
HAL Id: hal-01301079
https://hal.science/hal-01301079v1

Submitted on 20 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

FullReview: Practical Accountability in Presence of
Selfish Nodes

Amadou Diarra, Sonia Ben Mokhtar, Pierre-Louis Aublin, Vivien Quema

To cite this version:
Amadou Diarra, Sonia Ben Mokhtar, Pierre-Louis Aublin, Vivien Quema. FullReview: Practical
Accountability in Presence of Selfish Nodes. The 33rd IEEE Symposium on Reliable Distributed
Systems (SRDS 2014), Oct 2014, Nara, Japan. pp.1-10, �10.1109/SRDS.2014.32�. �hal-01301079�

https://hal.science/hal-01301079v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

FullReview: Practical Accountability in Presence of

Selfish Nodes

Amadou Diarra

Grenoble University

Grenoble, France

Sonia Ben Mokhtar

LIRIS CNRS

Lyon, France

Pierre-Louis Aublin

LIRIS CNRS

Lyon, France

Vivien Quéma

Grenoble INP

Grenoble, France

Abstract—Accountability is becoming increasingly required in
today’s distributed systems. Indeed, accountability allows not only
to detect faults but also to build provable evidence about the
misbehaving participants of a distributed system. There exists
a number of solutions to enforce accountability in distributed
systems, among which PeerReview is the only solution that is
not specific to a given application and that does not rely on any
special hardware. However, this protocol is not resilient to selfish
nodes, i.e. nodes that aim at maximising their benefit without
contributing their fair share to the system. Our objective in this
paper is to provide a software solution to enforce accountability on
any underlying application in presence of selfish nodes. To tackle
this problem, we propose the FullReview protocol. FullReview
relies on game theory by embedding incentives that force nodes
to stick to the protocol. We theoretically prove that our protocol is
a Nash equilibrium, i.e. that nodes do not have any interest in de-
viating from it. Furthermore, we practically evaluate FullReview
by deploying it for enforcing accountability in two applications:
(1) SplitStream, an efficient multicast protocol, and (2) Onion
routing, the most widely used anonymous communication pro-
tocol. Performance evaluation shows that FullReview effectively
detects faults in presence of selfish nodes while incurring a small
overhead compared to PeerReview and scaling as PeerReview.

I. INTRODUCTION

Distributed systems have always been the scene of various
software and hardware failures. These failures can have diverse
sources such as the crash of machines, bugs, misconfigurations,
as well as malicious attacks and users that deliberately tamper
with their software to gain some benefit. These failures are
especially difficult to deal with when the distributed system
spans over multiple administrative domains (also referred to
as MAD distributed systems) [1]. Examples of such systems
include peer-to-peer systems, computer grids, network services
(e.g., DNS), federated information systems and inter-domain
routing.

Accountability, which refers to the ability to detect and
expose node faults, is a promising paradigm to deal with these
types of failures. In the last decade various solutions have
been proposed to enforce accountability for specific applica-
tions (e.g., anonymous communication [7], online games [26],
network storage [27], randomised systems [2], inter domain
routing [16], virtualised systems [17]). While these solutions
offer strong accountability guarantees, their usability is limited
to the specific application domain for which they have been
devised. Hence, generic solutions that are not tailored to a
specific application have been proposed, some of which rely
on trusted hardware (e.g., Trinc [21], A2M [6], Pasture [19])
while others are generic software solutions. Our work targets

this second category of systems as they do not require users
(worldwide) to acquire specific hardware. To the best of our
knowledge, PeerReview [15] is the only protocol that falls
into this category of systems. In this protocol, nodes log their
interactions with other nodes in a secure log. This log is
then periodically audited by a set of other nodes assigned by
the system, i.e. the node’s monitors. During their audit, the
monitors verify that the monitored node did not tamper with
its log and that the latter corresponds to a correct execution
of the monitored protocol. An attractive result of PeerReview
in addition to its wide applicability is that it provides two
theoretical guarantees: completeness and accuracy. Informally,
completeness refers to the ability to detect (eventually) all the
observable faults, while accuracy refers to the ability to never
accuse correct nodes of misbehaviour.

PeerReview works under the Byzantine failure model, i.e.
a model where a majority of nodes are correct and where a
fixed (known) proportion of nodes in the system can behave
arbitrarily. While dealing with Byzantine nodes is important,
it has been demonstrated that in open collaborative envi-
ronments selfish nodes, also called free riders, constitute a
real threat [10], [20], [12], [9]. Selfish nodes are nodes that
tamper with their software (or download a tampered software
developed by others) in order to benefit from the system
without contributing their fair share to it.

In PeerReview, nodes are not encouraged to participate to
the monitoring of other nodes, which makes it vulnerable to
selfish nodes. Specifically, in presence of a proportion of selfish
nodes, some nodes in the system can be unsupervised if all
their monitors behave selfishly. As a result, these nodes can
harm the system without being detected, breaking the com-
pleteness property of PeerReview. To measure the impact of
this threat in practice, we deployed PeerReview for enforcing
accountability in the following two protocols: SplitStream [5],
an efficient multicast protocol and Onion routing [13], the most
used anonymous communication protocol. Experiments show
that in presence of 30% of selfish nodes, 54% and 85% of
messages are lost using the first and the second protocols,
respectively.

In this paper, we embrace the challenge of designing a
selfish-resilient protocol for enforcing accountability in dis-
tributed systems and present the FullReview protocol. The
objective of FullReview is to force selfish nodes to participate
in the monitoring of other nodes while they are executing a
given protocol. To reach this objective, the first idea that one
may have is to make monitors themselves accountable for their
actions by applying PeerReview. We show in this paper that

1

this is not possible because using PeerReview to monitor itself
would require that each node’s log contains the log of all the
other nodes in the system, which is not scalable.

To overcome this problem, FullReview relies on a game
theoretic approach to force selfish nodes to stick to the moni-
toring protocol. Specifically, FullReview is a complete redesign
of the PeerReview protocol, in which we have embedded
incentives in such a way that it is not in the interest of any node
to deviate from the protocol, i.e. we prove that FullReview is
a Nash equilibrium [24]1.

We implemented FullReview and used it to monitor the
two protocols SplitStream and Onion routing. Performance
evaluation performed on a cluster of 50 machines shows that
FullReview is resilient to selfish nodes and that it incurs a
reasonable overhead compared to PeerReview. Complementary
simulations show that FullReview scales up to 1000 nodes.

The remaining of this paper is structured as follows. First,
we present the related works in Section II. Then, we show
the impact of selfish nodes in PeerReview and present our
system model in Section III. Further, we present an overview
of FullReview and its detailed description in sections IV and V,
respectively. Finally, we present the performance evaluation
of FullReview in Section VI and concluding remarks in Sec-
tion VII.

