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Abstract—Accountability is becoming increasingly required in
today’s distributed systems. Indeed, accountability allows not only
to detect faults but also to build provable evidence about the
misbehaving participants of a distributed system. There exists
a number of solutions to enforce accountability in distributed
systems, among which PeerReview is the only solution that is
not specific to a given application and that does not rely on any
special hardware. However, this protocol is not resilient to selfish
nodes, i.e. nodes that aim at maximising their benefit without
contributing their fair share to the system. Our objective in this
paper is to provide a software solution to enforce accountability on
any underlying application in presence of selfish nodes. To tackle
this problem, we propose the FullReview protocol. FullReview
relies on game theory by embedding incentives that force nodes
to stick to the protocol. We theoretically prove that our protocol is
a Nash equilibrium, i.e. that nodes do not have any interest in de-
viating from it. Furthermore, we practically evaluate FullReview
by deploying it for enforcing accountability in two applications:
(1) SplitStream, an efficient multicast protocol, and (2) Onion
routing, the most widely used anonymous communication pro-
tocol. Performance evaluation shows that FullReview effectively
detects faults in presence of selfish nodes while incurring a small
overhead compared to PeerReview and scaling as PeerReview.

I. INTRODUCTION

Distributed systems have always been the scene of various
software and hardware failures. These failures can have diverse
sources such as the crash of machines, bugs, misconfigurations,
as well as malicious attacks and users that deliberately tamper
with their software to gain some benefit. These failures are
especially difficult to deal with when the distributed system
spans over multiple administrative domains (also referred to
as MAD distributed systems) [1]. Examples of such systems
include peer-to-peer systems, computer grids, network services
(e.g., DNS), federated information systems and inter-domain
routing.

Accountability, which refers to the ability to detect and
expose node faults, is a promising paradigm to deal with these
types of failures. In the last decade various solutions have
been proposed to enforce accountability for specific applica-
tions (e.g., anonymous communication [7], online games [26],
network storage [27], randomised systems [2], inter domain
routing [16], virtualised systems [17]). While these solutions
offer strong accountability guarantees, their usability is limited
to the specific application domain for which they have been
devised. Hence, generic solutions that are not tailored to a
specific application have been proposed, some of which rely
on trusted hardware (e.g., Trinc [21], A2M [6], Pasture [19])
while others are generic software solutions. Our work targets
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this second category of systems as they do not require users
(worldwide) to acquire specific hardware. To the best of our
knowledge, PeerReview [15] is the only protocol that falls
into this category of systems. In this protocol, nodes log their
interactions with other nodes in a secure log. This log is
then periodically audited by a set of other nodes assigned by
the system, i.e. the node’s monitors. During their audit, the
monitors verify that the monitored node did not tamper with
its log and that the latter corresponds to a correct execution
of the monitored protocol. An attractive result of PeerReview
in addition to its wide applicability is that it provides two
theoretical guarantees: completeness and accuracy. Informally,
completeness refers to the ability to detect (eventually) all the
observable faults, while accuracy refers to the ability to never
accuse correct nodes of misbehaviour.

PeerReview works under the Byzantine failure model, i.e.
a model where a majority of nodes are correct and where a
fixed (known) proportion of nodes in the system can behave
arbitrarily. While dealing with Byzantine nodes is important,
it has been demonstrated that in open collaborative envi-
ronments selfish nodes, also called free riders, constitute a
real threat [10], [20], [12], [9]. Selfish nodes are nodes that
tamper with their software (or download a tampered software
developed by others) in order to benefit from the system
without contributing their fair share to it.

In PeerReview, nodes are not encouraged to participate to
the monitoring of other nodes, which makes it vulnerable to
selfish nodes. Specifically, in presence of a proportion of selfish
nodes, some nodes in the system can be unsupervised if all
their monitors behave selfishly. As a result, these nodes can
harm the system without being detected, breaking the com-
pleteness property of PeerReview. To measure the impact of
this threat in practice, we deployed PeerReview for enforcing
accountability in the following two protocols: SplitStream [5],
an efficient multicast protocol and Onion routing [13], the most
used anonymous communication protocol. Experiments show
that in presence of 30% of selfish nodes, 54% and 85% of
messages are lost using the first and the second protocols,
respectively.

In this paper, we embrace the challenge of designing a
selfish-resilient protocol for enforcing accountability in dis-
tributed systems and present the FullReview protocol. The
objective of FullReview is to force selfish nodes to participate
in the monitoring of other nodes while they are executing a
given protocol. To reach this objective, the first idea that one
may have is to make monitors themselves accountable for their
actions by applying PeerReview. We show in this paper that



this is not possible because using PeerReview to monitor itself
would require that each node’s log contains the log of all the
other nodes in the system, which is not scalable.

To overcome this problem, FullReview relies on a game
theoretic approach to force selfish nodes to stick to the moni-
toring protocol. Specifically, FullReview is a complete redesign
of the PeerReview protocol, in which we have embedded
incentives in such a way that it is not in the interest of any node
to deviate from the protocol, i.e. we prove that FullReview is
a Nash equilibrium [24]'.

We implemented FullReview and used it to monitor the
two protocols SplitStream and Onion routing. Performance
evaluation performed on a cluster of 50 machines shows that
FullReview is resilient to selfish nodes and that it incurs a
reasonable overhead compared to PeerReview. Complementary
simulations show that FullReview scales up to 1000 nodes.

The remaining of this paper is structured as follows. First,
we present the related works in Section II. Then, we show
the impact of selfish nodes in PeerReview and present our
system model in Section III. Further, we present an overview
of FullReview and its detailed description in sections IV and V,
respectively. Finally, we present the performance evaluation
of FullReview in Section VI and concluding remarks in Sec-
tion VIIL.

