
HAL Id: hal-01301091
https://hal.science/hal-01301091v1

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RQL: An SQL-like Query Language for Discovering
Meaningful Rules

Brice Chardin, Emmanuel Coquery, Marie Pailloux, Jean-Marc Petit

To cite this version:
Brice Chardin, Emmanuel Coquery, Marie Pailloux, Jean-Marc Petit. RQL: An SQL-like Query
Language for Discovering Meaningful Rules. ICDM 2014, Dec 2014, Shenzhen, China. pp.1203-1206,
�10.1109/ICDMW.2014.50�. �hal-01301091�

https://hal.science/hal-01301091v1
https://hal.archives-ouvertes.fr

RQL: An SQL-like Query Language for Discovering
Meaningful Rules

Brice Chardin∗, Emmanuel Coquery†, Marie Pailloux‡ and Jean-Marc Petit§
∗LIAS, ISAE-ENSMA, France
†Université Lyon 1, France

‡Université Blaise Pascal, France
§INSA Lyon, France

Abstract—The Rule Query Language (RQL) is an SQL-like
pattern mining language that extends and generalizes functional
dependencies to new and unexpected rules. It brings to the data
analysts’ desktop a convenient tool to discover logical implica-
tions between attributes of the database. Such implications may
reveal data quality problems or surprising correlations between
attributes over some part of the database. The computation of
RQL queries is based on a query rewriting technique that pushes
as much processing as possible to the underlying DBMS. This
contribution is an attempt to bridge the gap between pattern
mining and databases and facilitates the use of data mining
techniques by SQL-aware analysts and students.

I. INTRODUCTION

Pattern mining can be seen as an automated part of data ex-
ploration. For instance, functional dependencies or conditional
functional dependencies are definitely useful to understand
the data and to identify data quality problems [1]. However,
pattern mining techniques are rarely usable directly by data
analysts. Most of the time, they have to perform some data pre-
processing between different systems and formats. The pattern
mining codes themselves often require to be compiled from
some specific programming languages. All these steps are out
of reach of many data analysts, rending round-trip engineering
into a nightmare. Automated rule generation can also flood the
analyst with huge amounts of patterns, and make it difficult
to extract useful information. Other techniques have to be
provided to interact with the data and give useful feedback
to the analysts.

Demo contribution To improve pattern mining usability
for data exploration, we introduce a Rule Query Language
(RQL) that allows SQL-aware analysts to use pattern mining
techniques with an interactive, user-friendly interface. In this
demonstration, we show the usability of this web interface
from the point of view of a data analyst. We focus on the
expressive power of RQL through various examples, showing
how easy it is to devise new and surprising rules with a
very simple language derived from SQL. We also introduce
how the data analysts can interact with the system through
RQL queries and counterexamples taken from the database.
During the demo, participants will be invited to formulate
their own queries on predefined databases to discover attribute
relationships through generated rules and counterexamples.

Figure 1 gives a preview of the web interface for RQL,
made available1 for research and educational purposes. This

1http://rql.insa-lyon.fr

RQL
parser

SQL
generator

Rule generator

Rule verifier

Optimizer

Query
processor

DB

RQL engine DBMS

SQL
query

Base

RQL query

Rules

Fig. 2. RQL queries processing overview

interface provides a unified access to the user’s data and pattern
mining techniques using declarative languages: SQL and RQL.

From previous works [2], [3], [4], RQL is compliant with
Armstrong’s axioms, i.e. the language generalizes functional
dependencies to a new class of dependencies based on logical
implications (if ... then statements). To the best of our knowl-
edge, this class of dependencies has not been studied before.
We have proven that these dependencies can be efficiently
computed from a database using a two step technique. First,
a non trivial SQL subquery is generated to compute a base of
the associated closure system – a base is also called a context
in formal concept analysis terminology [5]. Then, a state of
the art algorithm [6] is used to generate a canonical cover of
rules from this base. This approach allows RQL to benefit from
DBMSs’ query optimization to access the data, and keep the
data where they are.