II. RELATED WORKS

Building robust distributed systems has been at the heart
of many research efforts in the last decade. In this context, a
new model called the Byzantine, Altruistic, Rational (BAR)
model has been proposed [1]. This model considers three
types of nodes: Byzantine nodes are nodes that can deviate
arbitrarily from the protocol; rational nodes are nodes that
deviate from the protocol if the performed deviation allows
them to increase their own benefit according to a known
utility function; altruistic nodes are nodes that always stick to
the protocol. In this context, a protocol is said to be BAR-
resilient if it tolerates a fixed amount of Byzantine nodes
and an unlimited proportion of rational nodes. BAR-resilient
protocols often combine game theory by adding incentives
that encourage rational nodes to stick to the protocol and
accountability techniques that expose Byzantine nodes in case
of deviation. In the last years, various collaborative systems
have been designed according to this model including protocols
for spam resilient content dissemination [3], distributed file
systems [1], video live streaming [23], [22], [14], anonymous
communication [4] and N-party data transfer [25]. The process
by which a new BAR-resilient protocol is designed usually
involves the following steps: (1) define the utility function
of rational nodes in the considered protocol; (2) list all the
possible rational deviations according to the defined utility
function; (3) for each identified deviation, propose incentives
for rational nodes such that any deviation would engender a
loss in the utility perceived by the deviating node and mech-
anisms that would catch the considered Byzantine deviation;
(4) prove that the proposed protocol is a Nash equilibrium.
The major limitation of this approach is that it has to be
performed manually by a system expert, which is complex

1Due to the lack of space, this proof is available in the companion technical
report [11]

and possibly error prone. Furthermore, any modification in the
original system requires to rethink the system as a whole, as
the latter may introduce new rational or Byzantine deviations.
Rational nodes in the BAR-model correspond to selfish nodes
in our work.

A grail that security managers may dream of having
is a way of automatically transforming a given protocol
into a BAR-resilient protocol. Two solutions that go towards
this direction have been proposed in the literature. First,
Nysiad [18] allows the automatic transformation of a given
protocol to a Byzantine resilient system. Nysiad reaches this
objective by replicating each node using a variant of replicated
state machines (RSMs). However, the resulting system does
not deal with rational nodes. Contrarily to Nysiad, PeerRe-
view [15] allows to automatically detect all sorts of observable
deviations, including both selfish and Byzantine deviations,
that a node would perform in a given monitored protocol.
PeerReview reaches this objective by using tamper evident
logs and assigning monitors to nodes, which periodically
assess the correctness of a node by comparing its log with
a correct execution of the protocol obtained using a reference
implementation. However, while PeerReview allows to deter
faults in the underlying protocol to which it is applied, it does
not detect deviations performed by nodes on its own protocol
steps.

Our objective in this paper is to design the first generic
protocol that deals with both selfish and Byzantine nodes on
any underlying protocol.

III. PROBLEM STATEMENT AND SYSTEM MODEL

We present in this section an evidence that the PeerReview
protocol fails to enforce accountability in presence of selfish
nodes in Section III-A. We then present our system model in
Section III-B.

A. Problem statement

Let us consider a system where nodes can be correct,
selfish or Byzantine. As introduced in the previous section,
correct nodes follow the protocol, Byzantine nodes can behave
arbitrarily and selfish nodes aim at maximizing their benefit
with respect to a known utility function. The PeerReview
protocol has been designed under the assumption that every
node is monitored by a set of monitors and that each monitor
set contains at least one correct node that executes all the
monitoring steps. In this work, we remove this assumption
and consider that any node in the system can behave self-
ishly if it has an interest in doing so. We show that nodes
executing PeerReview can skip some steps of the monitoring
protocol without being detected and that such behaviour can
have a dramatic impact on the performance of the monitored
protocol. We provide in the companion technical report [11]
a complete analysis of all the protocol steps of PeerReview
and list all the selfish deviations that they are subject to. Due
to the lack of space, we present here our practical results
only. Specifically, to assess the impact of selfish nodes in
PeerReview, we performed the following two experiments.
In the first experiment, we deployed on one hundred nodes
the SplitStream protocol [5], an efficient tree based multicast
protocol, monitored by PeerReview. In the second experiment,

2

we deployed one hundred nodes running the Onion routing proLOcol [13] moniwred by PeerReview. In both cases, we used the same experimental settings as the ones described in Section VI. In both experiments, if a selfish node notices that its monitors are selfish (e.g., because they never ask to audit its log), it also behaves seliishly with respect LO the SpliLStream and Onion routing protocols by dropping messages iL receives and lhaL are noL intended Lo him. We measure the percentage oJ lost messages with respect Lo the proportion oJ sellish nodes in the system. Results, depicted in Figure 1, show that in presence of up Lo 30% of selfish nodes. correct nodes running the SplitStream protocol observe 54')i, of message loss. Similarly. in the Onion routing application. correct nodes experience a loss in their onions that can reach 85% with 30% of seliish nodes in a conliguraLion with live relays. This proportion increases and reaches 100% when the number of relays increases. This is due lo the fact that the probability of having a selfish relay in a path increases proportionally with the number of relays constituting this path. '"
t,
.Q

0 "
"
C.

100 � -__,. _ _ __.,_ _ _ .,.._ _ __, ___ _ ---"

80

60

40

20

.,.;x.-�-�-----��
- -

-
- -

//,,
/

/
/

•...••. ; • • ,✓-(,J''
,: ,,/ . SplitStream
: / Onion routing w/ 5 relays ---><- - -

