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Local circular patterns for multi-modal facial gender and
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a State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, 100191 Beijing, China
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Gender and ethnicity are both key demographic attributes of human beings and they play a very fundamental and important role in automatic machine based 

face analysis, therefore, there has been increasing attention for face based gender and ethnicity classification in recent years. In this paper, we present an 

effective and efficient approach on this issue by combining both boosted local texture and shape features extracted from 3D face models, in contrast to the 

existing ones that only depend on either 2D texture or 3D shape of faces. In order to comprehensively represent the difference between different genders or 

ethnicities, we propose a novel local de-scriptor, namely local circular patterns (LCP). LCP improves the widely utilized local binary patterns (LBP) and its 

variants by replacing the binary quantization with a clustering based one, resulting in higher discriminative power as well as better robustness to noise. 

Meanwhile the following Adaboost based feature selection finds the most discriminative gender- and race-related features and assigns them with different

weights to highlight their importance in classification, which not only further raises the performance but reduces the time and mem-ory cost as well. 

Experimental results achieved on the FRGC v2.0 and BU-3DFE datasets clearly demonstrate the advantages of the proposed method.

1. Introduction

Gender and ethnicity1 clues are two of themost fundamental and im-

portant demographic attributes of human beings, which remain un-

changed all through lifetime. While people can easily recognize the

gender and ethnicity of each other through their facial appearances, it is

still a non-trivial problem for computers. Automatic face-based gender

and ethnicity classification has promising applications in Human Com-

puter Interaction (HCI), Business Intelligence (BI), surveillance, video

and image retrieval, database indexing, and can provide useful informa-

tion for face recognition.

1.1. Related work

During the last decade, research on face-based gender and ethnicity

classification has grown up rapidly since it emerged. Most of the pro-

posed techniques are 2D texture image based, as people from different

genders and ethnicities commonly have a diversity of face textures.

These methods can be approximately divided into three categories: i.e.

raw image based, texture feature based, and geometry feature based.

Raw image based approaches consider the entire raw face image

(generally frontal) as the input and employ dimensionality reduction

techniques (down-sampling or subspaces) to process the facial image

to finally feed the classifier. For instance, in the early 1990s, Golomb

et al. [1] trained two neural networks, one for image compression, and

the other for gender classification. Facial images were first normalized

to the size of 30 × 30, and compressed to the dimension of 40, and

then classified by the back-propagation SexNet. Their experiments on

a set of 90 images (45 males and 45 females) displayed an average

error rate of 8.1% compared to the one of 11.6% from the Psychophysical

studies of five humans. Moghaddam and Yang [2] introduced a gender

classificationmethod, inwhich facial imageswere firstly down sampled

into the size of 21 × 12, and then classified by Support Vector Machine

(SVM). An error rate of 3.38% was achieved on a database containing

1755 samples. Lu and Jain [3] proposed an ethnicity classificationmeth-

od, inwhich facial imageswere analyzed atmultiple scales, an LDA clas-

sifier was constructed for each scale, and the final matching score was

obtained by fusing all similarity measurements under product rule. A

classification accuracy of 96.3% was achieved on a union database con-

taining 2630 samples of 263 subjects.

Texture feature based approaches describe local texture changes of

certain areas to discriminate male from female or distinguish different

ethnicities. Due to its low computational complexity, Shakhnarovich

⁎ Corresponding author. Tel.: +86 10 82338431.

E-mail address: dhuang@buaa.edu.cn (D. Huang).
1 We use “race” and “ethnicity” interchangeably here as the same concept is expressed

by both terms in the previous literature.
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et al. [4] investigated Haar-like features in combination with Adaboost

for gender and race classification. Later, Hosoi et al. [5,6] extracted

Gabor features and adopted SVM for the same issue. Approximately an

accuracy of 91.6% was obtained for gender classification on a database

with 1240 facial images, while the one of 94%was achieved for ethnicity

classification using1991 face photos. Lian et al. [7] improved SVMby the

proposed Min–MaxModular SVM (M3-SVM) to classify Gabor features,

and M3-SVM performed better (around 6% higher) than SVM in gender

classification on 12,912 probes with the variations in facial expression,

pose, occlusion, etc. In 2007, Lu and Lin [8] compared boosted Haar-

like and Gabor features with SVM to recognize sex on 518 frontal facial

images of size 24 × 24 from the FERET database, and pointed out that

Gabor features were more effective than Haar features for the given

task. In the same year, Yang and Ai [9] proposed an LBP (local binary

patterns) based method for demographic attribute classification, and

they showed that with the help of AdaBoost, LBP features achieved

promising results in both tasks of gender and ethnicity classification

on the subsets chosen from FERET and PIE, prior to the ones reached

by Haar features. Guo and Mu [10] used Gabor features and reported

benchmark performance for classification of five ethnicities on large-

scale dataset MORPH-II containing more than 55,000 facial images.

The ethnicity prediction for the Black and White races is 98.3% and

97.1%, while because of insufficient training data, for the other three

races: Hispanic, Asian and Indian, the predictions are degraded dramat-

ically to 74.2%, 59.5%, and 6.9%, respectively.

Geometry feature based approaches measure shape variations (in-

cluding angles, distances and areas) of different genders and ethnicities

respectively based on the 2D spatial arrangement of a set of facial fidu-

cial points, such as the nosetip, the inner and outer corners of eyes, the

endpoints of eyebrows, and claim that the clue conveyed in face shape

also largely contributes to classify gender as well as race. Brunelli and

Poggio [11] selected sixteen geometry features and used them in gender

classification, a correct classification rate of 79% was reached. Samal

et al. [12] computed 406 geometry features and noted that around

85% of features show significant difference between male and female.

Up till now, most efforts have been made within the 2D domain, i.e.

using texture information. However, according to the anatomical studies,

3D geometrical information of faces of human beings also reflects dis-

tinctions among races and genders, and is thereby essential for gender

and ethnicity classification as well. For example, faces of white people

and male are commonly craggier than that of Asian people and female.

Caucasian brow bones are always deeper, with eyes more sunken than

Asian ones; while Asian noses tend to possess lower bridges; Caucasian

noses extend slightly upward. Due to the development of 3D imaging

technologies, 3D shape information of human faces can be easily cap-

tured, which facilitates the advance in 3D shape-based approaches.