II. RELATED WORKS

Building robust distributed systems has been at the heart
of many research efforts in the last decade. In this context, a
new model called the Byzantine, Altruistic, Rational (BAR)
model has been proposed [1]. This model considers three
types of nodes: Byzantine nodes are nodes that can deviate
arbitrarily from the protocol; rational nodes are nodes that
deviate from the protocol if the performed deviation allows
them to increase their own benefit according to a known
utility function; altruistic nodes are nodes that always stick to
the protocol. In this context, a protocol is said to be BAR-
resilient if it tolerates a fixed amount of Byzantine nodes
and an unlimited proportion of rational nodes. BAR-resilient
protocols often combine game theory by adding incentives
that encourage rational nodes to stick to the protocol and
accountability techniques that expose Byzantine nodes in case
of deviation. In the last years, various collaborative systems
have been designed according to this model including protocols
for spam resilient content dissemination [3], distributed file
systems [1], video live streaming [23], [22], [14], anonymous
communication [4] and N-party data transfer [25]. The process
by which a new BAR-resilient protocol is designed usually
involves the following steps: (1) define the utility function
of rational nodes in the considered protocol; (2) list all the
possible rational deviations according to the defined utility
function; (3) for each identified deviation, propose incentives
for rational nodes such that any deviation would engender a
loss in the utility perceived by the deviating node and mech-
anisms that would catch the considered Byzantine deviation;
(4) prove that the proposed protocol is a Nash equilibrium.
The major limitation of this approach is that it has to be
performed manually by a system expert, which is complex

'Due to the lack of space, this proof is available in the companion technical
report [11]

and possibly error prone. Furthermore, any modification in the
original system requires to rethink the system as a whole, as
the latter may introduce new rational or Byzantine deviations.
Rational nodes in the BAR-model correspond to selfish nodes
in our work.

A grail that security managers may dream of having
is a way of automatically transforming a given protocol
into a BAR-resilient protocol. Two solutions that go towards
this direction have been proposed in the literature. First,
Nysiad [18] allows the automatic transformation of a given
protocol to a Byzantine resilient system. Nysiad reaches this
objective by replicating each node using a variant of replicated
state machines (RSMs). However, the resulting system does
not deal with rational nodes. Contrarily to Nysiad, PeerRe-
view [15] allows to automatically detect all sorts of observable
deviations, including both selfish and Byzantine deviations,
that a node would perform in a given monitored protocol.
PeerReview reaches this objective by using tamper evident
logs and assigning monitors to nodes, which periodically
assess the correctness of a node by comparing its log with
a correct execution of the protocol obtained using a reference
implementation. However, while PeerReview allows to deter
faults in the underlying protocol to which it is applied, it does
not detect deviations performed by nodes on its own protocol
steps.

Our objective in this paper is to design the first generic
protocol that deals with both selfish and Byzantine nodes on
any underlying protocol.

III. PROBLEM STATEMENT AND SYSTEM MODEL

We present in this section an evidence that the PeerReview
protocol fails to enforce accountability in presence of selfish
nodes in Section III-A. We then present our system model in
Section III-B.

A. Problem statement

Let us consider a system where nodes can be correct,
selfish or Byzantine. As introduced in the previous section,
correct nodes follow the protocol, Byzantine nodes can behave
arbitrarily and selfish nodes aim at maximizing their benefit
with respect to a known utility function. The PeerReview
protocol has been designed under the assumption that every
node is monitored by a set of monitors and that each monitor
set contains at least one correct node that executes all the
monitoring steps. In this work, we remove this assumption
and consider that any node in the system can behave self-
ishly if it has an interest in doing so. We show that nodes
executing PeerReview can skip some steps of the monitoring
protocol without being detected and that such behaviour can
have a dramatic impact on the performance of the monitored
protocol. We provide in the companion technical report [11]
a complete analysis of all the protocol steps of PeerReview
and list all the selfish deviations that they are subject to. Due
to the lack of space, we present here our practical results
only. Specifically, to assess the impact of selfish nodes in
PeerReview, we performed the following two experiments.
In the first experiment, we deployed on one hundred nodes
the SplitStream protocol [5], an efficient tree based multicast
protocol, monitored by PeerReview. In the second experiment,



we depleyed one hundred nedes running the Onien routing
protocol [13] monilored by PeerReview. In both cases, we
used the same experimental settings as the ones described in
Section VL. In both experiments, if a selfish node notices that
its monitors are selfish (e.g., because they never ask to audit its
leg), it also behaves sellishly with respect te the SplitSuream
and Onien routing prolocels by dropping messages il receives
and (hal are net intended te him.

We measure the percentage el lest messages with respect
le the preportion el selfish nodes in the system. Resulls,
depicled in Figure 1, shew thal in presence of up 10 30% eof
selfish nodes. correct nodes running the SplitStream protocol
observe 54% of message loss. Similarly. in the Onion routing
application. correct nodes experience a loss in their onions that
can reach 85% with 30% ef sellish nodes in a cenfiguration
with five relays. This propertien increases and reaches 100%
when the number of relays increases. This is due (o the [act
that the probability of having a selfish relay in a path increases
proportionally with the number of relays constituting this path.

100
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Fig. 1: Impact el sellish nodes in PeerReviewed SplitStream
and Onion rouling prelocels.

The question we raise in this paper is thus how to enforce
accountability in any underlying protocol in presence of selfish
nodes? We answer this question in the remaining of the paper.

B. Syvstem model

Our largel syslem is cempesed el lwe prolocels: the
monitored pretecol (o which we will refer as {’> and lhe
moniloring prelecel te which we will refer as M.

Fault medel. We censider a (ixed prepertion el Byzuntine
nodes that can take arbitrary decisiens. They can deviate [rem
either {> or M pretecols [or any reason (e.g.. a lailure, a bug, a
threat). Furthermore, we consider any number of seffish nodes.
These nodes aim at maximising their benefit according to a
known utility function. Selfish nodes will deviate from Af if
they gain seme benelil in doing so. Specifically, this benefit
can be represented aleng the (ellewing axes:

1) (Communication) Sending/receiving as litlle as pes-
sible monitoring messages to/from other nodes.