:'/,' Onion routing w / 4 0 relays ---':.f: o-- -�--- -�- --- -
o 10 20 30 40 50

Percentage of selfish nodes Fig. 1: Impact of seliish nodes in PeerReviewed SpliLSLream and Onion routing protocols. The question we raise in this paper is thus how to enforce accountability in any underlying protocol in presence of selfish nodes? We answer this question in the remaining of the paper. B. System model Our target system is composed oJ Lwo protocols: the monitored protocol lo which we will refer as F and the monitoring protocol Lo which we will refer as M.
Fault model. We consider a fixed proportion oJ Byzantine nodes that can Lake arbiu·ary decisions. They can deviate from either For M proLOcols for any reason (e.g .. a failure, a bug, a threat). Purthermore, we consider any number of selfish nodes. These nodes aim at maximising their benefit according to a known utility function. Selfish nodes will deviate from 11,f if they gain some beneiiL in doing so. Specilically, this benefit can be represented along the following axes: 1) (Communication) Sending/receiving as liule as pos­sible monitoring messages to/from other nodes. 2) (Computation) Performing as little as possible monitoring-related computations for other nodes. Moreover. we assume that selfish nodes are risk al'erse. This means that before perfomling any deviation, a sellish node estimates the probability Lo be detected in the future. If this probability is greater than zero, a seliish node sticks lo the protocol. This assumption is commonly used in BAR systems [l], This assumption makes particularly sense in accountable systems because the detection of a deviation in these systems directly leads to the eviction of the faulty node from the system. Instead, in systems where the penalty is weaker, e.g., a decrease in a reputation value, it appears more appropiiale lo consider differem sellishness models (e.g., risk ailine). This is noL the case of our system. The BAR model also supposes that selfish nodes join and remain in the system for a long time and seek a long-term benefit. Moreover. selfish nodes do not collude and assume that other nodes are correct. System assumptions. As in PeerReview. we assume a crypto­graphic identification of nodes. Specifically, each message sent in the network is signed using the sender's cryptographic key. We assume lhaL cryptographic primitives can not be forged and that hash functions are collusion resistant. Moreover. we assume that messages sent by a sender to a given receiver are always received if retransmitted infinitely often. We assume that nodes have a deterministic reference implememaLion of F that can be initialised with checkpoints and Lo which we can i1�jecL inputs in order lo gel the corresponding outputs. IV. Ful!Revie,v PROTOCOL OYl.!RYIEW Let us consider a set oJ iV nodes executing a protocol F ddined as a set oJ delernlinislic stale machines. In Ful!Revien·, nodes take part in a classical accountability architecture as depicted in Pigure 2. Specifically, each node i in our system interacts with a set of nodes referred to as i's partners and appearing on its right side in the ligure. In addition Lo its set of partners, node i is assigned a seL of monitors that pe1iodically verify whether 'i sticks lo the specification oJ the protocol F or not. This set of nodes is referred to as m(i) and appears above i in the figure. Svmmetricallv. i monitors a set of nodes: the set of nodes� refetT�d to as m 01(i) and appearing below i in the figure. To perforn1 this monitoring, each node maimains a secure log that is Lamper evident and append only, in which it writes all its interactions with its partners (details on secure logs are given in Section V -A). This log is periodically audited by i's monitors. Each monitor mns a monitoring protocol lvf also described as a set of deterministic state machines.

m(i): i's monitors

�
\ I .·' •

\ I , \.! -✓�

Et .. / i ',

�

p(i) ;
i ! s
pdr Lners

··-+Mon� Loring
.acl1011S

----+Monitored
dC Li.on.:::

in· (i) : i's rnoni Lured nodes Fig. 2: Simple accoumabilily architecture. The objective of Ful!Re�·iew is to force selfish nodes to execute all the steps of both protocols F and At and lo detect when Byz;antine nodes deviate from either protocols F or lvi. To reach this objective, each node i Logs in its secure log
3

all its actions related to both protocols l' and lvi. Then, i's monitors, i.e. nodes in the set rn(i), pe1iodically perfonu a set of verifications on this log. These verifications. which are depicted in the diagram of hgure :I. allow each monitor to reach evidence ahout the correctness of i. Specifically, each node in rn (i) starts by verifying that i did not tamper with its log (e.g .. that the node did not delete previously inserted enuies). We call this ve1iiicalion, which appears on the top of the diagram. log r:oherence check. We explain how this verification is performed in Section V-131. huther. each node in m(i) verifies that i holds a unique log for all its partners. We call this verification, which appears second in the diagram, log consi.rtency check. The above I wo velilications are critical for the accountability system to be effective. Indeed, if a node manages Lo add/dekle log enl1ies or to have multiple versions of a log. it could deviate from the protocol without being detected. We explain how this verification is performed in Section V-132. Moreover. each node in m(i) verifies that the cn111111u­nication patterns appearing in i's Log are coherent with Al and l''s stale machines (third velilication in the diagram). This veliiicalion ensures that i's log contains a sequencing of messages that reflect a correct behaviour. 1--ior instance, a correct log should contain periodic requests from i to the set of nodes it monitors. i.e. the nodes in m-1 (i). The ahsenceoJ such peliodic messages re1lects a faulty behaviour. We explain how these verifications are performed in FullRn,iew in Section V-B3. However, a log that exhihits a correct sequencing of messages is not sufficient to guarantee a correct hehaviour. Hence. the last verification that is performed hy i's monitors is lo assess whether i's Log co1Tesponds Lo a correct execution oJ the protocols l' and Al or not. Verifying the confonnance oJ i's log with a conecL execution oJ l' is performed as in the PeerReview protocol. i.e. by re -executing the code of the protocol P using a reference implementation. Specifically. the inputs present in i's log are injected in the reference implementation oJ l' and the produced ompuls are compared with the outputs present in i's log. Mismatching outputs would consliLute an evidence lhaL i did not co1TecLly execute r.Doing the same velilication for the protocol M is not possi­hle. Indeed, as further discussed in Section V -84, re-executing the monitoring code is a recursive task and requires that a node's log contains the log of all the other nodes that are linked
LO him in the moni101ing graph (which may possibly be all the nodes in the system). To avoid such an overkill, we identiJy all the computations performed in the protocol Al and ensure Iha! these computations are performed hy a set of nodes in parallel. The outcome of each computation is then collected from the various participating nodes and sent to the nodes' monitors. The laller compare the outcome oJ the compulalion pedonued by their monitored node with respect lo what other nodes have computed. As sellish nodes do 1101 wam LO be ex.posed hy correct nodes, they will always perform the computation correctly. In the diagram of 1--iigure 3, this last verification is performed before the re-execution of P's code because the Latter is more costly. Details or how Ad/Review velilies that nodes co1TecLly executed the computations appeming in both protocols M and l' are desc1ibed in Sections V-B4. I Yes

ls log(i) consistant/

Yes

J\o

Ko

Does lug(i) rdkcl com.·cl communication Ko
pallerns wrl P aml M protocols/

YP.�
Do all tl1P. computations perfonrn:�c1 hy i '\l,,'lt

Lo J\."l appear corrccl'?

Yes

Dues lug(i) correspumb lo a rnrrecl
l'Xl'CULion o[P'!