O'Tool et al. [13] applied Principal Component Analysis (PCA) to 3D coor-

dinates of 130 faces to extract features, and reported a peak correct rate

of 96.9% in a 17-dimensional subspace, better than the best score of

93.8% achieved based on their corresponding gray-level images in a 20-

dimensional subspace. They further pointed out that by combining

both modalities at the feature level, final performance was improved to

97.7% with a minimum subspace of 32 coefficients (half 3D based and

half 2D based). Han et al. [14] manually selected some regions on 3D

face meshes, and calculated the ratio of surface area and volume of

these regions in comparison to thewhole face as features for gender clas-

sification. An error rate of 17.44% was obtained by an SVM classifier on

the GavabDB database. Wu et al. [15] proposed a supervised method

namely weighted Principal Geodesic Analysis (PGA) to extract gender

discriminating features from 2.5D facial needle-maps, and an accuracy

of 97% was obtained on the Max–Planck face database which comprises

200 facial sans. Hu et al. [16] separated 3D faces into five regions, and in-

troduced SVM to gender classification. The final result was obtained by

combining the similarity scores of these five regions. An accuracy of

94.3% was achieved on a mixed database with 945 face models. Toderici

et al. [17] adopted a high-level demographic feature estimated from the

3Dmeshes of the human face, and an accuracy of 99.6%was achieved for

a two-class (Asian vs. White) classification on FRGC v2.0.

1.2. Motivation and contribution

Sincemost of the current 3D imaging systems deliver 3D facemodels

alongwith their aligned texture counterparts, a major trend in the liter-

ature of face recognition is to adopt both the 3D shape and 2D texture

based modalities, arguing that the joint use of these two clues can gen-

erally achievemore accurate and robust accuracy than using only either

of the singlemodality [18].We believe that fusion of 2D and 3Ddatawill

improve the classification accuracy in the classification of gender and

ethnicity; nevertheless, very limited research has investigated this

topic usingmultiple-modalities. Lu et al. [19] can be regarded as the pi-

oneer for this attempt where they integrated similarity measurements

of texture and shape (i.e. intensity and depth value of the central part

of human faces), showing that the combination of multiple modalities

leads to an improvement in both the accuracies of gender and race clas-

sification. This work is somewhat intuitive, and it has several down-

sides. For example, the direct use of pixel values of facial intensity and

range images cannot sufficiently discriminate the difference between

male and female or between various races, and it also tends to incur

the sensitivity to illumination for the texture modality. In addition,

they treat the entire face area equally, which is actually inappropriate.

Our basic assumption, as the one behind multi-modal face analysis,

is that, the result of single modality (i.e. only 2D texture or 3D shape)

based techniques can be ameliorated by combining various clues from

different modalities. In this paper, we propose an effective and efficient

approach to multi-modal face based gender and ethnicity classification,

which addresses two important problems involving the process of ex-

traction and selection of gender and ethnicity related features.

For the former, inspired by some recent studies on local feature

based face recognition [20,21], in contrast to the original pixel values

of facial texture and range images holistically used in [19], we investi-

gate the way to represent the information of texture and shape in a

local feature spacewithmore discriminative power, aiming tominimize

within-class variations andmaximize between-class similarities. Due to

its tolerance to monotonic lighting changes as well as computational

simplicity, LBP is regarded as one of the most effective and successful

local descriptors in many fields including texture analysis, facial image

analysis, image and video retrieval, environment modeling, visual in-

spection, motion analysis, biomedical image analysis, aerial image anal-

ysis, and remote sensing [22]. However, LBP still has several main

limitations, such as the insufficiency in discriminative power and the in-

sensitivity to noise. In this work, rather than explicitly quantizing the

sign and magnitude components of local patterns as adopted in LBP

and its variants, we propose to quantize local patterns through cluster-

ing, and the descriptor is called local circular patterns (LCP for simplici-

ty). Compared with the binary quantization scheme, clustering based

quantization can generate better approximation with less distortion,

therefore LCP possesses a greater ability in discrimination and is less

sensitive against noise. Moreover, the quantization accuracy can be

manageable through modifying the number of clusters. Additionally,

in clustering based quantization, the parameters are tuned using train-

ing data, and it thus can deal with various local pattern distributions.

For the latter, among various feature selection techniques [23] pro-

posed in the community of machine learning, wemake use of thewide-

spread Adaboost algorithm, to select a compact subset of facial features

from the entiremulti-modal feature set. The reason to employ Adaboost

is that it is capable of obtaining a strong classifier through combining

several weak ones while selecting features, as a result there is no need

to retrain a classifier for gender or ethnicity label prediction. On the

one hand, the features extracted from various facial regions (such as

the ones of eyes, nose, forehead) represented as textures or shapes,

highly related and discriminative to the task of facial gender and ethnic-

ity classification, can bedetermined and assignedwith differentweights
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according to their importance to final performance. The relevance of the

features is thereby largely decreased, and the combination of these se-

lected ones tends to improve the classification accuracy. On the other

hand, the entire feature set generally contains redundant information,

and utilizing all the features is also time and memory expensive which

probably gives rise to the problem of curse of dimensionality. After fea-

ture selection, the dimensionality of the feature can be reduced and the

efficiency of classification can be increased.

To sum up, this paper explores the discriminability of both 2D and

3D facial features in gender and ethnicity classification, and proposes

multi-resolution local circular patterns (LCP) to represent local shape

and texture variations. Histogramsof LCP features are extracted hierar-

chically, and Adaboost is used to select themost discriminative features

from the high dimensional ones, while boosting weak classifiers into a

strong one. Decision level fusion is made for final decision. Competitive

performance is achieved on the FRGC v2.0 and BU-3DFE databases,

highlighting the effectiveness of the proposed approach.

The remainder of the paper is organized as follows. Section 2 intro-

duces LCP features in detail and highlights its improvements to LBP

based ones. Section 3 presents the feature selection process as well as

the decision-level fusion. Experiments and results are displayed and

discussed in Section 4. Section 5 concludes the paper.

2. Local binary patterns vs. local circular patterns

Since local circular patterns (LCP) can be regarded as a variant of

local binary patterns (LBP), we will first recall the basic concept of the

original LBP descriptor, and then introduce the proposed LCP and LCP

based facial representation.

2.1. The LBP methodology

A basic LBP operator simply thresholds a 3 × 3 neighborhood by the

value of the central pixel, and the sign of thresholded neighboring

values can form a binary number, which is then transformed into a dec-

imal number. This decimal number is treated as the label of the central

pixel (Fig. 1(a)). We call this quantization scheme as binary quantiza-

tion in the following. The histogram of the labels within a region is

often used as a texture descriptor.