Figure 2 gives an overview of this architecture with respect
to RQL query processing. As for SQL queries, the application
simply forwards them to the underlying DBMS, which makes
the transition between SQL and RQL transparent to the user.
The ultimate goal of this work is to integrate pattern mining
techniques into core DBMS technologies [7].

Related works Defining specific languages for pattern min-
ing is a long standing goal [8], for example using constraint
programming techniques [9]. Nevertheless, we argue that pat-
tern mining languages should benefit from direct extensions
of the SQL language, since data are often stored in DBMSs.
Several other practical propositions follow this principle and
interact more directly with DBMSs query engines [10], [11],
[12].

TABLES

VIEWS

Submit your RQL or SQL query:
FINDRULES

OVER Educlevel, Sal, Bonus, Comm

SCOPE t1, t2 (SELECT * FROM Emp WHERE Sex = 'M')

CONDITION ON A IS t1.A > t2.A

Submit QuerySubmit Query

SQL examples:

SQL 1SQL 1 Content of Emp

SQL 2SQL 2 Schema of Emp

RQL examples:

RQL 1RQL 1 Null values in Emp

RQL 2RQL 2 Functional dependencies on Emp

RQL 3RQL 3 Functional dependencies on a subset of Emp

RQL 4RQL 4 Approximate functional dependencies on Emp

RQL 5RQL 5 Sequential dependencies on Emp

 EMP

 DEPT

 EMP_WITH_DEPTNAME

 EMP_SUBSET

Sample DBSample DBuser@rql.insa-lyon.fruser@rql.insa-lyon.fr Log out Log out AboutAbout Query Query Help Help

Fig. 1. Web interface for RQL

II. THE RQL QUERY LANGUAGE

To make things concrete, let us consider the running
example given in Figure 3 with the EMP table. The attribute
Educlevel represents the number of years of formal education,
Sal the yearly salary, Bonus the yearly bonus and Comm
the yearly commission. The meaning of other attributes is
straightforward.

To begin with, let us extract functional dependencies (FD)
from the relation Emp. Recall that a FD X → Y holds in r if
for all tuples t1, t2 ∈ r, and for all attribute A ∈ X such that
t1[A] = t2[A] then for all A ∈ Y , t1[A] = t2[A]. With RQL,
FDs are expressed in a similar way.

Example 1. Q1 discovers FDs from Emp over a subset of
attributes.

Q1: FINDRULES
OVER Empno, Lastname, Workdept, Job,

Sex, Bonus, Mgrno
SCOPE t1, t2 Emp
CONDITION ON $A IS t1.$A = t2.$A

Note how the CONDITION clause matches the previous
logical implication. We have also restricted FDs discovery to a
subset of seven attributes in the OVER clause. In this example,
a canonical cover of FDs that hold in Emp is generated
(composed of twenty-four FDs), including FDs such as Empno
→ Lastname or Workdept → Job.

Overall, a RQL query has the following general form:

FINDRULES
OVER [set of attributes: A1, ..., An]
SCOPE [tuple variables: t1, ..., tn]
WHERE [condition on (t1, ..., tn)]
CONDITION ON [attribute variable: $A]

IS [condition on ($A, t1, ..., tn)]

The FINDRULES keyword identifies a RQL query, which
generates rules of the form X → Y with X and Y disjoint
attribute sets taken from the OVER clause. The SCOPE clause
defines tuple-variables over some tables obtained by classical
SQL queries. An optional WHERE clause defines relationships
between tuple-variables, similar to the SQL WHERE clause.
The CONDITION ON $A clause defines the predicate to be

satisfied by each attribute $A occurring in the left- and right-
hand sides of the rule.

To illustrate the expressiveness of RQL queries, we now
provide several examples.

Example 2. Let us consider null values known to be common
in real-life databases. With RQL, the data analyst has the
opportunity to discover rules between attributes with respect
to null values as shown with query Q2.