Yes
t I• cnn'!'CT

Ko

Ko

i is ta11l1y 1--iig. 3: FullRe.'iew monitors decision diagram.
V. Ful/Re,'iew DETAILED DF.SCRil'TIOK We start this section hy introducing secure logs, a central component for enforcing accoumabilily (Section V-A). We then presem the Lwo major parts oJ our protocol, i.e. the audit protocol (Section V-B) and the omission failure protocol (Section V-C). hnally. we give some information ahout how we carried out the Nash equilihrium proof for our protocol (Section V-D). A. Accmmtahility Mols: Tamper Evident lnRSecure Logs are often used lo enforce accountability indistributed systems. A secure log is generally used to store the messages ex.changed by a node with its partners. According Lo the requirements of the accountable system. log entries labelled Po, ... , f1., can contain various information among which an identifier of the logged message, whether the message was sen I or received by the node as well as its parameters.

h '
h '

e '

'1

'

e, : entry k
h,=K(c,, 11 h , _.)
a'=

i (h,)o, Fig. 4: Example oJ a secure log. To each log entry e .. corresponds a recursive value h1, . computed as a hash oJ c., concatenated with the value orh1.,-i (where /1._1 is a fixed value), and an authenticator n?, which is a message containing the value of h1., signed with i"s private key, i.e. nf = (h.,)11, . Authenticators allow verifying that a node log has 1101 been tampered with. For instance. consider a node j among node's i monitors. If j gets a pair or au1hen1ica1ors a;1 and ut' corresponding 10 the entries tr,and f/,: of i's log respectively, it can ask i of its log entries Po, ... , fJ.: and recompute h0, ... , h,,. If the computed h,, differs from the one held by _j. the latter can accuse i of tampering with its log. Further, j can convince any other correct node or the ntisbehaviour or i by sending to iL the signed authenticators
u7 and uf along with the Log entries sent by i.

4

B. Ful!Review selfi.1·h-re.rilient audit protocol

Using the secure log descrihed ahove, a node _j monitoring
the hehaviour of a node i performs a set of verifications to
assess lhe correctness of i following the diagram of Figure 3.
However. seliish monitors might be templed not to perfom1
lhese verifications. In order lo force monitors lo perform them,
we make audits proactive. Specifically. we divide time in
rounds and give the responsihility for each node to periodically
(e.g., at the end of each round) ask its monitors to audit its
log following the diagram depicted in Figure 5 (the Audit_req
message sent from i to its monitors m(i)). Then, each monitor
performs lhe required ve1ificalions and produces a certificate
of correctness if the node passes al I of them. In the opposite
case, i's monitors send a proof of mishehaviour to i including
the evidence of i's m ishehaviour. which any correct node can
recompute. This certificate is then used by i al the beginning of
lhe following round in order lo communicate with its paru1ers.
Without such a certificate, i's partners will refuse to interact
with i. Note that some of i's monitors might he unresponsive
(either hecause of a failure or to avoid auditing i's log). We
descrihe how we deal with this situation in Section V-C.
Finally, after collecting lhe outcome of the audit produced by
its monitors (Audil_resp message), i forwards the aggregated
outcome lo the monitors of each of its monitor (Fwd_outcome
message). This l,rnt step is useful for the monitors of i's
monitors (i.e. m(m(i)J) in order to verify whether the nodes
they monitor correctly performed their monitoring tasks or not.
Furlher details on lhis ve1ificalion are given in Section V-B4.

In the following we descrihe in detail the set of verifica­
tions performed hy the monitors of each node to assess its
correctness.

I) Log coherence check: Allows verifying that a node's
log has not heen tampered with. Consider a node _j that
monitors a node i. If J gets a pair of authenticators n? and nf
corresponding lo the enuies (:0 and (:1., or i's log respectively. il
can ask i for ils log entries to, ... , t1< and recompute ho, ... , h., .
Ir the computed h1< differs from lhe one held by j, the lauer
can accuse i of tampering with its log. 1-<urther. j can convince
anv other correct node of the mishehaviour of i hv sending to it
th� signed authenticators n� and nf along with the log e�tries
sem by i. To perfonu this type of vedlication each node shall
log each message ii sends as part or the protocols F and Ai
and send the corresponding aulhemicator to its partner. Further­
more, each node shall forward the received authent icators to its
partners' monitors. However, selfoh nodes might he tempted
not to follow these steps, i.e. avoid attaching authenticators
wilh messages they send and/or avoid forwarding received
authenticators lo lhe paru1er's monitors. We show how we deal
wilh this issue in Section V-B3.

2) Log con.�i11tency check: Node i might he tempted to
maintain many correct logs (e.g., one log for each node with
whom it interacts). To detect lhis type of misbehaviour. a
monitor j that holds a set or aulhenticators sem by i 10 olher
nodes verifies that these authent icators helong to the same log.
Similarly to the log coherence check, this verification requires
th at nodes attach authenticators to all messages they sent and
forward received aulhemicators lo their partners' monitors. and
lhal monitors perform lhe consistency check. We show how we
encourage selHsh nodes lo perfom1 lhese steps in Section V-B3.

(l):l<udit_req (2) :AudiL r'e.!;;µ

m(i)

m(m(i)

Fig. 5: Ful!Review audit protocol. 3) Verifying communication patterm: In this part of the
protocol, a node in the monitor set of a node i is responsihle for
assessing whether the log or i reflects co1Tect communication
pal terns with respect to lhe stale machines or J> and M. How­
ever. it is 1101 possible 10 consider lhe stale machines of these
two protocols separately as in some situations steps of AI need
to he interleaved with steps of P. i-;or instance. as seen in the
log coherence and consistency checks descrihed ahove. nodes
need lo send authenticators along with messages related lo F
and need 10 forward authenticators received along with mes­
sages related to 1'. To reach lhis objective, lhe state machine or
the protocol P is automatically augmented with a set of manda­
tory transitions as depicted in hgure 6. In this figure. and in
all the figures depicting automata in the paper. transitions are
labelled as follows: (PIM:INI OUT:message_type) where the
Jirsl part refers lo whelher the message belongs lo the protocol
F or A·l; lhe second part indicates respectively whelher the
message is received or sent and the third pa1t is the message
type. This figure shows that each time a node is expecting
a message as part of the protocol P, it should: (l) upon
receiving lhe message, forward the included authenticator to
the sender's monitors (transition labelled (M :OUT :fwd_auth)):
or (2) accuse the sender if lhe message did not contain an
authenticator hy sending an accusation message to the sender's
monitors (transition lahelled (M:OUT:accuse)): or (3) suspect
its partner if the latter did not send the expected message
(transition labelled (M:IN:timeout)). The uansitions following
this latter uansition are Jurlher described in Section V-C.

Augmenting all I he 1rai1silio11s of 1' related LO Lhe recep1io11
or messages as shown in Figure 6 forces seliish nodes to allach
authenticators LO the messages they send (otherwise. nodes
that receive theses messages might accuse them). i-;urthermore,
it forces selfish nodes to forward the received authenticators
to their partner's monitors (otherwise, their monitors might
accuse them of behaving seliishly).

