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Abstract. We consider a generic binary CSP solver parameterized by high-level
design choices, i.e., backtracking mechanisms, constraint propagation levels, and
variable ordering heuristics. We experimentally compare 24 different configura-
tions of this generic solver on a benchmark of around a thousand instances. This
allows us to understand the complementarity of the different search mechanisms,
with an emphasis on Backtracking with Tree Decomposition (BTD). Then, we
use a per-instance algorithm selector to automatically select a good solver for
each new instance to be solved. We introduce a new strategy for selecting the
solvers of the portfolio, which aims at maximizing the number of instances for
which the portfolio contains a good solver, independently from a time limit.

1 Introduction

Backtracking approaches solve constraint satisfaction problems by building a search
tree (or graph). In Chronological BackTracking (CBT) [1], this tree is explored in a
depth-first way: When a failure occurs, the search backtracks to the last choice point.
CBT is known to explore redundant subtrees when a failure is not due to the last de-
cision (trashing). To overcome trashing, intelligent backtrackings have been proposed,
such as Conflict-directed BackJumping (CBJ) [2], Dynamic BackTracking (DBT) [3]
and Decision Repair (DR) [4]: They dynamically exploit the structure of the problem
to directly backjump to failure causes thus avoiding trashing. Backtracking with Tree
Decomposition (BTD) [5] uses a different idea to avoid trashing: It captures the static
problem structure by identifying independent subproblems which are solved separately.

CBJ, DBT and CBT have already been experimentally compared (e.g., [6]). BTD
has also been experimentally compared to CBT and CBJ (e.g., [5]). However, BTD has
never been compared to CBJ and DBT on a wide benchmark, and it has never been com-
pared to DR. It is interesting to compare them as they all exploit structure to guide the
search: CBJ, DBT and DR exploit a dynamic structure thanks to explanations, whereas
BTD exploits a static structure thanks to decompositions. Furthermore, these backtrack-
ing mechanisms may be combined with different constraint propagation mechanisms,
such as Forward-Checking (FC) and Maintaining Arc Consistency (MAC), and with
different variable ordering heuristics. In particular, [7] proposes to exploit information



about previous states of the search when selecting the next variable to be assigned. In
some sense, this heuristic also exploits the structure of the instance to guide the search.

In this paper, we describe a generic CSP solver which has three parameters: (i) the
search strategy, which may be instantiated to CBT, CBJ (with or without variable re-
ordering), DBT, DR, or BTD; (ii) the constraint propagation mechanism, which may
be instantiated to FC or MAC; and (iii) the variable ordering heuristic, which may be
instantiated to minDomain over dynamic degree or over weighted degree.

A first contribution of the paper is to experimentally compare the 24 configurations
of this generic solver on a wide benchmark of around a thousand instances. In particular,
we compare BTD-based variants with other variants based on intelligent backtracking
frameworks. This extensive experimental study shows us that, even though one con-
figuration has better global success rates than all others, some configurations (such as
BTD-based ones) which have low global success rates are very good on a large number
of instances. In particular, we identify a minimal subset of 13 complementary config-
urations such that, for every instance of our benchmark, there is always at least one of
these 13 configurations which is good for it, i.e., which is not significantly outperformed
by any other configuration on this instance.

The next step is to exploit the complementarity of these configurations to improve
success rates. This may be done by hybridizing mechanisms. In particular, we have
proposed to combine BTD with approaches which dynamically exploit the structure
(CBJ and DR) in [8]. Such hybrid approaches are able to solve more efficiently some
instances but they are outperformed by some other configurations on other instances.
Recent works on portfolios and per-instance algorithm selectors (e.g., [9,10,11,12,13])
have shown us that we may much more significantly improve success rates by learning
selection models, which are able to choose a good solver for each new instance to be
solved. Therefore, we combine our generic solver with a per-instance algorithm selec-
tor. Like other recent approaches, we extract features from instances, and we use ma-
chine learning techniques to learn a selection model. A key point is to choose a subset
of solvers that may be selected by the selector: The goal is to keep a subset S of solvers
with complementary performances so that S contains a solver which performs well on
every instance of the training set. We compare two different strategies for achieving this
task, called Solved and Good. The Solved strategy maximizes the number of instances
solved at a given CPU time limit (ties are broken by minimizing CPU time), as proposed
in [12]. The Good strategy maximizes the number of instances for which S contains a
good solver, and uses statistical tests to decide whether a solver is good for an instance.
We experimentally show that this new strategy outperforms Solved.