Formally, given a pixel at (xc, yc), the derived LBP decimal value is:

LBP xc; ycð Þ ¼
X

8

n¼0

s in−icð Þ2
n

ð1Þ

s xð Þ ¼
1 if x≥0
0 if xb0

�

ð2Þ

where n covers the eight neighbors of the central pixel, and ic and in are

the gray level values of the central pixel and its surrounding ones

respectively.

The basic LBP was later extended to multi-resolution and “uniform”

[24]. Multi-resolution denotes that LBP can operate on any radius R and

any number of pixels Pwithin the neighborhood, as shown in Fig. 1(b).

The uniform pattern is defined as a local binary pattern which contains

atmost two transitions between 0 and 1. The extended LBP is notated as

LBPP,R
u2 , indicating that the operator works in a (P, R) neighborhood, and

employs only uniform patterns and labels all the remaining patterns

with a single bin. The authors of [24] pointed out that uniform patterns

are fundamental patterns providing the vast majority of all 3 × 3 pat-

terns present in the observed textures.

However, LBP still has some limitations. One of themost critical lim-

itations is that it only extracts the sign between neighboring pixels,

while ignoring the magnitude, leading to the deficiency in discrimina-

tion. To better describe local micro patterns, various improvements

have been explored [25–28]. In spite of the performance which is better

than that of the LBP descriptor, these aforementioned variants aremost-

ly artificially designed, and to comprehensively encode useful informa-

tion, more bits are required which tends to incur a large increase in the

memory and computational expense. Another limitation of LBP lies in

that its binary coding scheme is very sensitive to noise, and once a single

bit of the code alters, the resulting decimal number changes seriously. In

order to improve the robustness to noise, several variants of LBP have

been presented [29,30]. Most of them intrinsically inherit the binary

coding scheme of the original LBP, and cannot completely solve this

problem. Besides, the distribution of local patterns within images

taken under different scenarios varies greatly, for example in scene im-

ages and face images, and using the same quantization parameters (e.g.

the same threshold) is therefore unsatisfied.

2.2. Local circular patterns

According to the analysis on the properties of LBP as well as its var-

iants, we find out that the two vital limitations above are mainly caused

by the binary quantization scheme. In this study, rather than explicitly

quantizing the sign or/and magnitude components of local patterns,

we propose to make the quantization of local patterns through cluster-

ing, aiming to generate better approximation with less distortion and

thus leading to improvement in discriminative power and robustness

to noise.

Specifically, as illustrated in Fig. 1(b), for each pixel ic whose gray

value is t with its P neighboring pixels in, n = {1, 2, …, P} (gray values

are denoted as {t1, t2, …, tP}) located on the circular neighborhood at

the radius of R, the corresponding code p of this local circular pattern

is defined as p(LCPP,R) = (t1 − t, t2 − t, …, tP − t)T. Given N training

local circular patterns pi, i = 1, 2, …, N, the K-means clustering algo-

rithm is performed to find a partition C = {c1, c2, …, ck} by minimizing

the following function:

J Cð Þ ¼
X

k

i¼1

X

p j∈ci

D p j; μ i

� �

ð3Þ

Fig. 1. LBP Operators: (a) Basic LBP; (b) Multi-resolution LBP.
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where D() represents the distance function, and μi is the center of ci.

Then a new local circular pattern p′ can be quantized into the nearest

cluster center.

l p
0� �

¼ argmin
i

D p
0
; μ i

� �

: ð4Þ

K-means is a greedy algorithm which can only converge to a local

minimum, but the recent study has shown that K-means can converge

to the global optimum with a large probability when clusters are well

separated [31].

Twomain issues associatedwith K-means clustering are the number

of clusters as well as the distance metric. The number of clusters k con-

trols the balance betweendescriptive power and sensitivity to noise. Re-

ducing the number of clusters increases the distances among them, and

little vibration of the pattern does not change its quantization, but the

low number of clusters also reduces the descriptive power. K-means

can be performedwith various distancesD(), and two of them are intro-

duced in this study, namely the Euclidean distance (L2) and city block

(L1) distance. Given a local circular pattern p′ = (p1′, p2′, …, pP′), the

Euclidean distance between p′ and a cluster center μ = (μ1, μ2, …, μP)
is defined as:

DL2 p
0
; μ

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

P

i¼1

p
0
i−μ iÞ

2
;

�

v

u

u

t ð5Þ

and their city block distance is defined as:

DL1 p
0
; μ

� �

¼
X

P

i¼1

p
0
i−μ ij:

�

� ð6Þ

Euclidean distance is usually used for computing the distance be-

tween points and cluster centers. The clusters found by K-means with

Euclidean distance are spherical or ball-shaped. K-means with city

block distancewas proposed in [32]. Comparedwith L2 distance, L1 dis-

tance is computationally more efficient. Each cluster center in the L1

distance case is calculated as the component-wise median of the points

in that cluster. According to the clustering process, cluster centers

obtained with L1 distance are all integers, while the ones obtained

with Euclidean distance may be with decimals. In the following, in

order to simplify the description, we call the LCP descriptor quantized

by K-means with L2 and L1 distances LCP-L2 and LCP-L1 respectively.

2.3. LCP based facial representation

As we know, when LBP operates on the images formed by light re-

flection, i.e. 2D images, it can be used as a texture descriptor. Each of

the LBP codes can be regarded as a micro-texton. Local primitives codi-

fied by the bins include different types of curved edges, spots, flat areas,

etc. Meanwhile, as LBP works on range images which are based on

depth information, it can also describe local shape structures [33],

such as flat, concave and convex. Similar to LBP, to comprehensively

represent facial texture and shape images, we follow the scheme pro-

posed by Ahonen et al. [34] for 2D face recognition. The basic idea lies

in that a face image can be considered as a composition of the micro-

patterns described by an LBP-like descriptor. One can build an LBP-like

histogram computed over the entire facial image. However, such a rep-

resentation only encodes the occurrences of micro-patterns without

any indication about their locations. In addition, to consider the config-

uration information of faces, face images can be divided into a certain

number of local regions, from which local LBP-like histograms can be

extracted. These histograms are then concatenated into a single, spatial-

ly enhanced feature vector. The resulting histogram encodes both the

local texture and global shape of face images. In our case, as shown in

Fig. 2, both 2D texture and 3D range images are aligned based on eye

outer corners, and cropped by an average mask. They are then divided

intom (to be fixed experimentally) rectangular regions. For each region,

histograms of clustering quantization based LCP are extractedwhich are

further concatenated into a single histogram as gender and ethnicity re-

lated features in both the texture and shape modalities.