Q2: FINDRULES
OVER Empno, Lastname, Workdept, Job,

Sex, Bonus, Mgrno
SCOPE t1 Emp
CONDITION ON $A IS t1.$A IS NULL

The rule Mgrno → Workdept holds in Emp since each time
the attribute Mgrno is null in a tuple, then Workdept is also null
for the same tuple (only employee No. 20 in this example).

Note that the difference between Q1 and Q2 naturally lies
on the predicate to be evaluated, but also on the number of
tuple variables required. The predicate of Q1 is evaluated on
pairs of tuples, while Q2 considers a single tuple.

Example 3. The following query Q′
1 restricts the scope of Q1,

leading to the notion of conditional functional dependencies
[1]. For example, we consider only employees with a level of
qualification above 16.

Q′
1: FINDRULES

OVER Empno, Lastname, Workdept, Job,
Sex, Bonus

SCOPE t1, t2 (SELECT * FROM Emp
WHERE Educlevel > 16)

CONDITION ON $A IS t1.$A = t2.$A

Interestingly, Sex → Bonus holds with this restriction,
meaning that above a certain level of qualification (16), the
gender determines the bonus.

Example 4. Query Q′′
1 is an approximation of Q1 for numeric

values similar to Metric Functional Dependencies [13], where
strict equality is discarded to take into account variations under
10%. For instance, salaries 41250 and 38250 are considered

EMP Empno Lastname Workdept Job Educlevel Sex Sal Bonus Comm Mgrno
10 SPEN C01 FINANCE 18 F 52750 500 4220 20
20 THOMP - MANAGER 18 M 41250 800 3300 -
30 KWAN - FINANCE 20 F 38250 500 3060 10
50 GEYER - MANAGER 16 M 40175 700 3214 20
60 STERN D21 SALE 14 M 32250 500 2580 30
70 PULASKI D21 SALE 16 F 36170 700 2893 100
90 HENDER D21 SALE 17 F 29750 500 2380 10

100 SPEN C01 FINANCE 18 M 26150 800 2092 20

Fig. 3. Running example

close (7.5% difference), but not salaries 41250 and 36170
(13.1% difference).

Q′′
1 : FINDRULES

OVER Educlevel, Sal, Bonus, Comm
SCOPE t1, t2 Emp
CONDITION ON $A IS

2*ABS(t1.$A-t2.$A)/(t1.$A+t2.$A)<0.1

In that case, Sal → Comm holds, meaning that employees
earning similar salaries receive similar commissions.

We have shown so far query examples related to implica-
tions (in formal Concept Analysis) and functional dependen-
cies (in databases). Nevertheless, RQL is not restricted to these
types of queries at all and can express many more rules.

Example 5. Assume we are interested in a kind of sequential
dependencies [14], i.e. dependencies showing similar behavior
of attribute values. Q3 discovers numerical attributes that vary
together (i.e., X → Y means that if X increases then Y also
increases).

Q3: FINDRULES
OVER Educlevel, Sal, Bonus, Comm
SCOPE t1, t2 Emp
CONDITION ON $A IS t1.$A > t2.$A

Sal → Comm and Comm → Sal hold in Emp, which means
that a higher salary is equivalent to a higher commission.

Example 6. Continuing the previous example, assume now
the analyst wants to focus on male employees (see also Figure
1).

Q′
3: FINDRULES

OVER Educlevel, Sal, Bonus, Comm
SCOPE t1, t2 (SELECT * FROM Emp

WHERE Sex=’M’)
CONDITION ON $A IS t1.$A > t2.$A

In that case, Educlevel → Bonus also holds, which means
that male employees with higher education levels receive
higher bonuses.

Example 7. Instead of narrowing the scope of a query, user-
defined conditions can bind different tuple variables together
with a custom relationship specified in the WHERE clause of
the RQL query. For example, Q4 finds disparities between
managers and managees, i.e. rules on attributes for which
managers have values greater than or equal to their managees.

