investigations in optical health science [14],

presenting that people identification using hand vein images

should not only focus on the vein network but also make use

of these optical properties of the surrounding skin regions

whose spectral response conveys subject-dependent inhomo-

geneous composition of blood and various chromophores

and pigments. On the other hand, based on the progress

achieved in psycho-visual studies [15], we interpret dorsal

hand vein images as surfaces whose geometric characteristics,

i.e., plateau, cliffs, ridges, valleys, etc., capture the subject-

dependent variations of absorption and scattering attributes

and could be perfectly characterized through curvature related

quantities in differential geometry.

From the experimental viewpoint, local feature-based meth-

ods, see [8], [20], [21], [29], outperform holistic techniques,
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such as PCA and LDA based subspace analysis [28], by a gap

reaching more than 15 points on the NCUT Part A database.

When we only focus on local feature-based methods, because

we interpret hand vein images as surfaces to characterize their

optical properties of hand skin as well as subcutaneous tissue

in addition to vein network, the proposed approach employs

multiorder (first, second, third) differential quantities closely

related to differential geometry and hence provides a more

comprehensive description of geometric properties in compar-

ison with several existing local based methods that only exploit

single type of features. The performance is hence better than

that of SIFT [29], CP-LBP (an LBP variant) [8], or even a

hybrid one by combining local and global features [30].

Additionally, the proposed approach employs the SIFT-like

matching framework, and inherits the reputed robustness to in-

plane rotation, scale changes, and translations, hence showing

the potential to be competent in more difficult and complicated

scenarios. Unfortunately, to the best of our knowledge, there is

no publicly available database which contains these challenges.

As such, we illustrate the robustness using artificial examples.

For instance, Fig. 17 depicts the matching results across scale

variation and translation. The two dorsal hand vein images

are from the same subject in NCUT Part A. In Fig. 17(a), the

left is of the original size while the right is resized to 90%.

In Fig. 17(b), the left is fixed while half of the right is occluded

due to translation. From the figure, we can see that even if in

different scales or with large translations, the points detected

on two images can still be correctly associated.

VII. CONCLUSION

This paper proposed a novel local feature-based approach

to hand-dorsa vein recognition via matching keypoints local-

ized through quantities of first to third order gradients closely

related to differential geometry. In contrast to the state of

the art work that only concentrates on the vein area, we

demonstrated a key finding that the discrimination of a per-

son by the dorsal hand vein image should focus not only

on the vein network but also on the surrounding subcuta-

neous tissue whose optical properties are subject dependant as

well. Furthermore, we interpreted the dorsal hand vein images

and their distinctiveness enhanced representation, i.e., OGMs,

as landscapes or surfaces, and generated a comprehensive

description of their optical attributes by adopting geometric

characteristics, modeled by Harris–Laplace, Hessian–Laplace

and DoG based detectors and SIFT features. Extensive experi-

ments conducted on NCUT Part A illustrated the effectiveness

of the proposed approach, reaching the best performance so

far reported on this database, both in identification and ver-

ification. Additional experimental results achieved on NCUT

Part B also highlighted its robustness to low quality data.

In future work, we will investigate this issue in going one

step further through a deep geometric approach which casts the

matching of local features into a problem of surface registra-

tion, making use of full geometrical and topological properties

of two dorsal hand vein surfaces. Furthermore, we will apply

more powerful techniques [38] to improve the fusion of the

matching results of multisource keypoints or even to combine

with other hand biometrics (see [39]). In addition, we will

also dedicate to building a representative dataset of the dorsal

hand vein images containing significant variations in rotation,

scale, illumination, etc., and experimentally test the robustness

of the method to these factors.
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