2.4. Multi-scale extension

Some LBPhistogram-based applications change the neighborhood of

the LBP operator for improved performance. By varying the value of ra-

dius R, the LBP codes of different resolutions are obtained. The multi-

scale strategy was originally used for texture classification [24], and it

was also introduced to 2D face recognition [35,36]. In [37], Shan and

Gritti studied MS-LBP for facial expression recognition by firstly

extracting MS-LBP histogram-based facial features and then using the

AdaBoost algorithm to learn the most discriminative bins. They report-

ed that the boosted classifiers of MS-LBP consistently outperform those

based on single-scale LBP, and the selected LBP bins distribute at all

scales. MS-LBP can thus be regarded as an efficient method for facial

representation. When considering it in multi-modal facial gender and

ethnicity classification, this multi-scale technique can be applied to en-

hance the descriptive power of LCP as well.

(a) (b)

Fig. 2. Region division scheme.
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3. Feature selection and decision level fusion

LCP histogram based features extracted from various sub-regions of

facial texture and range images have different discriminative abilities to

distinguish between genders and ethnicities, and thus present non-

equal contributions to the final classification accuracy. Moreover, the

manner for facial representation by using the division scheme tends to

incur a very high dimensional feature space leading to expensive time

and memory cost, andmay even give rise to the problem of curse of di-

mensionality. To overcome these shortcomings, the step of feature se-

lection is necessary. In this study, the Adaboost algorithm is exploited

to select a compact subset of features from the whole feature set. The

reason to use Adaboost for feature selection is that it is able to train a

strong classifierwhile selecting features, and there is thus noneed to re-

train a classifier in the process of label prediction. For histogram based

features, we can either treat each bin in the histograms or an individual

histogram as a single feature. Considering that the differences between

genders or races lie in discrimination of certain local circular patterns

rather than all of them, therefore, we apply Adaboost to choose a

set of discriminative bins as in [37,38] that also employ it to select

LBP-like features.

Adaboost, originally proposed by Freund and Schapire [39], itera-

tively selects a small number of weak classifiers whose performances

are just better than random guess, and boosts them into a strong classi-

fier. Viola et al. [40] employed a variant of Adaboost to do face detection,

and proposed the first real-time face detection algorithm. A distribution

on the training samples is maintained, and in each iteration, weak clas-

sifiers are trained based on each feature according to the distribution.

The classifier with the lowest weighted error is selected, so the corre-

sponding feature is chosen in this iteration.Wemake use of Viola's var-

iant of Adaboost to select a subset of histogram bins for gender and

ethnicity classification. Details of the Adaboost can be found in [40],

but in order to maintain consistence of this paper, the algorithm is

posted in Table 1.

The weak classifier hj(x) is defined as

h j xð Þ ¼
1 if p j f j xð ÞNp jθ j

0 otherwise

�

ð7Þ

where the parity pj controls the direction of the inequality between fea-

ture fj and the threshold θj. The threshold θj is calculated as the average

of weighted centers of positive and negative samples' features.

Adaboost is performed for both texture and range image features,

and results in two strong classifiers h(x) and h′(x), one for each modal-

ity. As shown in Table 1, these two classifiers are defined as below:

h xð Þ ¼ 1
X

T

t¼1
αtht xð Þ≥

1

2

X

T

t¼1
αt

0 otherwise

(

ð8Þ

h
0
xð Þ ¼ 1

X

T

t¼1
α
0
th

0
t xð Þ≥

1

2

X

T

t¼1
α
0
t

0 otherwise
:

(

ð9Þ

During testing, decision level fusion is performed.With the output of

h(x) and h′(x), the final decision is made according to

H xð Þ ¼

1
X

T

t¼1
αtht xð Þ þ α

0
th

0
t xð Þ

� �

≥
1

2

X

T

t¼1
αt þ α

0
t

� �

0 otherwise:

8

>

>

<

>

>

:

ð10Þ

Even though, Adaboostwas proposed to solve the two-class problem

as the one of gender classification, i.e. distinguishing male from female,

it can also dealwith themulti-class problem, e.g. ethnicity classification,

by training a strong classifier for every two classes. In the test phase, the

probe is decided by each of the strong classifiers learnt in the training

phase, and is predicted with the label of class which has the proximal

similarity measurement. Recently, some variants of Adaboost have

been investigated to classify multiple classes [41,42], and they can be

exploited as well.

4. Experimental results

In order to evaluate the effectiveness of the proposed LCP approach

in the task of multi-modal facial gender and ethnicity classification, ex-

periments are carried out on the FRGC v2.0 and BU-3DFE databases.We

introduce the datasets and corresponding results subsequently.

4.1. Experiments on FRGC v2.0

FRGC v2.0 [43] is one of the most comprehensive datasets publicly

available for 3D face analysis. It contains 4007 textured 3D face models

of 466 subjects, and each facemodel is made up of a 3D point-cloud and

its 2D texture counterpart. Among the subjects, 22% are Asian, 68% are

white, and 10% are others. While 57% are male and 43% are female,

with the age distribution: 65% 18–22 years old, 18% 23–27 and 17%

28 years or over. The database was collected during the 2003–2004 ac-

ademic year, and contains time and illumination variations. Expressions

such as “Neutral”, “Happiness”, “Surprise”, “Disgust”, “Sadness”, and

“Other” are included in the database as well.

Gender classification is a typical binary classification problem, but

the one for ethnicity classification is generally not the case. However,

since the distribution of 3D face samples in current public databases (in-

cluding FRGC v2.0) with ethnicity labels available is generally unbal-

anced, we also treat the task of ethnicity classification as a binary

classification problem, in the same way as the previous studies do [19,

17]. Asian and white subjects are thus chosen from the entire database

for both gender and ethnicity classification, and in totality there are

3676 face samples belonging to 319 white and 99 Asian people. Even

though all face samples in the FRGC v2.0 dataset are nearly frontal, Iter-

atively Closet Point (ICP) [44] is adopted to align the face model to the

reference that is pre-defined, in order to control the error caused by

slight pose changes. We then extract a pair of registered facial range

and texture image from the aligned face model and all of the facial tex-

ture and range images are normalized so that the outer corners of two

Table 1

The Adaboost algorithm for LCP based feature selection (Ref [40]).