Q4: FINDRULES
OVER Educlevel, Sal, Bonus, Comm
SCOPE t1, t2 Emp
WHERE t1.Empno = t2.Mgrno
CONDITION ON $A IS t1.$A >= t2.$A

In this example, ∅ → Bonus holds in Emp, which means
that managers always earn a bonus greater than or equal to
their managees’.

III. FEEDBACK THROUGH COUNTEREXAMPLES

Given a RQL query, the data analyst may also interact
with the system to know whether or not a given rule holds.
She can provide a rule to the system and two cases arise:
either the rule holds and the analyst is notified that the rule
is indeed valid; or the rule does not hold which means that at
least one counterexample exists and one of them is provided
by the system. This notion of counterexample is well known
for functional dependencies, and provides very good feedback
to the data analyst with her own data.We strongly believe that
counterexamples are a great tool to help the analyst understand
why a particular rule does not hold, and refine if necessary her
analysis in an iterative process.

To illustrate counterexamples, suppose that a data analyst
wants to explore her hypothesis that higher salaries and higher
education levels yield higher bonuses (Salary, Educlevel →
Bonus), using Q3. Figure 4 gives an overview of what RQL
provides as a counterexample for this rule, that is, two tuples
among which one (employee No. 10) has a higher Salary and
Educlevel than the other (employee No. 50), but not a higher
Bonus.

With this counterexample as a starting point, and especially
the SQL query generated to extract it from the database, the
data analyst can quickly switch to SQL to get an idea of why
this rule is not verified. For instance, employees that are either
female or have a finance job are easily pointed out as having
a higher salary and education level, but lower bonuses than
others. The data analyst can then refine her RQL query, for
example by narrowing the scope of the data, such as in Q′

3
where a higher Educlevel by itself implies a higher Bonus.

The number of tuples required to provide a counterexample
depends on the number of tuple variables. Q3 or FDs need at
least two tuples. But with Q2, one tuple (for instance employee
No. 30) is enough to prove that the rule Workdept → Mgrno
does not hold.

Rule verification:
The rule Sal Educlevel bonus is false

Counter-example:

EMPNO LASTNAME WORKDEPT JOB EDUCLEVEL SEX SAL BONUS COMM MGRNO

10 SPEN C01 FINANCE 18 F 52750 500 4220 20

50 GEYER null MANAGER 16 M 40175 700 3214 20

Generated query:

1. SELECTSELECT t1 t1.*,.*, t2 t2.*.*
2. FROMFROM Emp t1 Emp t1,, Emp t2 Emp t2
3. WHEREWHERE ((t1t1..Sal Sal >> t2 t2..Sal Sal ANDAND t1 t1..Educlevel Educlevel >> t2 t2..EduclevelEduclevel))
4. ANDAND CASECASE WHENWHEN ((t1t1..bonus bonus >> t2 t2..bonusbonus)) THENTHEN 11 ELSEELSE 00 ENDEND == 00
5. ANDAND rownum rownum <=<= 11

Fig. 4. Counterexample with RQL

IV. IMPLEMENTATION AND APPLICATION

The RQL web application has been implemented in Java
with the Play Framework [15]. External tools have been used
for the most expensive part of the rule generation process, i.e.
the enumeration of minimal transversal of hypergraphs [6].
The chosen DBMS is Oracle 11g Release 2.

Importantly, the web interface discloses the SQL code
generated by the system to help the user build her own
queries. For instance, the query used to retrieve an arbitrary
counterexample from the database can be extended so that the
analyst identifies more insightful ones.

RQL can be interacted with in two modes: (i) a Sample DB
is provided with selected examples to offer a quick way into
RQL (ii) a Sandbox allows users to upload and query their own
data (currently limited to 3 tables and 200 kB). RQL has been
used by 120 undergraduate students to play with functional
dependencies and other constraints in a database course at
INSA Lyon. Not surprisingly, the notion of counterexamples
has been widely used by students. RQL has been appreciated
for its ability to bridge the gap between the SQL language
and functional dependencies in database design by providing
a unified interface for both SQL and RQL queries.