2)  (Computation) Performing as little as  possible
monitoring-related computations tfor other nodes.

Maoreover, we assume that selfish nodes are risk averse. This
means that belere perferming any deviation, a sellish node
estimaltes the prebability 1o be detected in the future. If
this probability is greater than zere, a sellish nede sticks (e

the protocel. This assumplien is commonly used in BAR
systems [1]. This assumptien makes particularly sense in
accountable systems bhecause the detection of a deviation in
these systems directly leads to the eviction of the faulty node
from the system. I[nstead, in systems where the penalty is
weaker, e.g., a decrease in a repulation value, il appears more
appropriate (o consider diflerent selfishness models (e.g., risk
alline). This is not the case of eur syslemn.

The BAR medel alse suppeses that sellish nedes jein and
remain in the system for a long time and seek a long-term
benefit. Moreover, selfish nodes do not collude and assume
that other nodes are correct.

System assumptions. As in PeerReview, we assume a crypto-
sraphic identification of nedes. Specilically, each message sent
in the netwerk is signed using the sender’s cryptographic key.
We assume that cryptographic primitives can nel be [erged
and that hash functions are collusion resistant. Moreover, we
assume that messages sent by asender to a given receiver are
always received if retransmitted infinitely often. We assume
that nodes have a delerministic relerence implementation of 12
that can be initialised with checkpeints and 10 which we can
inject inpuls in order (0 gel the corresponding outpuls.

IV.  FuliReview PROTOCOL OVLRVIEW

Let us censider a set of N nodes execuling a prelecel />
defined as a set of deterministic state machines. In FullReview:,
nodes take part in a classical accountability architecture as
depicted in Figure 2. Specifically, each node 7 in our system
interacts with a set of nodes referred to as #’s partners and
appearing on ils right side in the figure. In addition to its set of
pariners, nede ¢ is assigned a set of meniters that periedically
verily whether ¢ sticks (@ the specilicalien el the pretecol [’
or not. This set of nodes is referred to as m(7) and appears
above 7 in the figure. Symmetrically. 7 monitors a set of nodes:
the set of nodes referred to as m. 1(i) and appearing below i
in the (igure. To perform this meniloring, each nede maintains
a secure log (hal is lamper evident and append only, in which
it wriles all its interactions with ils partners (details on secure
logs are given in Section V-A). This log is periodically audited
by i’s monitors. Each monitor runs a monitoring protocol Af
also described as a set of deterministic state machines.

m(i): i’s menitors

7
. !
| .
(I v
g (3 e (O] is
vy ) parlrers
SN O
I N\
. z - 5
Moni Laring
. . _’acLiuns
____’Monitored
: aclians

w (i) ¢ i's monilared nades

Fig. 2: Simple acceuntability architecture.

The objective of FullReview is to force selfish nodes to
execule all the steps of beth protocels {’ and A7 and (o detect
when Byzantine nedes deviate [rom either pretocels /> er A .
Te reach this ebjeclive. each node ¢ legs in ils secure log



all its actiens related te both pretecols /> and . Then, #’s
monitors, i.e. nedes in the sel 7:(¢), periodically perlorm a
set of verifications on this log. These verifications. which are
depicted in the diagram of Figure 3. allow each monitor to
reach evidence about the correctness of i. Specifically, each
node in n:(¢) starts by verilying that ¢ did not tamper with
its leg (e.g.. that the node did not delete previously inseried
entries). We call this verificatien, which appears en lhe lop
of the diagram. log coherence check. We explain how this
verification is performed in Section V-Bl.

Further, each node in m(i) verifies that 7 holds a unique
log for all its partners. We call this verification, which appears
secend in the diagram, leg consistency check. The abeve (we
verilicalions are critical [er (he accountabilily system to be
ellective. Indeed. il a node manages le add/delete log entries
or to have multiple versions of a log. it could deviate from
the protocol without being detected. We explain how this
verification is performed in Section V-B2.

Moareover, each node in m(#) verifies that the commu-
nication patterns appearing in ¢’s log are coherent with Af
and {”’s stale machines (third verificalion in the diagram).
This verificatien ensures that #’s log contains a sequencing
of messages that reflect a correct behaviour. For instance, a
correct log should contain periodic requests from i to the set
of nodes it monitors. ie. the nodes in m~'(i). The absence
ol such periedic messages rellects a laulty behavieur. We
explain how these verificatiens are performed in FullReview
in Sectien V-B3.

However, a log that exhibits a correct sequencing of
messages 1s not sufficient to guarantee a correct behaviour
Hence. the last verification that is performed by #’s monitors
is (0 assess whether ¢’s log correspends 10 a correct execution
o[ the prolocels /> and A7 er nol. Verilying the conlermance
ol ’s leg with a comecl execulion o [’ is performed as
in the PeerReview protocol. i.e. by re-executing the code of
the protocol P using a reference implementation. Specifically.
the inputs present in #'s log are injected in the reference
implementatien e {’> and the produced eutpuls are cempared
with the eulputs present in ¢’s log. Mismalching eutputs would
conslilule an evidence (hat ¢ did not cerreclly execute {°.

Deing the same verification lor the pretocel A is not possi-
ble. Indeed. as further discussed in Section V-B4, re-executing
the monitoring code is a recursive task and requires that a
node’s log contains the log of all the other nodes that are linked
e him in the menitering graph (which may possibly be all the
nodes in the system). To avoid such an overkill, we identily all
the compulations performed in the protocel A and ensure (hat
these computations are performed by a set of nodes in parallel.
The outcome of each computation is then collected from the
various participating nodes and sent to the nodes’ monitors.
The latter compare the outcome ol the compulatien performed
by their menilered node with respect (e what other nodes
have compuled. As sellish nedes de nel want Le be exposed
by correct nodes, they will always perform the computation
correctly, In the diagram of Figure 3, this last verification is
performed before the re-execution of P’s code because the
latter is more cestly. Details of how FullReview verilies that
nodes cerrectly execuled the cempultatiens appearing in beth
protocols A7 and [’ are described in Sections V-B4.