• Given example images (x1, y1), …, (xn, yn) where xi stands for a sample, and

yi = 0, 1 for negative and positive examples respectively.

• Initialize weightsω1;i ¼ 1
2m;

1
2l
for yi = 0, 1 respectively, wherem and l are the num-

ber of negatives and positives respectively.

• For t = 1, …, T:

1. Normalize the weights,

ωt;i←
ωt;i

∑
n
j¼1ωt; j

so that ωt is a probability distribution.

2. For each feature, j, train a classifier hj which is restricted to using a single feature.

The error is evaluated with respect to ωt, ϵj = Σiωi ∥ hj(xi) − yi ∥.

3. Choose the classifier, ht, with the lowest error ϵt.

4. Update the weights:

ωtþ1;i ¼ ωt;iβ
1−ei
t

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt ¼
ϵt

1−ϵt
.

• The final strong classifier is:

h xð Þ ¼ 1 ∑
T
t¼1αtht xð Þ≥

1

2
∑

T
t¼1αt

0 otherwise

(

where αt ¼ log 1
βt
.
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eyes have a fixed distance of 100 pixels. An averagemask is further used

to eliminate non-face regions and segment face out, and finally images

are normalized to the size of 140 × 140 pixels. Examples of normalized

face images are shown in Fig. 2.

We design four experiments: the first is to test the performance of

the Euclidean distance (L2) and the city block (L1) distance in clustering

based quantization; the second is to analyze the robustness of the LCP

descriptor to the LBP based one; the third is to evaluate the effectiveness

of the proposed approach to gender and ethnicity classification in the

modality of 2D, 3D and their combination; and the last one is to make

the comparison with the state of the art techniques.

4.1.1. Performance of L1 and L2 distance in clustering based quantization

In order to evaluate the performance of L1 and L2 distance in cluster-

ing based quantization adopted in LCP, we randomly select 20 textured

3D facemodels from the FRGC database, and extract the features of local

circular patterns LCP2,8 from both the texture and shape modality as

plotted in Fig. 3(a) and (d). The clustering results using L2 distance

and L1 distance with the same number of clusters (59, identical to the

number of bins in the LBP descriptor with 8 neighboring pixels) are

shown in Fig. 3. In Fig. 3, the x-axis denotes the index of each element

in an LCP code starting from the left-top position as shown in

Fig. 1(a), and the y-axis displays the exact value of each element. In

this case, the number of pixels around a central pixel is set at 8, thereby

leading to 8 elements in an LCP code, and their values vary in the range

of [−255, 255].

We observe the difference between distributions of texture and

shape data, and find out that the texture data are more concentrated

than the shape data, therefore using the same quantization parameter

like the traditional LBP to deal with these different distributions is obvi-

ously unsatisfied. In contrast, both the clustering results of L2 and L1 re-

flect the distribution difference much better. Meanwhile, the results

obtained with L2 distance and L1 distance are different: the results of

L2 distance are more evenly spaced than the ones of L1 distance,

while L1 distance results focus on the concentrations of the data and

pay less attention to the outlier of the distribution, likely leading to bet-

ter performance in the step of gender and ethnicity classification (we

show these accuracies subsequently).

Furthermore, we compare the computational cost for each distance

metric, i.e. L1 and L2. Experiments are carried out on a PC with Intel

Core i3 CPU using Matlab implementation. With 314,960 training local

circular patterns, the computational time taken by K-means clustering

with L2 distance repeated 10 times is 12,233 s,while that for L1 distance

is only 600 s. L1 distance is thus computationally more efficient than L2

distance as well.

4.1.2. Analysis on robustness to noise of LCP

Theperformance under noise influence of clustering based quantiza-

tion in LCP vs. binary quantization in LBP is also evaluated. Gaussian ran-

dom noises with deviation of 2 are added on both facial texture and

range images. Then local circular patterns LCP2,8 are extracted before

and after adding noise, and quantized using K-means clustering with

L1 and L2 distances respectively. The number of clusters is set to 59 so

as to achieve a fair comparison with the LBP2,8
u2 operator of the same di-

mensionality. Histograms of quantization labels are constructed for the

entire image. Fig. 4 shows an example, from which we can see that the

influence of noise is more serious to the LBP based histograms than the

LCP based one.

In order to quantitatively measure the difference between histo-

grams, the distance Diff(B, A) of histograms extracted before (B) and

after (A) noise is added is calculated as below.

Diff B;Að Þ ¼
X

i

jBi−Aij ð11Þ
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Fig. 3. The clustering results on the FRGC v2.0 database in the texture and shapemodality respectively: (a) training texture data for clustering, (b) clustering result of texture data using L2

distance, (c) clustering result of texture data using L1 distance, (d) training shape data for clustering, (e) clustering result of shape data using L2 distance, and (f) clustering result of shape

data using L1 distance.
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Fig. 4.Histograms extracted before (1st row and 3rd row) and after (2nd row and 4th row) noise adding using the samples from FRGC v2.0. The second column shows LBP histograms, in

the third column are histograms extracted with L2 distance, histograms extracted with L1 distance are plotted in the fourth column.
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Fig. 5. The difference between histograms extracted before and after noise adding using the samples from FRGC v2.0: (a) for the shape modality and (b) for the texture modality.
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where B and A are the two histograms to be compared, and Bi and Ai are

the ith bin value of B and A. 20 samples are randomly selected from the

FRGC v2.0 database as in the previous experiment, and Gaussian ran-

dom noises with deviations vary from 1 to 10 and are added on range

and texture images. Fig. 5 shows the average difference of histograms

for LBP, LCP-L2, and LCP-L1. From the comparison, we can conclude

that in both modalities, the clustering based quantization (LCP-L2,

LCP-L1) outperforms binary quantization (LBP) under noise influence.

Clustering with L2 distance performs better than L1 distance.