The paper is organized as follows. In Section 2 we describe our generic framework
for solving CSPs. In Section 3, we experimentally compare different configurations of
this framework. In Section 4, we describe the per-instance algorithm selector and the
two selection strategies. In Section 5, we experimentally compare the two selection
strategies. We conclude in Section 6 with ideas for some further works.



2 Generic framework for binary CSPs

Background. A CSP instance is defined by a triplet (X,D,C). X is a finite set of
variables. D associates a finite set of values D(xi) with every variable xi ∈ X . C is
a set of constraints. Each constraint is defined over a subset of variables and defines
tuples of values that can be assigned simultaneously to its variables. In this paper, we
consider binary CSPs, which only contain binary constraints defined over 2 variables.
A solution is an assignment of all variables satisfying all constraints.

We focus on backtracking approaches which structure the assignment space in a
search tree (or graph for DBT and DR) whose nodes correspond to variable/value as-
signments. We introduce a generic algorithm which is parameterized by the backtrack-
ing mechanism, the constraint propagation mechanism and the variable ordering heuris-
tic. This generic algorithm allows us to compare in a unified framework state-of-the-art
backtracking approaches for binary CSPs. It basically extends the generic algorithm of
[6] by adding 3 new backtracking mechanisms (CBJR, DR and BTD).

Backtracking. In Chronological Backtracking (CBT) [1], the tree is explored with a
depth-first search. When a failure occurs, the search backtracks to the last choice point.
When the cause of the failure is not due to the last decision, but to an earlier one, CBT
explores redundant subtrees. To overcome this issue, Conflict directed BackJumping
(CBJ) [2] backtracks immediately to the last assigned variable involved in the failure,
and unassigns all variables assigned after it. In this study, we use improvements pro-
posed in [14,15] to get a version of CBJ similar to the one in [6]. It maintains for each
value unsuccessfully tried the set of assigned variables involved in this failure. More-
over, if this set is empty, the value is permanently removed from the problem.

Dynamic BackTracking (DBT) [3] does not unassign variables between the current
node and the cause of the failure, but simply backjumps over them since they are not
involved in the current failure. Due to the poor performance of DBT combined with FC
and a good variable ordering [16], [17] proposes a new version of CBJ combined with
a retroactive ordering of already assigned variable (CBJR). After each new assignment,
the variable ordering heuristic is used to try to replace the assigned variable higher in the
search tree in light of the current state of the problem (for example if many values are
removed from the domain of a variable, the ordering heuristic may move up this variable
in the tree). Yet, to ensure completeness, the assigned variable cannot be moved before
a variable involved in the filtering or failure of a value in its domain.

Decision Repair (DR) [18] is a generic framework that generalizes [4] with sev-
eral parameters. Each instantiation of this framework corresponds to a different hy-
bridization between tree search, local search and constraint propagation. We consider
the DR(mindestroy, uvar) instantiation of this framework, as proposed in [18]. It per-
forms a depth first search and performs Forward-Checking (FC) at each node of the
search. When a failure occurs, the current assignment is repaired by unassigning one
variable among those involved in the failure (not necessarily the last) and removing all
explanations involving this variable. To ease inconsistency proofs, a variable minimiz-
ing the number of removed explanations is chosen randomly. We have extended DR to
allow its combination with arc consistency (MAC) instead of FC. Note that DR does
not guarantee a complete exploration of the search space.



Finally, Backtracking with Tree Decomposition (BTD) [5] uses a tree-decomposi-
tion of the constraint graph which captures the problem structure by identifying in-
dependent subproblems. BTD computes the order in which the subproblems must be
solved, resulting in a partial order on the variables. Moreover, it records goods asso-
ciated with subproblem solutions, and nogoods associated with subproblem failures.
This information is exploited to avoid solving the same subproblem more than once. In
this study, the tree decomposition is computed using the minimum-fill heuristic [19] to
triangulate the constraint graph.

Constraint propagation. At each node of the search tree, constraints are propagated in
order to filter domains and detect local inconsistencies. In this study, we consider two
well-known filtering mechanisms [1]: Forward Checking (FC), which removes values
which are not arc-consistent with the last variable/value assignment; and Maintaining
Arc Consistency (MAC), which ensures arc consistency of all constraints. For CBJ,
DBT and DR, we maintain arc consistency with AC3 [20], whereas for CBT and BTD
we use AC2001 [21]. AC2001 considers an ordering of the values in the domains and
records for each value its first compatible value in the other domains. If this compat-
ible value is removed, AC2001 searches for a new compatible value starting from the
position of the removed one.