No
Ts Ing(i) coherent?
| Ves
& 2 No
| 1s log(1) consistant?
| Yes
Docs log(i) reflect correct communication  Neo — .
pallerns wit P and M protocols? — faullv_:]
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No
Do all the compurarions pertormed by i wit
Lo M appear correc!?
| Yes )
Does log(1} corresponds (o a correcl E

cxeculion of P?
| Yos

s comecr
| ]

Fig. 3: FullReview monitors decision diagram.

V. FullReview DETAILED DESCRIPTION

We start this section by introducing secure logs, a central
cempenent lor enlorcing accountabilily (Section V-A). We
then present the two major parts el eur protocel, ie. the
audil prelecel (Scclien V-B) and (he emission lailure pretocel
{Section V-C). Finally, we give some information about how
we carried out the Nash equilibrium proof for our protocol
(Section V-D).

A. Accousntahility tools: Tamper Evident 10g

Secure legs are ollen used (o enferce acceuntabilily in
distribuled sysiems. A secure leg is generally used e siere the
messages exchanged by a nede with its partners. According 10
the require ments of the accountable system. log entries labelled
€0, ..., € can contain various information among which an
identifier of the logged message, whether the message was
senl or received by the nede as well as ils parameters.

h e,
e : entry k
hk ﬂx| hk—H( :
=Hee, 11h )
h" 5 aikz (hk)m

Fig. 4: Example ol a secure log.

Te cach leg enlry ¢; corresponds a recursive value hg.
cempuled as a hash el ¢x cencalenaled with the value of
hi._1 (where h_; is a fixed value), and an authenticator nf,
which is a message containing the value of 5, signed with i's
private key, i.e. of = (hy),,. Authenticators allow verifying
thal a node log has nel been tampered with. Fer instance,
censider a node 7 ameng nede’s ¢ menilers. Il § gets a pair
of authenticaters csﬁ-' and uf: cerresponding (e the entries ¢y
and ey, of #’s log respectively, it can ask i of its log entries
€y, ..., €, and recompute hg, .... hy. If the computed Ay, differs
from the one held by j. the latter can accuse i of tampering
with its leg. Further, § can cenvince any other cenect node ef
the misbehaviour of 7 by sending 10 it the signed authenticalors
«? and «f aleng with the leg entries sent by i.



B. FullReview selfish-resilient audit protacol

Using the secure log described above, a node 7 monitoring
the behaviour of a node 7 performs a set of verifications to
assess the correctness of ¢ [ollowing the diagram ol Figure 3.
Hewever, sellish menitors might be templed not te perferm
these verilicatiens. In erder (e [orce meniters (e perlorm them,
we make audits proactive. Specifically, we divide time in
rounds and give the responsibility tor each node to periodically
(e.g., at the end of each round) ask its monitors to audit its
leg lollowing the diagram depicled in Figure 5 (the Audit_req
message senl [rom i L@ ils menilers 722(¢)). Then, each meniter
perlorms the required verificatiens and produces a cerlilicate
of correctness it the node passes all of them. In the opposite
case, #'s monitors send a proof of misbehaviour to 7 including
the evidence of #'s misbehaviour, which any correct node can
recompule. This certilicate is then used by ¢ at the beginning ef
the following reund in order (0 cemmunicale with ils partners.
Witheut such a certliflicate, ¢’s partners will reluse 1o interact
with 7. Note that some of i's monitors might be unresponsive
(either because of a failure or to avold auditing #'s log). We
describe how we deal with this situation in Section V-C.
Finally, after collecling the outceme el the audit produced by
its moniters (Audil_resp message), ¢ lorwards the aggregaled
eulcemme (0 he meniters of each ol its moniter (Fwd_outcome
message). This last step is useful for the monitors of i's
monitors (i.e. m{(m(7))) in order to verify whether the nodes
they monitor correctly performed their monitoring tasks or not.
Further details en this verilicatien are given in Seclien V-B4.

In the following we describe in detul the set of verifica-
tions performed by the monitors of each node to assess its
carrectness.

1) Log coherence check: Allows verifying that a node’s
log has not been tampered with. Consider a node j that
monitors a node 7. If j gets a pair of authenticators o? and o
corresponding (o the enuies ¢ and ¢y, of 's leg respectively. it
can ask ¢ [or its leg entries ¢y, ..., ¢, and recempule ho, ..., fik.
If the cempulted /Ay dilfers [rem the ene held by 7, the latter
can accuse 7 of tampering with its log. Further, j can convince
any other correct node of the misbehaviour of 7 by sending to it
the signed authenticators o and of along with the log entries
sent by ¢. To perferm (his type el verificaion each node shall
leg each message il sends as parl of the protocels /> and A
and send the correspending authenticator to its partner. Further-
more, each node shall forward the received authenticators to its
partners” monitors. However, selfish nodes might be tempted
not to follow these steps, le. avold attaching authenticators
with messages they send and/or avoid [erwarding received
authenticators (e the paruier’s moniters. We show how we deal
with this issue in Section V-B3.

2) Log consistency check: Node i might be tempted to
maintain many cerrect legs (e.g., ene log (er cach nede with
whom it interacts). Te detect this type el misbehavieur. a
monitor j (hat helds a sel of authenticators sent by ¢ (e elher
nodes verifies that these authenticators belong to the same log.
Similarly to the log coherence check, this verification requires
that nodes attach authenticators to all messages they sent and
{erward received authenticaters (e their partners’ monitors, and
that meniters perform the censistency check. We show hew we
enceurage sellish nodes to perferm these steps in Section V-B3.