4.1.3. Gender and ethnicity classification with LCP

This experiment tests the performance of K-means clustering quan-

tization based local circular patterns (LCP) in both tasks of gender and

ethnicity classification. For multi-modal facial representation, LCP8,1,

LCP8,2 and LCP8,3 are used to extract features from the facial texture

and range images, and quantized using K-means clustering. L1 distance

is utilized in clustering due to its efficiency. All 2D texture and 3D range

images are divided into 6 × 6 rectangular facial regions as shown in

Fig. 2. As a result, for each modality of a face, three LCP histograms are

extracted, and they are concatenated again to construct the final de-

scription of this modality. Through extracting LCP based features using

multi-resolution filters and calculating histograms hierarchically, we

can extensively find those distinctive features to represent gender and

ethnicity related texture and shape variations.

As we defined in Section 2.2, N is the number of local circular pat-

terns used to compute cluster centers. Actually, in our experiments, N

corresponds to the number of 2D or 3D facial images randomly selected,

since we have to ensure that these patterns are in an even distribution

for face analysis. Therefore once a facial image is chosen, these local cir-

cular patterns of all pixels are used in the K-means clustering. We fur-

ther vary the number of facial images for training and observe its

impact on classification performance on the FRGC v2.0 dataset. In gen-

der classification, when this number reaches about 50 and 60 for 2D

and 3D modality respectively, their accuracies remain stable; while in

ethnicity classification, this number is around 30 and 40. Meanwhile,

we cannot set this number too large in order to avoid overfitting. As a

result, in the following experiments, we set it at 60 so that it fits the

two modalities in both tasks.

A 10-fold cross validation is adopted to evaluate the performance of

the proposed approach, in which the database is randomly partitioned

into 10 folds. Experiments are carried out 10 times, and each time 9

folds are exploited as the training set, and the remaining 1 fold as the

testing set. Thus, each fold is tested once. We ensure that each subject

is only assigned to one fold, so that the classification is person

independent.

Fig. 6 shows the results of gender and ethnicity classification. As we

can see, for gender classification texture features outperform shape fea-

tures, while for ethnicity classification shape features perform better

than texture features. In both tasks of gender and ethnicity classification,

performance in either of the single modality is enhanced by combining

shape and texturemodalities. The classification errors achieved by fusion

of these twomodalities in the experiments of gender and ethnicity clas-

sification are 4.55% and 0.37% respectively. The confusion matrixes for

gender and ethnicity classification are displayed in Tables 2 and 3.

We then analyze the results of L1 and L2 distance based K-means

clustering quantization by comparing their accuracies in both classifica-

tion tasks, i.e. gender and ethnicity. Fig. 7 shows the curves of classifica-

tion errors vs. the number of weak classifier, and Table 4 shows the
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Fig. 6. Classification results of LCP achieved on the FRGC v2.0 database: (a) gender classification and (b) ethnicity classification.

Table 2

Confusion matrix of gender classification using LCP-L1 on the FRGC v2.0 dataset, and each item is depicted in the form of (average, standard deviation).

Shape Texture Fusion

Male Female Male Female Male Female

Male (0.9097, 0.0478) (0.0903, 0.0478) (0.9476, 0.0345) (0.0524, 0.0345) (0.9596, 0.0324) (0.0404, 0.0324)

Female (0.1017, 0.0326) (0.8983, 0.0326) (0.0579, 0.0512) (0.9421, 0.0512) (0.0509, 0.0473) (0.9491, 0.0473)

Table 3

Confusion matrix of ethnicity classification using LCP-L1 on the FRGC v2.0 dataset, and each item is depicted in the form of (average, standard deviation).

Shape Texture Fusion

White Asian White Asian White Asian

White (0.9987, 0.0024) (0.0013, 0.0024) (0.9941, 0.0081) (0.0059, 0.0081) (0.9990, 0.0041) (0.0010, 0.0041)

Asian (0.0133, 0.0260) (0.9867, 0.0260) (0.0198, 0.0254) (0.9802, 0.0254) (0.0087, 0.0220) (0.9913, 0.0220)
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comparison of classification errors between L1 and L2 distances. From

these results we can see that L1 distance generally performs better

than L2 distance, especially for the shape modality, while for texture

modality the two distance metrics perform similarly.

4.1.4. Comparison with state of the art

In this experiment, we compare the performance of LCPwith related

local descriptors, i.e. LBP and one of its best variants, namely Complete

LBP (CLBP) [28]. Using the same parameters in neighborhood setting,

i.e. combining the histograms extracted in the neighborhood of (8,1),

(8,2), and (8,3), the uniform LBP results in 59 different values while

CLBP provides 200 different values for each histogram. Fig. 8 and Fig. 9

compare the classification error with respect to the number of weak

classifier curves among these three methods, and Table 5 compares

the classification error achieved by these methods. We can see from

the results that the proposed method (LCP) consistently outperforms

the LBP and Complete LBP methods, which demonstrate the superiority

of clustering-based quantization of local circular patterns over binary

quantization scheme used by LBP and CLBP.

Meanwhile, we compare the performance of the proposed approach

with the ones of the state of the art techniques, which also concentrate

on classifying gender and ethnicity using both the modality of 2D tex-

ture and 3D shape of human faces. Table 6 summarizes the comparison

to highly related tasks. Although we carry out experiments with signif-

icantlymore scans andmore subjects, the accuracies of both gender and

ethnicity classification are higher than the ones in [19,45]. The perfor-

mance of gender classification is slightly lower than that of the work

[46], while it should be noted thatHuynh et al. [46]make use of uniform

LBP features and Gradient-LBP features (a special case of CLBP) extract-

ed from facial texture and range images respectively, and these features

prove inferior to the proposed LCP features in our experiments. Further-

more, their result is based on 1149 pairs of facial range and gray images

of 105 subjects, and the experiment is performed only once with half

samples for training and half for testing. In our work, we carry out the

experiment using 10-fold cross validation, where 3676 textured 3D

face models of 418 subjects are involved.

Furthermore, we also list the work [17] that only makes use of the

3Dmodality in Table 6 since it exploits the same experimental protocol

as we do. If regarding the shape information, LCP achieves comparable

results as [17] does in ethnicity classification and it does not perform

as good as [17] in gender classification, but when our system combines

the clues of texture and shape, the accuracies in both the tasks are im-

proved,which surpass the ones in [17]. Such a fact highlights the advan-

tage of multimodal facial gender and ethnicity classification over the

singlemodality based one. Additionally, [17] employs the 3D face recog-

nition system (URxD) tomeasure the similarity of faces, holding a pipe-

line of deformed model based 3D surface registration and Haar wavelet

decomposition aswell as steerable pyramid transform based feature ex-

traction, which is computationally expensive. In contrast, our system

tends to be more efficient.