In addition to verifying that a monitored node's log is c o ­
herent with the state machine of the P augmented automaton,
monitors vedfy that the log is coherent with i\d state machines
related lo the audit protocol (descdbed earlier in lhis section)
and wilh Ai state machines related to the handling oJ omission
failures. The former state machines are depicted in Pigures 7
and 8 while the latter are descrihed in the following section.
Specifically. the automaton of Pigure 7 shows the correct
communication pallems oJ a node i asking one oJ its monitors
for an audit (uansilion labelled (M:OUT:audit_req)). Arter
sending his audit request, node i eilher receives a response
from its monitor containing the outcome of the audit (transition
lahelled (M:IN:audit_resp)) or does not receive a reply (the
transition lahelled (M :IN :timeout)). In the former case. node
i forwards lhe outcome oJ the audit 10 the monitors oJ all or
its monitors. which allows them LO vedfy lhal their monitored
node reached the same outcome about the coneclness or i as

5

the olher moniLOrs oJ i. In lhe laller case, i considers thal ils monitor has failed and handles lhis failure as desc1ibed in the following section. The automaton of hgure 8 shows the correct communi­cation patterns of a monitor _j that receives an audit request from a node i that it is monitoring (the transition labelled (M:IN:audit_req)). After lhe reception of this request, node j performs the audit of i's log and sends back lhe oulcome to i (the transition labelled (M:OUT:audit_resp)).
�-

\·I:(llfl :(h<lllE' n£E' rvl: I\ :1·l1nl l _n11.(11m,;, J--iig. 6: Augmenting the P protocol. J--iig. 7: Sending audit requests.
�

\1:IN:rrndil l'CQ).1:0UT:ml.di[rc:�p J--iig. 8: Dealing with audit requests.
4) Verffying computation.�: In this part of the protocol. each monitor j in the monitor set of a node i verifies that the computations performed by i as parl oJ the protocols l' and M are correct. For lhe computations performed by i and thal are relaled to l', j use checkpoints slored in i's log and initializes the reference implementation it has with the oldest non-verified checkpoint. J--iurther, .J replays all the inputs availahle in the portion of i's log it is auditing and verities that the oulputs produced by lhe reference implemenlalion match with the outpuls stored in lhe log. If the compuled oulputs do not malch wilh the logged ones. j accuses i of misbehaviour. Whether i passes this verification or not, j stores the outcome of the audit along with the authenticators corresponding to the portion of the log of i that it has audited and sends the outcome oJ the audil lo i as prescribed by lhe audit protocol (described earlier in this seclion). Contrmily to lhe computations related to lhe prowcol F, verifying those related to the monitoring protocol l'vf can not he done hy re-executing the steps of the protocol !If. To intuitively understand why, let us consider the following example, where node i nwnilors node i - 1 (among other nodes) and is moniwred by node i + 1 (among other nodes). At a given e.x.eculion time. the monilor of node i+ 1, say node i + 2 would like to audit node i + J's log to verify that it is correctly performing its monitoring actions regarding the hehaviour of i. To do so, node i + 2 needs to get access to node i's log. which is available in i + l's log. Hence, LO check whether i + 1 has correctly done his monitoring aclions. it needs 10 veriJy whether i + 1 cmrectly audiled i's by replaying lhe audil verificalions itself. However. 10 verify whelher i is effectively correct, i + 2 must ve1iJy whether i correctly executed its monitoring steps with respect to i- I . To do this last verification, i + 2 must verify whether the outcome of i's audit over i - I's log is correct and is thus ohliged to audil ilself i - l's log. This process dearly leads each node to recursively oblain and audit the logs of all the other nodes that it is connected lo in lhe monitoring graph. which is 1101 practical. To a void such an overkill. we use incenli ves 10 force sellish nodes to correctly perform the computations taking part of the protocol l\-f instead of recomputing them. Specifically, as described earlier, after receiving the outcomes of the audit sent by its monitors. a node aggregales these resulls and forwards them to lhe monilors oJ ils monilors. These nodes receive an inforn1a1ion oJ lhe lype: (audited node ID, authenticators, monitor ID, outcome) for each of i's monitors that took part in the audit. If a majority of monitors detects a misbehaviour in i's log and one of them, say node j, did not, then j is accused of misbehaviour. In this situalion, j is seUish iJ ii claimed lhat i is correct without perfornring lhe verilicalion or Byzanline iJ ii replied arbitrarily. As selfish nodes do 1101 want to he excluded from the system, they always pe1form the computations related to l'vf correctly. Instead, if a majority of monitors hut J considers that i is correct. J is considered By:i:antine. as a seUish node do nol have any inlerest in accusing a correct node or misbehaviour. C. Handling omission failures The handling of onrission failures is done in Ful/Review as depicled in Figure 9. Specifically. iJ a node i wails for a given message from a given node j for too long, i suspecls j (after step (1) in the figure). To do so, i creates a challenge for .J and sends this challenge to j's monitors (step (2) in the figure), who forward the challenge to j (step(\) in the figure). If j is still alive in lhe syslem then it replies 10 the challenge (step (4)). Whelher j replied or not to lhe challenge. afler a given amount oJ time j's monitors send an outcome oJ lhe challenge to i summarizing the situation (step (5)). A selfish node may he tempted not to suspect a node even if it has waited for too long to receive a message assuming that other nodes wil I take care of that. Si mi larly. a selfish monilor nright be !empted not to forward a challenge send by i lo j assuming thal the olher monilors will do so. These two deviations are 1101 possible in Ful/Revici,· because of lhe verification of communication patterns performed hy monitors on their monitored node's log. Specifically, the automata of hgures 10 and 11 show the correct communication patterns that should be present in the log or a node when, as a monilor. ii receives an onrission failure complaint aboul one of its monilored nodes and when. as a suspected node, it receives a challenge from its monitor. The log of a selfish node should he conform to these automata, otherwise it 1s accused hy its monitors. In addition, a selfish node might he tempted to suspect a node instead of performing a costly interaction with him. To avoid lhis devialion, we make the cosl oJ suspecting a node higher than the cost of inleracling wilh him. To avoid to overload lhe syslem, we adapl lhis cost to each slep oJ lhe

6

pro LO cols 1' and M. For instance. if sending a message m costs xH of bandwic\Lh Lo node -i. we make the cost or suspecLing a node j to whom i was supposed to send m equal to :r + r,n. As such, a selfish node i will always prefer to send m instead of suspecting _j.
m(j) ---------=E----SIIZ..-------­