(1):Audit_ree (2):Audil resp

{33 :Fwd_outcome

m(i)

m(m{i)}

Fig. 5: FullReview audil protocel.

3) Verifying communication patterns: In this part of the
protocol, a node in the monitor set of a node 7 is responsible for
assessing whether the leg of ¢ rellects cerrect cemmunication
patlerns with respect 10 the stale machines of {’> and A . How-
ever. il is Lel possible (e censider the stale machines ol these
two protocols separately as in some situations steps of A need
to be interleaved with steps of P. For instance. as seen in the
log coherence and consistency checks described above. nodes
need (e send authenticaters along with messages related (e {°
and need (e lorward authenticalors received along with mes-
sages related to £’ Te reach this objective, the stale machine of
the protocol P is automatically augmented with a set of manda-
tory transitions as depicted in Figure 6. In this figure. and in
all the figures depicting automata in the paper. transitions are
labelled as [ollews: (P|M:INJOUT:message_type) where the
{irst part relers (e whether the message belongs (e the pretocel
1’ er M; \he secend parl indicales respectively whether the
message is received or sent and the third part is the message
type. This figure shows that each time a node is expecting
a message as part of the protocol P, it should: (1) upon
receiving the message, lorward (he included authenticater 10
the sender’s meniters ((ransitien labelled (M:QUT :fwd_authy):
or (2) accuse the sender il the message did nel centain an
authenticator by sending an accusation message to the sender’s
monitors (transition labelled (M:OUT:accuse)): or (3) suspect
its partner if the latter did not send the expected message
(lransition labelled (M:IN:timeout)). The wansitions fellowing
this latler transition are [urther described in Section V-C.

Augmenting all the (ransiiiens of {’ related (e the reception
of messages as shown in Figure 6 [orces sellish nodes 10 attach
authenticalers 1o the messages they send (etherwise, nedes
that receive theses messages might accuse them). Furthermore,
it forces selfish nodes to forward the received authenticators
to their partner’s monitors (otherwise, their monitors might
accuse lhem ol behaving sellishly).

In addition to verifying that a monitored node’s log is ¢ o
herent with the state machine of the P augmented automaton,
menitors verily that the log is ceherent with 37 slate machines
related (0 the audit protecol (described earlier in this section)
and with A7 state machines relaled 10 the handling ol emission
failures. The former state machines are depicted in Figures 7
and 8 while the latter are described in the following section.
Specifically. the automaton of Figure 7 shows the correct
cemmunicalien pallerns ol a nede ¢ asking ene el ils monitors
for an audit (wransitien labelled (M:OUT:audit_req)). After
sending his audil requesl, nede i either receives a respense
from its monitor containing the outcome of the audit (transition
labelled (M:IN:audit_resp)) or deoes not receive a reply (the
transition labelled (M:IN:timeout)). In the former case. node
¢ forwards the eutceme of the audit (0 the meniters of all ef
its monitors, which allews them Le verily that their menitered
nede reached the same outceme abeul the cerrectness of ¢ as



the ether moniters ol . In (he latler case, ¢ considers that its
monitor has lailed and handles this lailure as described in the
tollowing section.

The automaton of Figure 8 shows the correct communi-
cation patterns of a monitor 7 that receives an audit request
from a node i that it is monitoring (the transition lubelled
(M:IN:audit_req)). Afler the reception ef this request, nede j
performs the audit of ¢’s leg and sends back the eutcome e i
(the wansition labelled (M:OUT :audit_resp)).
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Fig. 6: Augmenting the P protocol.
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4) Verifying computations: In this part of the protocol.
each monitor j in the monitor set of 4 node i verifies that
the compulations performed by ¢ as part el the protocels {’
and M are cormrect. Fer the computations perlermed by ¢ and
that are related 10 2, j use checkpoints stered in ¢’s log
and initializes the reference implementation it has with the
oldest non-verified checkpoint. Further, j replays all the inputs
available in the portion of s log it is auditing and verifies that
the eutputs produced by the reference implementatien maich
wilth the eutputs stered in the log. If the computed sutputs de
not match with the legged enes, j accuses ¢ ol misbehavieur.
Whether i passes this verification or not, j stores the outcome
of the audit along with the authenticators corresponding to the
portion of the log of i that it has audited and sends the outcome
ol the audit to 7 as prescribed by (he audit protecol (described
earlier in this sectien).

Centrarily 1e the cemputations related o the protecol /2,
verifying those related to the monitoring protocol M can
not be done by re-executing the steps of the protocol A,
To intuitively understand why, let us consider the following
example, where node { meniters node + — 1 (ameng ether
nodes) and is monitered by node { + 1 (among other nodes).
Al a given execulien time, the meniter of node ¢+ 1. say node
i+ 2 would like to audit node 7 + 1's log to verity that it
is correctly performing its monitoring actions regarding the
behaviour of i To do so. node i + 2 needs to get access
le node s log. which is available in ¢ + I’s log. Hence,
te check whether ¢ + 1 has comecily dene his monitoring
acliens, il needs (o verily whether ¢ + 1 cerrecly audited ¢°s

by replaying the audit verificatiens itsell. Hewever, (e verily
whether ¢ is eflectively cerrect, ¢ + 2 must verily whether ¢
correctly executed its monitoring steps with respect to i— 1. To
do this last verification, i + 2 must verify whether the outcome
of i's audit over i — I's log is correct and is thus obliged to
audit itsell + — 1’s leg. This precess clearly leads each nede
10 recursively ebtain and audil the logs of all the other nedes
that it is connected (o in the monitoring graph, which is nel
practical.