4.2. Experiments on BU-3DFE

BU-3DFE [47] is also one of the most popular databases in 3D face

analysis, especially for 3D facial expression recognition. It contains 100

subjects among which 56 are female and 44 are male, ranging from 18

to 70 years old. All individuals are asked to perform six prototypic ex-

pressions. Each includes four levels of intensities, and there are hence

25 instant 3D expression models for each subject (plus one model

with a neutral expression), leading to 2500 models in total. Median fil-

ter is utilized to remove spikes and cubic interpolation is adopted to fill

holes. We employ ICP to align the face model to the pre-selected

reference to correct possible pose variations. The registered facial

range and texture image are then generated from each aligned face

model and all of the facial texture and range images are normalized to

the size of 140 × 140 pixels as in FRGC v2.0.

For gender classification, all 2500 3D facemodels belonging to these

100 persons are used in our experiments. While for ethnicity classifica-

tion, due to the imbalance distribution of different races (51Whites, 24

East-Asians, 9 Blacks, 8 Hispanic–Latinos, 6 Indians, and 2 Middle-East

Asians), we exploit 1875 face models ofWhites and East-Asians, as a bi-

nary classification problem. The settings of probe and gallery set in both

tasks are the same as those of FRGC v2.0 stated in Section 4.1.3. For each
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Fig. 7. Comparison of classification results between L2 and L1 distance of the LCP descriptor on the FRGC v2.0 database: (a) gender classification and (b) ethnicity classification.

Table 4

Performance comparison between L1 distance and L2 distance of the LCP descriptor on the FRGC v2.0 database, and each item is depicted in the form of (average, standard deviation).

Ethnicity Gender

Shape Texture Fusion Shape Texture Fusion

L1 (0.0042, 0.0058) (0.0096, 0.0081) (0.0037, 0.0051) (0.0949, 0.0330) (0.0557, 0.0262) (0.0455, 0.0272)

L2 (0.0122, 0.0099) (0.0094, 0.0092) (0.0067, 0.0083) (0.1344, 0.0380) (0.0654, 0.0327) (0.0536, 0.0279)
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experiment, we make use of 10-fold cross validation and calculate the

average performance.

4.2.1. Discussing the number of cluster centers in LCP

Aswementioned in Section2.2, one of the key issues associatedwith

K-means clustering is the number of clusters. This number controls the

balance between descriptive power and sensitivity to noise. We exper-

imentally evaluate this factor in the task of gender and ethnicity classi-

fication subsequently.

Taking the LCP1,8 operator as an example, we increase the number of

cluster centers from 20 to 100 at an interval of 5, and discover that the

best performance of texture, shape or their combination is achieved in

the range of [50, 70] for L1 and L2 distances in both tasks (as depicted

in Fig. 10–Fig. 12), which coincidentally accords with the number (59)

previously assigned for fair comparison with LBP.

4.2.2. Comparison with the approaches in the Literature

In this experiment, except LBP and its two variants, namely LTP [26]

and CLBP [28], we also compare LCPwith the features in [19,48,49]. [19]

applies the holistic feature which is the raw pixels of a number of patch

cropped from the facial image (denoted as “Grid” in Table 7). [48] and

[49] both focus on texture classification, and we discuss them since

they both make use of K-means clustering to learn the vocabulary of

local pixel patterns. However, in LCP, we define the pattern as the

gray value difference between the central pixel and its neighboring

ones within the patch, rather than the original gray values [48] or

their Random Projection (RP) [49] (denoted as “Pixel” and “RP” respec-

tively in the following).

For LBP, LTP, LCP, and CLBP, as in FRGC v2.0, we combine the results

of different neighborhood settings, i.e. (1, 8), (2, 8), and (3, 8), and di-

vide the facial texture and range images into 6 × 6 regions. For “Grid”,

we directly inherit the parameters set in [19] that the number of patches
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Fig. 8. Comparison of classification results between LCP and LBP on the FRGC v2.0 database: in (a) gender classification and (b) ethnicity classification.
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Fig. 9. Comparison of classification results between LCP and CLBP on the FRGC v2.0 database: in (a) gender classification and (b) ethnicity classification.

Table 5

Performance comparisons among LCP, LBP, and Complete LBP on the FRGC v2.0 dataset, and each item is depicted in the form of (average, standard deviation).

Ethnicity Gender

Shape Texture Fusion Shape Texture Fusion

LCP (0.0042, 0.0058) (0.0096, 0.0081) (0.0037, 0.0051) (0.0949, 0.0330) (0.0557, 0.0262) (0.0455, 0.0272)

LBP (0.0088, 0.0081) (0.0182, 0.0105) (0.0063, 0.0082) (0.1034, 0.0346) (0.0686, 0.0342) (0.0524, 0.0308)

CLBP (0.0177, 0.0114) (0.0153, 0.0078) (0.0074, 0.0086) (0.1807, 0.0481) (0.0909, 0.0367) (0.0791, 0.0403)
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is 80 (8 × 10) and the size of each patch is 8 × 8 pixels. For “Pixel” and

“RP”, to make a fair comparison with the LBP family, we set the patch

size at 7 × 7, approximately equivalent to the combination of three

neighborhood sizes in LBP, LTP, LCP, and CLBP, and employ their division

scheme, i.e. 6 × 6 blocks for each face image. Additionally, in RP, we pro-

ject the patch in an 8-dimensional PCA subspace for clustering.

From Table 7, we can see that:

• The performance of LCP-L1 and LCP-L2 in both gender and ethnicity

classification is better than that of its counterparts in LBP family, i.e.

uniform LBP, LTP, CLBP, on either of the single texture or shapemodal-

ity aswell as their combination, except the case in shape based ethnic-

ity classificationwhere the accuracy of LCP is only 0.29% below that of

CLBP (still comparable). This fact clearly indicates that LCP is an effec-

tive improvement to the LBPmethodology.Meanwhile, in LCP, LCP-L1

always performs LCP-L2, showing that the L1 distance is a better

choice to learn LCP code than the L2 distance does.