Previous works [4] have highlighted the efficiency of RQL
as a two step process, even on large databases.

V. CONCLUSION

RQL is introduced as a web interface to discover rule pat-
terns over relational databases. RQL subsumes SQL statements
by providing the opportunity to specify and get results as a set
of rules or some counterexamples. The rule mining problem
is seen as a query processing problem, for which we have
proposed a query rewriting technique allowing the delegation
of as much processing as possible to the underlying DBMS
engine [4]. RQL allows SQL developers to extract precise
information without any specific knowledge in data mining.

REFERENCES

[1] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis,
“Conditional functional dependencies for data cleaning,” in Proceedings
of the 23rd International Conference on Data Engineering, ser. ICDE
’07, 2007, pp. 746–755.

[2] M. Agier, C. Froidevaux, J.-M. Petit, Y. Renaud, and J. Wijsen, “On
Armstrong-compliant logical query languages,” in Proceedings of the
4th International Workshop on Logic in Databases, ser. LID ’11, 2011,
pp. 33–40.

[3] M. Agier, J.-M. Petit, and E. Suzuki, “Unifying framework for rule
semantics: Application to gene expression data,” Fundamenta Infor-
maticae, vol. 78, no. 4, pp. 543–559, 2007.

[4] B. Chardin, E. Coquery, B. Gouriou, M. Pailloux, and J.-M. Petit,
“Query Rewriting for Rule Mining in Databases,” in Languages for
Data Mining and Machine Learning, in conjunction with ECML/PKDD,
2013, pp. 35–49.

[5] B. Ganter and R. Wille, Formal Concept Analysis. Springer, 1999.
[6] K. Murakami and T. Uno, “Efficient algorithms for dualizing large-scale

hypergraphs,” CoRR, vol. 1102.3813, 2011.
[7] A. Netz, S. Chaudhuri, J. Bernhardt, and U. M. Fayyad, “Integration

of data mining with database technology,” in Proceedings of the 26th
International Conference on Very Large Data Bases, ser. VLDB ’00,
2000, pp. 719–722.

[8] H. Blockeel, T. Calders, E. Fromont, B. Goethals, A. Prado, , and
C. Robardet, “A practical comparative study of data mining query
languages,” in Inductive Databases and Constraint-Based Data Mining,
Springer, Ed., 2010, pp. 59–77.

[9] T. Guns, S. Nijssen, and L. D. Raedt, “Itemset mining: A constraint
programming perspective,” Artif. Intell., vol. 175, no. 12-13, pp. 1951–
1983, 2011.

[10] L. Fang and K. LeFevre, “Splash: ad-hoc querying of data and statistical
models,” in Proceedings of the 13th International Conference on
Extending Database Technology, ser. EDBT ’10, 2010, pp. 275–286.

[11] C. Ordonez and S. K. Pitchaimalai, “One-pass data mining algorithms in
a DBMS with UDFs,” in SIGMOD Conference, 2011, pp. 1217–1220.

[12] H. Blockeel, T. Calders, É. Fromont, B. Goethals, A. Prado, and
C. Robardet, “An inductive database system based on virtual mining
views,” Data Min. Knowl. Discov., vol. 24, no. 1, pp. 247–287, 2012.

[13] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian,
“Metric functional dependencies,” in Proceedings of the 2009 IEEE
International Conference on Data Engineering, ser. ICDE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 1275–1278.
[Online]. Available: http://dx.doi.org/10.1109/ICDE.2009.219

[14] L. Golab, H. J. Karloff, F. Korn, A. Saha, and D. Srivastava, “Sequential
dependencies,” PVLDB, vol. 2, no. 1, pp. 574–585, 2009.

[15] “Play framework,” http://www.playframework.com/.