Te avoid such an everkill, we use incentives (e ferce selfish
nodes to correctly perform the computations taking part of
the protocol M instead of recomputing them. Specifically, as
described earlier, after receiving the outcomes of the audit sent
by ils monitors, a nede aggregates these resulls and lorwards
them to the moniters ol its menitors. These nedes receive an
infermatien el the type: (audited node ID, authenticators,
monitor ID, outcome) for each of i's monitors that took part
in the audit. If a majority of monitors detects a misbehaviour
in i's log and one of them, say node 7. did not, then 7 is
accused of misbehavieur In this situatien, j is selfish il il
claimed (hat ¢ is comrect witheul perferming the verification
or Byzantine il it replied arbitrarily. As selfish nedes de nel
want to be excluded tfrom the system. they always perform
the computations related to Af correctly Instead. if a majority
of monitors hut ; considers that 7 is correct.  is considered
Byzantine. as a sellish node de nel have any interest in
accusing a correcl node of misbehavieur.

C. Handling omission failures

The handling of emissien [ailures is dene in FullReview
as depicted in Figure 9. Specilically, il a node ¢ wails [er a
given message Irom a given node j lor 10e leng, ¢ suspects i
(after step (1) in the figure). To do so. i creates a challenge
for j and sends this challenge to 7’s monitors (step (2) in the
figure), who forward the challenge to 7 (step (3) in the figure).
Il 5 is still alive in the system then it replies (o the challenge
(step (4)). Whether ;7 replied or not 10 the challenge, alter a
given ameunt el lime j’s monitors send an eulceme ol (he
challenge to 7 summarizing the situation (step (35)).

A selfish node may be tempted not to suspect a node even
if it has waited for too long to receive 1 message assuming
that other nodes will take care of that. Similarly. a selfish
menilor might be (empled not 1o (erward a challenge send
by ¢ (e 7 assuming that the ether menilers will de se. These
lwo deviations are nel possible in FullRevien because of the
verification of communication patterns pertormed by monitors
on their monitored node’s log. Specifically, the automata of
Figures 10 and 11 show the correct communication patterns
that should be present in the leg of a node when, as a menitor,
il receives an emission lailure cemplaint aboul one el ils
menilored nodes and when. as a suspecled node, il receives
a challenge from its monitor. The log of a selfish node should
be conform to these automaty, otherwise it is accused by its
mMonitors.

In addition, a selfish node might be tempted to suspect
a node instead of performing a costly interaction with him.
Te avoid (his devialien, we make the cost el suspecling a
nede higher than the cost ef interacting with him. To avoid
1o everlead the system, we adapt this cosl te each step of the



protocols £ and Af. Fer instance, il sending a message rn: ces(s
x# of bandwidth 1e node «. we make (he cest ol suspecting a
node j to whom 7 was supposed to send m. equal to » + 873,
As such, 4 selfish node i will always prefer to send m instead
of suspecting j.
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B. Resilience to selfish nodes

We cairied oul a detailed analysis el all the protocel steps
of FullReview. For each of these steps we listed all the selfish
deviations and the corresponding incentives that prove that
selfish nodes do not have any interest in performing them. As
a resull we prove that FullReview is a Nash equilibrium. Due
L@ the lack of space, this analysis is presented in the technical
reperl available online [11].

VI. PLRFORMANCIL EVALUATION

In this section we evaluate the perfermance of PeerReview
and FullReview with two distributed applications: SplitStream
and Onion routing. We start by introducing the two applica
tions and our experimental settings in Section VI-A and VI-B.
respeclively. We then present the perlormance ol FiullReview
in presence of sellish nedes (Section VI-C) and in the lauli-
{ree case (Section VI-D). Finally, we assess the scalability ef
FullReview (Section VI-E).

Overall, our evaluation draws the following conclusions.
First. we show using real experiments that Ful{Review can
elfectively detect [aults in presence of sellish nedes. Secend,
FuliReview adds a small overhead cempared (0 PeerReview
both in terms el (ralfic generaled and storage. Finally. using
complementary simulations, we show that FullReview is scal-
able up to at least 1000 nodes.

A. Applications

1) Accounitable Efficient Multicase: SplitStream |5] is a
protocol that organises nodes in a tree structure where each
node receives mullicast messages from ils parent node and
{erwards them (0 its child nodes. The specificity ol SplitSuream
is that it aims at balancing the lorwarding lead between nedes.

It reaches (his ebjective by splitting the multicast stream into
suipes and using dillerent mullicast (rees (e distribule each
stripe. For our experiments, the source node generated a video
stream of 300kb/s, which is a common rate tfor video-streaming
applications. Each packet emitted by the source was sent
threugh a dillerent muliicast (ree where each node had two
children.

In SplitStream, sellish nodes deviale by nel (erwarding
updates le their child nodes. As a resull they can gel the
video stream while saving bandwidth. However, in presence
of selfish nodes. correct nodes may experience frame loss and
consequently receive a degraded version of the video stream.

2) Accountable Anosymous Comunusiication: Onion rout
ing 113] is a protocol designed for anonymous communica
tions. [t is the protocol used in the TOR project |81, which
is widely used by (housands el users daily. In this pretecol.
when a nede S wanls (@ send a message (o a nede £, il
choeses [ elther nedes, called relays, that will lorward the
message up to its destination. Node S encrypts successively
the message using the public key of each of these relays, which
constitutes the oninn and then sends it to the first relay. Each
relay decrypls ene layer of the enion (i.e. remeves ene layer of
encryplien) and ferwards il le the nex( ene until il reaches its
final destination. For Onion routing experiments, each nede
periodically emitted a packet to a randomly chosen node
through a parametric number of relays. In all our experiments,
messages have a fixed size of 10kB; smaller messages are
padded with additienal byles in erder (0 meet this requirement.
Fixing message size is usvally dene in onien reuling as it
avoids an allacker 1o [ollow the progressien ol an onien in the
system by comparing the size of forwarded messages.