• Regarding on Pixel-L1 and Pixel-L2 or RP-L1 and RP-L2 which apply

the K-means clustering technique (using different distances) to

learn local descriptors from original gray level values within a patch

[48] or from their random projection [49], the LCP descriptor is com-

petitive as well. Even though the results of LCP are slightly inferior

to those of Pixel and RP (using L1 distance) based on texture clues

in gender classification, the results of LCP in other tasks (including

Table 6

Performance comparisonwith those of the state of the art techniques ofmulti-modal facial gender and ethnicity classification on the FRGC v2.0 database (* indicates an exception that only

makes use of the 3D modality, and the figures in bold are the best ones in individual tasks).

Approach Sub. num. Protocol Gender Ethnicity

Lu et al. [19] 376 Sub.& 1240 scans 10-fold C.-V. 91.00% ± 0.03 98.00% ± 0.16

Wu et al. [45] 260 (200 vs. 60) scans 6 Times 93.60% ± 0.04 –

Huynh et al. [46] 105 Sub.& 1149 scans 1 Time 96.70% –

Toderici et al. [17]* 418 Sub.& ,676 scans 10-fold C.-V. ≈93.50% ≈99.50%

Our Method 418 Sub.& 3676 scans 10-fold C.-V. 95.50% ± 0.03 99.60% ± 0.01
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Fig. 10. Performance based on texture with regard to the number of cluster centers in LCP1,8 in (a) gender classification and (b) ethnicity classification on the BU-3DFE dataset.
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Fig. 11. Performance based on shape with regard to the number of cluster centers in LCP1,8 in (a) gender classification and (b) ethnicity classification on the BU-3DFE dataset.
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shape-, fusion-based gender classification as well as texture-, shape-,

and fusion-based ethnicity classification), are significantly superior

to the ones of Pixel and RP, especially in the 3D modality. The reason

mainly lies in that the facial range image is generally smooth and

thus lacks discrimination, while the differences between neighboring

pixels better highlight its details that are critical in classification than

the original pixels [48] or their random projection [49]. It demon-

strates the effectiveness of LCP for such issues.

• For all these methods discussed in the table, their classification accu-

racies based on the fusion of texture and shape cues are better than

the corresponding ones using either of the singlemodality, illustrating

that combining information conveyed in twomodalities improves the

performance in facial gender and ethnicity classification.

4.3. Time complexity evaluation

The K-means clustering based quantization in LCP is time consum-

ing. However, it should be noted that this stage is carried out offline,

and these cluster centers need to be generated only once during the

training process. In online feature extraction, the only difference be-

tween LCP and LBP lies in that LCP calculates certain distance between

a given local circular pattern and the pre-computed cluster centers

and chooses the minimum one for quantization; while LBP makes use

of binary quantization. The time cost additional to LBP is thus the dis-

tance calculation with all cluster centers. The more the cluster centers

are, the higher the time cost is. In our experiments, there are 59 cluster

centers, and based on C++ implementation, the average time cost of

LBP, LCP-L1, and LCP-L2 is 3.33 ms, 9.76 ms, and 9.72 ms, respectively.

Such computational complexity is generally under control in efficient

face analysis applications.

5. Conclusion

In this paper, we present an effective and efficient approach on face

based gender and ethnicity classification by combining both boosted

local texture and shape features extracted from 3D face models. The

proposed method is in contrast to the existing ones that only make

use of eithermodality of 2D texture or 3D shape of faces. To comprehen-

sively represent the difference between different genders or ethnicities,

a novel local descriptor, namely local circular patterns (LCP) is intro-

duced. LCP improves the widely investigated local binary patterns

(LBP) as well as its variants by replacing the binary quantization with

a clustering based one, thereby resulting in higher discriminative

power and better robustness to noise. Moreover, the Adaboost based

feature selection process finds the most discriminative gender- and

race-related features and assigns them with different weights to high-

light their importance in classification, which not only further raises

the performance but reduces the time andmemory cost as well. The ex-

perimental results of gender and ethnicity classification achieved are up

to 95.50% and 99.60% respectively on the FRGC v2.0 dataset, and 95.60%

and 97.42% respectively on the BU-3DFE dataset, which clearly demon-

strate the advantages of the proposed method.

In future work, we will investigate possible solutions that are more

effective to multi-modal facial gender and ethnicity classification, e.g.
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Fig. 12. Performance based onmulti-modal combination with regard to the number of cluster centers in LCP1,8 in (a) gender classification and (b) ethnicity classification on the BU-3DFE

dataset.

Table 7

Comparison of approaches of the texture and shape modality as well as their combination using Adaboost in the task of gender and ethnicity classification on the BU-3DFE dataset. (The

figures in bold are the best ones in individual tasks)

Gender classification Ethnicity classification

Texture Shape Fusion Texture Shape Fusion

LBP 93.53% ± 0.03 87.35% ± 0.06 94.58% ± 0.03 95.07% ± 0.04 95.56% ± 0.04 96.89% ± 0.03

LTP 93.20% ± 0.01 87.44% ± 0.05 94.18% ± 0.03 94.91% ± 0.03 95.05% ± 0.04 96.62% ± 0.04

LCP-L1 94.18% ± 0.03 90.76% ± 0.04 95.60% ± 0.03 97.31% ± 0.04 96.33% ± 0.03 97.42% ± 0.04

LCP-L2 94.00% ± 0.04 89.09% ± 0.04 95.56% ± 0.03 97.13% ± 0.04 95.98% ± 0.03 97.22% ± 0.03

CLBP 93.82% ± 0.02 88.12% ± 0.04 94.91% ± 0.03 95.86% ± 0.04 96.62% ± 0.02 97.13% ± 0.04

Grid 81.27% ± 0.07 78.70% ± 0.07 85.60% ± 0.08 93.39% ± 0.10 87.87% ± 0.10 94.07% ± 0.05

Pixel-L1 94.36% ± 0.05 81.64% ± 0.04 95.45% ± 0.02 91.26% ± 0.05 91.70% ± 0.05 92.89% ± 0.01

Pixel-L2 91.64% ± 0.04 80.97% ± 0.05 93.82% ± 0.05 90.52% ± 0.06 91.26% ± 0.04 92.15% ± 0.01

RP-L1 94.91% ± 0.04 81.64% ± 0.03 95.27% ± 0.01 90.07% ± 0.06 92.30% ± 0.06 93.19% ± 0.02

RP-L2 94.18% ± 0.06 81.94% ± 0.01 94.42% ± 0.02 91.56% ± 0.06 91.41% ± 0.04 94.37% ± 0.02
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based on the findings in [20], where general discriminant local face de-

scriptors are learned.
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