�1-1 message (3), F•ad_chal I (4), ,cply_chall

� 1 -n message Fig. 9: FullReview handling or omission failures Pig. I 0 : Dealing with omission failures. f-iig. 11: Dealing with omission susp1c1ons. D. Resilience to selfish 11ode.1· We canied oul a detailed analysis of all Lhe protocol sLeps of Ful!Review. Por each of these steps we listed all the selfish deviations and the corresponding incentives that prove that selfish nodes do not have any interest in performing them. As a resulL we prove Lhal Ful!Review is a Nash equilibdum. Due LO Lhe lack or space, this analysis is presented in the technical repon available online [11). VI. PL!Rl'OR.\'IAKCL! EVALUATIO� In Lhis secLion we evaluaLe the performance or PeerR£'1'iew and Ful!Rei,iew with two distrihuted applications: SplitStream and Onion routing. We start hy introducing the two applica­tions and our experimental settings in Section YI-A and VI-B. respectively. We Lhen present the perfonnance of FullR£'1'iew in presence or sellish nodes (Sec Lion VI-C) and in Lhe JaulL­free case (SecLion VI-D). Finally, we assess the scalability of Ful!Re,'iew (Section VI-E). Overall, our evaluation draws the following conclusions. Pirst. we show using real experiments that Ful!Re,•iew can effecLively deLecl JaulLs in presence or seUish nodes. Second, Ful!Review acids a small overhead compared lo PeerRn,iew boLh in terms or lraflic generated and sLOrage. Finally. using complementary simulations, we show that Ful!Review is scal­able up to at least I 000 nodes. A. Applications
I) Accotmtahle E,fjicient Multicast: SplitStream 151 is a protocol that organises nodes in a tree structure where each node receives multicast messages from iLs parenL node and forwards Lhem lo ils child nodes. The specificity of SpliLSueam is LhaL ii aims al balancing the forwarding load between nodes. Il reaches this objecLive by spliLLing the multicast sueam imo suipes and using different mulLicasL trees lo disldbule each stripe. Por our experiments, the source node generated a video stream of 300kh/s, which is a common rate for video-streaming applications. Each packet emitted hy the source was sent Lhrough a different multicast tree where each node had Lwo children. h1 SpliLSlream. sellish nodes deviaLe by not forwarding updaLes LO Lheir child nodes. As a resulL they can gel the video stream while saving bandwidth. However, in presence of selfish nodes. correct nodes may experience frame loss and consequently receive a degraded version of the video stream. 2) Accountable Awmymous Cm11mu11icatio11: Onion rout ­ing 1131 is a protocol designed for anonymous communica­tions. It is the protocol used in the TOR project 181, which is widely used by thousands of users daily. In Lhis protocol. when a node S wanLs lo send a message lo a node D. ii chooses H other nodes. called relays. Lhal will forward the message up to its destination. Node !3 encrypts successively the message using the public key of each of these relays, which constitutes the onion and then sends it to the first relay. Each relay decrypts one layer or Lhe onion (i.e. removes one layer or encryption) and forwards ii LO the next one until ii reaches iLs final desLinaLion. For Onion routing experiments, each node periodically emitted a packet to a randomly chosen node through a parametric number of relays. In all our experiments, messages have a fixed size of I0kB; smaller messages are padded wiLh additional byLes in order lo meeL Lhis requiremem. Fixing message size is usually done in onion routing as ii avoids an attacker Lo follow the progression of an onion in the system hy comparing the size of frnwarded messages. In this protocol. a selfish node can choose not to forward an onion that is not intended to him. As a result. the destination will never receive the original message. The objective with designing a sellish-resilielll version or Onion routing is Lo ensme Lhal nodes will forward the onions they receive while providing anonymiLy guarantees.

B. E>.;perimental settings We have measmec\ Lhe perfonnance or SpliLSueam and Onion routing in two configurations: (i) with PeerReriew and (ii) with Ful/Rel'iew. Our experiments have been pe1formed in two different settings. Pirst, we performed experiments in real conc\iLions using the public Giic\'5000 clusLer. In Lhis clusLer we used 50 quad-core physical machines clocked al 2.6GHz with 4GB of RAM Lhal are imerconnected via a Gigabil switch. These experiments have been nm by deploying one logical node per physical machine and corresponding curves are annotated with IG5KI in their lahels. To complement our expeiimenLs. we perr01med simulaLions using the I'eerReview simulawr LhaL has been developed by I'eerRevie11· authors 2. We perfonnec\ simulaLions with up LO 1000 nodes. in order lo as­sess the scalability of Ful/Re,·iew. Results of these experiments are annotated with ISIMI in their labels. C Performance in presence of selfish nodes In this section we show that Ful/Review tolerates selfish nodes. To this end, we perform two experiments. In the
2PccrRcvicw code: http://pccrrcvicw.mpi -sws.rupg.de/.

7

first experiment, selfish nodes follow the model presented in
Section III-B. Specifically, they deviate only if they have an
interest to do so and if there is no risk to be caught. Instead, in
the second experiment, we consider that selfish nodes deviate
if they have an interest to do so without considering the risk
of exclusion. This latter experiment shows that if they decide
to do so, selfish nodes are quickly detected by their monitors
and excluded from the system.

For both experiments we used the two applications moni-
tored by PeerReview and FullReview. The number of monitors
per node is fixed to 2 and the audit period is set to 10s.

The results of the first experiment are presented in Fig-
ure 12. This figure shows the percentage of received messages
as a function of the percentage of selfish nodes. SplitStream
and FullReview are deployed with 50 nodes on G5K. We
evaluate FullReview with different number of relays (5, 10,
20 and 40), that are chosen at random. However, due to lack
of space, we present the results with 5 relays only. Increasing
the number of relays leads to worst results for PeerReview as
the probability to choose a selfish node in an Onion routing
path becomes higher. We first observe in this figure that, using
PeerReview, SplitStream and Onion routing do not tolerate
selfish nodes. Indeed, in presence of only 10% of selfish nodes,
only 79% and 66% of messages are received in the SplitStream
and Onion routing applications, respectively. This represents a
loss of 21% and 34% messages, respectively, which is not
acceptable. This percentage decreases when the proportion of
selfish nodes increases, reaching 23% in SplitStream and 5%
in Onion routing, in presence of 50% of selfish nodes. Instead,
using FullReview, we observe that all messages are received in
both applications as selfish nodes have no interest in deviating.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
e
rc

e
n
ta

g
e
 o

f
re

c
e
iv

e
d
 m

e
s
s
a
g
e
s

Percentage of selfish nodes

SplitStream-PeerReview
SplitStream-FullReview

Onion routing-PeerReview
Onion routing-FullReview

Fig. 12: [G5K] Percentage of received messages in SplitStream
and Onion routing as a function of the percentage of selfish
nodes.