In this protocol. a selfish node can choose not to forward an
onion that is not intended to him. As a result. the destination
will never receive the original message. The objective with
designing a sellish-resilient versien of Onien reuling is 10
ensure that nodes will (erward the enions they receive while
previding anenymily guaranlees.

B. Experimental settings

We have measured the performance of SplitSueam and
Onion routing in two configurations: (i) with PeerReview and
(i) with FullReview. Qur experiments have been performed in
two different settings. First, we performed experiments in real
cenditions using the public Grid’S000 cluster. In this cluster
we used 50 quad-core physical machines clocked at 2.6GHz
with 4GB el RAM that are intercennecled via a Gigabil
switch. These experiments have been run by deploying one
logical node per physical machine and corresponding curves
are annotated with |GSK] in their labels. To complement our
experiments, we perfemmed simulations using the PeerReview
simulater that has been develeped by PeerReview authors®. We
perfermed simulations with up te 1000) nedes, in erder (e as-
sess the scalability of FullReview. Results of these experiments
are annotated with |SIM| in their labels.

C. Performance in presence of selfish nodes

In this section we show that FullReview tolerates selfish
nodes. To this end, we perform two experiments. In the

2pecrRevicw cade: http://pecrreview . pisws.mpg.de/.



first experiment, selfish nodes follow the model presented in
Section III-B. Specifically, they deviate only if they have an
interest to do so and if there is no risk to be caught. Instead, in
the second experiment, we consider that selfish nodes deviate
if they have an interest to do so without considering the risk
of exclusion. This latter experiment shows that if they decide
to do so, selfish nodes are quickly detected by their monitors
and excluded from the system.

For both experiments we used the two applications moni-
tored by PeerReview and FullReview. The number of monitors
per node is fixed to 2 and the audit period is set to 10s.

The results of the first experiment are presented in Fig-
ure 12. This figure shows the percentage of received messages
as a function of the percentage of selfish nodes. SplitStream
and FullReview are deployed with 50 nodes on G5K. We
evaluate FullReview with different number of relays (5, 10,
20 and 40), that are chosen at random. However, due to lack
of space, we present the results with 5 relays only. Increasing
the number of relays leads to worst results for PeerReview as
the probability to choose a selfish node in an Onion routing
path becomes higher. We first observe in this figure that, using
PeerReview, SplitStream and Onion routing do not tolerate
selfish nodes. Indeed, in presence of only 10% of selfish nodes,
only 79% and 66% of messages are received in the SplitStream
and Onion routing applications, respectively. This represents a
loss of 21% and 34% messages, respectively, which is not
acceptable. This percentage decreases when the proportion of
selfish nodes increases, reaching 23% in SplitStream and 5%
in Onion routing, in presence of 50% of selfish nodes. Instead,
using FullReview, we observe that all messages are received in
both applications as selfish nodes have no interest in deviating.

100 =
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N SplitStream-FullReview ---x---

80 Onion routing-PeerReview ---*---
B Onion routing-FullReview o

60

40

20

Percentage of received messages

0 10 20 30 40 50
Percentage of selfish nodes

Fig. 12: [G5K] Percentage of received messages in SplitStream
and Onion routing as a function of the percentage of selfish
nodes.

The results of the second experiment are presented in Fig-
ure 13. In this experiment, we measure the percentage of
received messages in SplitStream with PeerReview and Full-
Review where selfish nodes start to deviate from the protocol
after 20s. This experiment has been launched with 50 nodes
using simulations. As explained above, in this experiment,
selfish nodes behave selfishly without reasoning on the risk
of being detected. Using PeerReview, we observe that selfish
nodes impact the system as soon as they behave selfishly,
without ever being detected. Using FullReview, we observe
that selfish nodes impact the system during a small time frame,
corresponding to the audit frequency, after which they are

detected and evicted from the system. As a result, all the
messages are received for the rest of the experiment. Note
that choosing a smaller audit period allows the system to
detect selfish nodes more rapidly, but at the expense of some
additional overhead, as we show in the next section.
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Fig. 13: [SIM] SplitStream percentage of received messages
during an experiment in which between 10% and 50% of nodes
start to act selfishly after 20s.

D. Performance in the fault-free case

In this section we assess the performance and overhead of
FullReview, compared to PeerReview, in the fault-free case.
To this end, we perform three experiments. We launch each
of the experiments of this section both using simulations and
G5K, but we show the results on G5K only. The results using
simulations are consistent and can be found in the companion
technical report [11].

In the first two experiments, we measure the network traffic
and the rate at which the logs grow w.r.t. the number of
monitors, in PeerReview and FullReview respectively. In the
case of Onion routing, an onion path was composed of 5 relays.
Figure 14 presents the results for both SplitStream and Onion
routing. Each value has been obtained by running the system
with 50 nodes during 5 minutes.

In the left figure, each bar represents the traffic due to
the payload of the application. On top of this payload is the
traffic due to PeerReview, on top of which is the overhead of
FullReview in addition to the one of PeerReview. In this figure,
we observe that the average traffic per node increases w.r.t. to
the number of monitors for both PeerReview and FullReview
in the two applications. This is due to all the messages that
need to be exchanged between nodes and their monitors.
Further, we observe that the overhead due to accountability
in the SplitStream application has an overall cost of 14% in
PeerReview with two monitors and an extra cost of 7% in
FullReview. This overhead grows up to 45% for PeerReview
and an additional 31% for FullReview when 5 monitors are
used. These costs are much higher if compared to the payload
of the Onion routing application. For instance, enforcing
accountability in Onion routing using PeerReview generates
a traffic of 129kb/s per node while the application itself
generates a payload of only 18kb/s per node. However, put
into context this result is not bad, as enforcing accountability
in anonymous communication protocols is a very challenging
task for which existing solutions often require the heavy use
of broadcast primitives (e.g., RAC [4], Dissent [7]). Further,
assuming that nodes are connected using Gigabit links (in the
case of a LAN) or even using few Megabit links (in the case of
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Fig. 14: [G5K] Average network traffic and log growing rate per node of SplitStream (SS) and Onion routing (OR) w.r.t. the

number of monitors.