The results of the second experiment are presented in Fig-
ure 13. In this experiment, we measure the percentage of
received messages in SplitStream with PeerReview and Full-
Review where selfish nodes start to deviate from the protocol
after 20s. This experiment has been launched with 50 nodes
using simulations. As explained above, in this experiment,
selfish nodes behave selfishly without reasoning on the risk
of being detected. Using PeerReview, we observe that selfish
nodes impact the system as soon as they behave selfishly,
without ever being detected. Using FullReview, we observe
that selfish nodes impact the system during a small time frame,
corresponding to the audit frequency, after which they are

detected and evicted from the system. As a result, all the
messages are received for the rest of the experiment. Note
that choosing a smaller audit period allows the system to
detect selfish nodes more rapidly, but at the expense of some
additional overhead, as we show in the next section.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
e
rc

e
n
ta

g
e
 o

f
re

c
e
iv

e
d
 m

e
s
s
a
g
e
s

Time (s)

PeerReview, 10% selfish
FullReview, 10% selfish

PeerReview, 50% selfish
FullReview, 50% selfish

Fig. 13: [SIM] SplitStream percentage of received messages
during an experiment in which between 10% and 50% of nodes
start to act selfishly after 20s.

D. Performance in the fault-free case

In this section we assess the performance and overhead of
FullReview, compared to PeerReview, in the fault-free case.
To this end, we perform three experiments. We launch each
of the experiments of this section both using simulations and
G5K, but we show the results on G5K only. The results using
simulations are consistent and can be found in the companion
technical report [11].

In the first two experiments, we measure the network traffic
and the rate at which the logs grow w.r.t. the number of
monitors, in PeerReview and FullReview respectively. In the
case of Onion routing, an onion path was composed of 5 relays.
Figure 14 presents the results for both SplitStream and Onion
routing. Each value has been obtained by running the system
with 50 nodes during 5 minutes.

In the left figure, each bar represents the traffic due to
the payload of the application. On top of this payload is the
traffic due to PeerReview, on top of which is the overhead of
FullReview in addition to the one of PeerReview. In this figure,
we observe that the average traffic per node increases w.r.t. to
the number of monitors for both PeerReview and FullReview
in the two applications. This is due to all the messages that
need to be exchanged between nodes and their monitors.
Further, we observe that the overhead due to accountability
in the SplitStream application has an overall cost of 14% in
PeerReview with two monitors and an extra cost of 7% in
FullReview. This overhead grows up to 45% for PeerReview
and an additional 31% for FullReview when 5 monitors are
used. These costs are much higher if compared to the payload
of the Onion routing application. For instance, enforcing
accountability in Onion routing using PeerReview generates
a traffic of 129kb/s per node while the application itself
generates a payload of only 18kb/s per node. However, put
into context this result is not bad, as enforcing accountability
in anonymous communication protocols is a very challenging
task for which existing solutions often require the heavy use
of broadcast primitives (e.g., RAC [4], Dissent [7]). Further,
assuming that nodes are connected using Gigabit links (in the
case of a LAN) or even using few Megabit links (in the case of

8

 0

 100

 200

 300

 400

 500

 600

O
R S
S

O
R S
S

O
R S
S

O
R S
S

A
v

g
 t

ra
ff

ic
 /

 n
o

d
e

(k
b

/s
)

Number of monitors per node
2 3 4 5

FullReview
PeerReview
Payload

(a) Network traffic.

 0

 10

 20

 30

 40

 50

 60

O
R S
S

O
R S
S

O
R S
S

O
R S
S

A
v

g
 l

o
g

 g
ro

w
in

g
 r

at
e

/
n

o
d

e
(k

B
/s

)

Number of monitors per node
2 3 4 5

FullReview
PeerReview

(b) Log growing rate.

Fig. 14: [G5K] Average network traffic and log growing rate per node of SplitStream (SS) and Onion routing (OR) w.r.t. the
number of monitors.

a WAN), 129kb/s seems a reasonable overhead. The good news
is that if the developer accepts to pay the cost of accountability
using PeerReview in a system with a small payload, using a
selfish resilient accountability system, i.e. FullReview, would
cost him an extra 3kb/s (i.e. 2% more traffic) with two monitors
and an extra 15kb/s (i.e. 5% more traffic) with five monitors.
Note that, overall, enforcing accountability using PeerReview
is more expensive in the Onion routing application than in the
SplitStream application because in the former application the
full onions are stored in the log while in the latter instead of
storing the video chunks received by nodes in the log, we store
only their identifier. Indeed, storing onions was the only way
we found to enable monitors to verify that a node has correctly
decrypted and forwarded an onion it received.

In the right figure, each bar represents the average growing
rate of the log of nodes. Similarly to the previous figure, the
cost of FullReview is shown as a delta in addition to the cost
of PeerReview. Note that logs do not grow forever. Indeed,
as in PeerReview, logs are truncated after a given amount of
time and audits are performed only for the new parts of the
log. Obviously, the longer the logging period chosen by the
designer, the higher the probability to deter faults.

Results depicted in this figure show that the log growing
rate of the SplitStream application is higher than log growing
rate of the Onion routing application, which is due to the fact
that the SplitStream application generates more messages to
send the video stream than Onion routing, and thus more
interactions are added to the log. Further we observe that
the higher the number of monitors per node the higher the
log growing rate. On the Onion routing application, the over-
head in terms of log growing rate is equal to 4.9% when
using FullReview with two monitors and increases up to 24%
when using five monitors. On the SplitStream application,
this overhead is higher as it spans from 6.8% to 30% when
using respectively two and five monitors. Yet, we consider this
overhead as reasonable. Indeed, in the worst of our experiments
(i.e, in the SplitStream application using five monitors), for
24 hours logging, nodes need to devote 4.4GB of storage for
enforcing accountability in presence of selfish nodes, which is
reasonable.

In the third experiment, we measure the impact of the audit
period on the overhead of FullReview compared to PeerReview.
The audit period was ranging from 1s to 30s. We set the
number of nodes to 50, with 2 monitors per node and 5

relays for the Onion routing application. Each experiment
last 5 minutes. Results, presented in Table I, show that even
with a high frequency of audit (i.e. every second), FullReview
generates only 6.7% more traffic and logs are 8.2% larger than
PeerReview in the worst case.

Audit period 1s 5s 10s 30s

SS
Log size +7.4% +6.8% +6.7% +6.4%

Network traffic +6.7% +6.2% +6.1% +5.9%

OR
Log size +8.2% +4.9% +4.8% +3.3%

Network traffic +2.9% +2.6% +2.3% +1.9%

TABLE I: [G5K] Overhead of FullReview compared to Peer-
Review, for both SplitStream (SS) and Onion routing (OR),
with an audit period ranging from 1s to 30s.

To summarize, FullReview adds a small overhead to Peer-
Review in terms of generated traffic and log size. This overhead
is mainly due to the new log entries inserted by FullReview to
detect selfish nodes. Similarly to PeerReview, the cost of Full-
Review increases with the number of monitors per node and
with the frequency of the audits. Overall, accounting for the
increasing resources (storage and network bandwidth) at the
disposal of a large public (Terabytes of storage and Megabits
of network bandwidth), the cost of enforcing accountability in
presence of selfish nodes becomes a realistic option.