a WAN), 129kb/s seems a reasonable overhead. The good news
is that if the developer accepts to pay the cost of accountability
using PeerReview in a system with a small payload, using a
selfish resilient accountability system, i.e. FullReview, would
cost him an extra 3kb/s (i.e. 2% more traffic) with two monitors
and an extra 15kb/s (i.e. 5% more traffic) with five monitors.
Note that, overall, enforcing accountability using PeerReview
is more expensive in the Onion routing application than in the
SplitStream application because in the former application the
full onions are stored in the log while in the latter instead of
storing the video chunks received by nodes in the log, we store
only their identifier. Indeed, storing onions was the only way
we found to enable monitors to verify that a node has correctly
decrypted and forwarded an onion it received.

In the right figure, each bar represents the average growing
rate of the log of nodes. Similarly to the previous figure, the
cost of FullReview is shown as a delta in addition to the cost
of PeerReview. Note that logs do not grow forever. Indeed,
as in PeerReview, logs are truncated after a given amount of
time and audits are performed only for the new parts of the
log. Obviously, the longer the logging period chosen by the
designer, the higher the probability to deter faults.

Results depicted in this figure show that the log growing
rate of the SplitStream application is higher than log growing
rate of the Onion routing application, which is due to the fact
that the SplitStream application generates more messages to
send the video stream than Onion routing, and thus more
interactions are added to the log. Further we observe that
the higher the number of monitors per node the higher the
log growing rate. On the Onion routing application, the over-
head in terms of log growing rate is equal to 4.9% when
using FullReview with two monitors and increases up to 24%
when using five monitors. On the SplitStream application,
this overhead is higher as it spans from 6.8% to 30% when
using respectively two and five monitors. Yet, we consider this
overhead as reasonable. Indeed, in the worst of our experiments
(i.e, in the SplitStream application using five monitors), for
24 hours logging, nodes need to devote 4.4GB of storage for
enforcing accountability in presence of selfish nodes, which is
reasonable.

In the third experiment, we measure the impact of the audit
period on the overhead of FullReview compared to PeerReview.
The audit period was ranging from 1Is to 30s. We set the
number of nodes to 50, with 2 monitors per node and 5

relays for the Onion routing application. Each experiment
last 5 minutes. Results, presented in Table I, show that even
with a high frequency of audit (i.e. every second), FullReview
generates only 6.7% more traffic and logs are 8.2% larger than
PeerReview in the worst case.

Audit period 1s 5s 10s 30s
ss Log size +7.4% +6.8% +6.7% +6.4%

Network traffic +6.7% +6.2% +6.1% +5.9%
OR Log size +82% | +4.9% | +4.8% | +3.3%

Network traffic +2.9% +2.6% +2.3% +1.9%

TABLE I: [G5K] Overhead of FullReview compared to Peer-
Review, for both SplitStream (SS) and Onion routing (OR),
with an audit period ranging from 1s to 30s.

To summarize, FullReview adds a small overhead to Peer-
Review in terms of generated traffic and log size. This overhead
is mainly due to the new log entries inserted by FullReview to
detect selfish nodes. Similarly to PeerReview, the cost of Full-
Review increases with the number of monitors per node and
with the frequency of the audits. Overall, accounting for the
increasing resources (storage and network bandwidth) at the
disposal of a large public (Terabytes of storage and Megabits
of network bandwidth), the cost of enforcing accountability in
presence of selfish nodes becomes a realistic option.

E. Scalability of FullReview

In this section we show that SplitStream-FullReview and
Onion routing-FullReview scale up to at least 1000 nodes.

Figure 15 presents the network traffic and the log growing
rate of SplitStream and Onion routing, for both PeerReview
and FullReview, as a function of the number of nodes in the
system. Each value has been measured via a simulation that
lasts 100s. Moreover, the system has been configured with 5
monitors per nodes. As one could expect from the results of
Figure 14, using less monitors provides better performance.
In addition, the audit period was set to 10s. Finally, Onion
routing was configured with 40 relays and was sending onions
at a rate of 16kb/s.

From this figure we can draw the following conclusions.
First of all, for both SplitStream and Onion routing, the
network traffic and log growing rate of FullReview is within a
constant factor of PeerReview. For instance, with SplitStream,
the log growing rate (resp. network traffic) of FullReview is
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equal to 1.4x (resp. 1.3x) the one of PeerReview. This is due to
the fact that FullReview adds a constant number of operations
on the ones performed by PeerReview. Second, we can observe
that FullReview scales up to 1000 nodes, as the network traffic
and log size remain fairly stable despite the increase of the
number of nodes. The reason is that each node always interacts
with the same number of nodes on average, whatever the
overall number of nodes in the system (i.e. its partners w.r.t.
to the application and a fixed number of monitors).

VII. CONCLUSION

This paper addresses the problem of accountable dis-
tributed systems in presence of selfish nodes. We have shown
that PeerReview, the only software generic solution to enforce
accountability, does not tolerate selfish nodes. To tackle this
problem we propose the FullReview protocol. This protocol
uses game theory techniques by embedding incentives that
force selfish nodes to stick to the protocol. We have evaluated
FullReview on a cluster of physical machines and using
simulation with two applications: SplitStream, an efficient
multicast protocol, and Onion routing, the most widely used
anonymous communication protocol. Our evaluation makes the
following points. First, contrarily to PeerReview, FullReview
effectively tolerates selfish nodes. Second, FullReview has
a low additional overhead compared to PeerReview. Finally,
FullReview scales up to 1000 nodes.
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