E. Scalability of FullReview

In this section we show that SplitStream-FullReview and
Onion routing-FullReview scale up to at least 1000 nodes.

Figure 15 presents the network traffic and the log growing
rate of SplitStream and Onion routing, for both PeerReview
and FullReview, as a function of the number of nodes in the
system. Each value has been measured via a simulation that
lasts 100s. Moreover, the system has been configured with 5
monitors per nodes. As one could expect from the results of
Figure 14, using less monitors provides better performance.
In addition, the audit period was set to 10s. Finally, Onion
routing was configured with 40 relays and was sending onions
at a rate of 16kb/s.

From this figure we can draw the following conclusions.
First of all, for both SplitStream and Onion routing, the
network traffic and log growing rate of FullReview is within a
constant factor of PeerReview. For instance, with SplitStream,
the log growing rate (resp. network traffic) of FullReview is

9

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10

N
e

tw
o

rk
 t

ra
ff

ic
 (

k
b

/s
)

Number of nodes (x100)

SplitStream-PeerReview
SplitStream-FullReview

Onion routing-PeerReview
Onion routing-FullReview

(a) Network traffic.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 l
o

g
 g

ro
w

in
g

 r
a

te
 (

k
B

/s
)

Number of nodes (x100)

SplitStream-PeerReview
SplitStream-FullReview

Onion routing-PeerReview
Onion routing-FullReview

(b) Log size.

Fig. 15: [SIM] Average network traffic and log growing rate of SplitStream and Onion routing w.r.t. the number of nodes in the
system.

equal to 1.4x (resp. 1.3x) the one of PeerReview. This is due to
the fact that FullReview adds a constant number of operations
on the ones performed by PeerReview. Second, we can observe
that FullReview scales up to 1000 nodes, as the network traffic
and log size remain fairly stable despite the increase of the
number of nodes. The reason is that each node always interacts
with the same number of nodes on average, whatever the
overall number of nodes in the system (i.e. its partners w.r.t.
to the application and a fixed number of monitors).

VII. CONCLUSION

This paper addresses the problem of accountable dis-
tributed systems in presence of selfish nodes. We have shown
that PeerReview, the only software generic solution to enforce
accountability, does not tolerate selfish nodes. To tackle this
problem we propose the FullReview protocol. This protocol
uses game theory techniques by embedding incentives that
force selfish nodes to stick to the protocol. We have evaluated
FullReview on a cluster of physical machines and using
simulation with two applications: SplitStream, an efficient
multicast protocol, and Onion routing, the most widely used
anonymous communication protocol. Our evaluation makes the
following points. First, contrarily to PeerReview, FullReview
effectively tolerates selfish nodes. Second, FullReview has
a low additional overhead compared to PeerReview. Finally,
FullReview scales up to 1000 nodes.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for the insightful
comments that helped improving this paper. Experiments pre-
sented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by
Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).
The presented work was developed within the EEXCESS
project funded by the EU Seventh Framework Program, grant
agreement number 600601.

REFERENCES

[1] A. Aiyer et al. Bar fault tolerance for cooperative services. In
Proceedings of SOSP, 2005.

[2] M. Backes et al. A practical and provable technique to make randomized
systems accountable. 2007.

[3] S Ben Mokhtar et al. Firespam: Spam resilient gossiping in the bar
model. In Proceedings of SRDS, 2010.

[4] S. Ben Mokhtar et al. RAC: a freerider-resilient, scalable, anonymous
communication protocol. In Proceedings of ICDCS ’13, 2013.

[5] M. Castro et al. Splitstream: high-bandwidth multicast in cooperative
environments. In ACM SIGOPS OSR, volume 37. ACM, 2003.

[6] B.-G. Chun et al. Attested append-only memory: Making adversaries
stick to their word. ACM SIGOPS OSR, 41(6):189–204, 2007.

[7] H. Corrigan-Gibbs et al. Dissent: accountable anonymous group
messaging. In Proceedings of CCS ’10, pages 340–350. ACM, 2010.

[8] R. Dingledine et al. Tor: the second-generation onion router. In
Proceedings of USENIX Security Symposium, 2004.

[9] Joao F. A. e Oliveira et al. Can peer-to-peer live streaming systems
coexist with free riders? In Proceedings of P2P ’13., 2013.

[10] E. Adar et al. Free riding on gnutella. First Monday, 5(10), 2000.

[11] A. Diarra et al. FullReview: Practical accountability in presence of
rational nodes. Technical Report RR-LIRIS-2014-008, LIG laboratory,
LIRIS laboratory, CNRS, 2014. http://sites.google.com/site/soniabm/.

[12] M. Feldman et al. Free-riding and whitewashing in peer-to-peer sys-
tems. Selected Areas in Communications, IEEE Journal on, 24(5):1010–
1019, 2006.

[13] D. Goldschlag et al. Onion routing. Commun. ACM, 42(2), 1999.

[14] R. Guerraoui et al. Lifting: lightweight freerider-tracking in gossip. In
Proceedings of Middleware ’10, pages 313–333, 2010.

[15] A. Haeberlen et al. Peerreview: Practical accountability for distributed
systems. ACM SIGOPS OSR, 41(6):175–188, 2007.

[16] A. Haeberlen et al. Netreview: Detecting when interdomain routing
goes wrong. In NSDI, pages 437–452, 2009.

[17] A. Haeberlen et al. Accountable virtual machines. In OSDI, pages
119–134, 2010.

[18] C. Ho et al. Nysiad: Practical protocol transformation to tolerate
byzantine failures. In NSDI, volume 8, pages 175–188, 2008.

[19] R. Kotla et al. Pasture: secure offline data access using commodity
trusted hardware. In Proceedings of OSDI ’10, pages 321–334, 2012.

[20] R. Krishnan et al. The impact of free-riding on peer-to-peer networks.
In Proceedings of HICSS ’04, pages 10–pp. IEEE, 2004.

[21] D. Levin et al. Trinc: Small trusted hardware for large distributed
systems. In NSDI, 2009.

[22] H. Li et al. Bar gossip. In Proceedings of OSDI, 2006.

[23] J. J.-D. Mol et al. Give-to-get: free-riding resilient video-on-demand in
p2p systems. In Electronic Imaging 2008.

[24] J. Nash. Non-Cooperative Games. Annals of Mathematics, 54(2), 1951.

[25] X. Vilaça et al. N-party BAR transfer. In Principles of Distributed

Systems, pages 392–408. Springer, 2011.

[26] A. Yahyavi et al. Watchmen: Scalable cheat-resistant support for
distributed multi-player online games. In Proceedings of ICDCS ’13.

[27] A. Yumerefendi et al. Strong accountability for network storage. ACM

Transactions on Storage (TOS), 3(3):11, 2007.

10