Variable ordering heuristics. At each node of the tree, the search chooses the next
variable to be assigned among the set of all non assigned variables. It uses a variable
ordering heuristic to guide this choice. A classical variable ordering heuristic is min-
Domain, which chooses a variable which has the smallest domain. In this study, we
consider two well-known improvements of this heuristic [22,7]: minDomain over dy-
namic degree (d), which chooses a variable x which minimizes the ratio between the
size of D(x) and the number of unassigned variables sharing a constraint with x; and
minDomain over weighted degree (w), which chooses a variable x which minimizes
the ratio between the size of D(x) and the sum of weights of constraints which involve
x with another unassigned variable (where the weight of a constraint is the number of
failures it has generated since the beginning of the search).

Note that when the backtracking mechanism is BTD, the variable ordering heuristic
is used to choose the next variable within the current cluster of the tree decomposition,
and not within the set of all unassigned variables (see [23]).

Generic framework. [6] defines a first generic framework that encompasses several
state-of-the-art backtracking algorithms. In this study, we have extended this frame-
work with three new backtracking mechanisms, namely CBJR, DR and BTD. From
this generic framework, we can obtain configurations denoted by triplets (b, c, o) where
b ∈{CBT, CBJ, DBT, CBJR, DR, BTD} defines the backtracking mechanism, c ∈{FC,
MAC} the constraint propagation mechanism, and o ∈{d,w} the variable ordering
heuristic.

For all configurations, we first decompose the constraint graph into its set of con-
nected components to obtain independent subproblems which are solved independently
and consecutively. Also, each subproblem is made arc consistent before starting the
solving process.



Class #Instances #Variables #Values #Constraints Constraint tightness
min avg max min avg max min avg max min avg max

ACAD 75 10 116 500 2 146 2187 45 691 4950 0.001 0.692 0.998
PATT 238 16 263 1916 3 66 378 48 4492 65390 0.002 0.795 0.996
QRND 80 50 220 315 7 11 20 451 2968 4388 0.122 0.578 0.823
RAND 206 23 37 59 8 36 180 84 282 753 0.095 0.613 0.984
REAL 193 200 628 1000 2 152 802 1235 6394 17447 0.0 0.519 1.0
STRUCT 300 150 257 500 20 23 25 617 1641 3592 0.544 0.647 0.753
Table 1. Classes of the benchmark. For each class, the table displays its name, number of in-
stances, number of variables, domain sizes, number of constraints and constraint tightness (ratio
of forbidden tuples over number of possible tuples): minimum, average and maximum values.

All configurations are non deterministic: When choosing variables, ties are ran-
domly broken; furthermore, we do not consider any value ordering heuristic and values
are randomly chosen.

3 Experimental comparison

Benchmark. Our benchmark is composed of 1092 instances grouped into 6 classes
described in Table 1. The first 5 classes come from the CSP’08 competition. We have
only considered the binary instances. If classes contained too many similar instances we
only took the first 10 instances. We have removed from the benchmark every instance
which has not been solved by any of our 24 configurations within a time limit of 30
minutes among 15 runs for each instance. The last class (STRUCT) contains structured
instances which are randomly generated as described in [24]. These instances have a
structure similar to RLFAP instances which are real-world instances. This structure is
defined by a tree of variable clusters, and the level of structure depends on the density
of constraints in clusters and the sizes of the clusters. The class contains subclasses of
instances with different levels of structure, sizes and constraint tightness.

Experimental results. Table 2 compares the success rates of the 24 configurations at
different CPU-time limits on an Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, 20480
KB cache size, 3GB RAM. As all configurations are non deterministic, we have per-
formed 15 runs for each instance and each configuration. Table 2 also gives success
rates of Gecode (with the model proposed in [25]) with 3 different propagation levels:
ICL_VAL, ICL_DOM and ICL_DEF. It shows us that our implementation is competi-
tive with Gecode. Of course, our implementation is dedicated to binary CSPs, whereas
Gecode is a generic solver which has not be tailored for solving binary CSPs.

(CBT,MAC,w) is the best configuration when considering global success rates. This
result is not surprising and has already been observed, for example, in [6]. Without
surprise, we also note that configurations which use weighted degrees for ordering
variables outperform configurations which consider dynamic degrees (as already ob-
served in [7]). However the gain depends on the considered backtracking mechanism
as pointed out in [26]. In particular, using weighted degrees greatly improves the solu-
tion process for CBT, DBT and DR whereas the improvement is not so high for CBJ.



1 5 10 50 100 500 1000 1800

CBT
FC

d 37.0 45.2 47.6 52.7 55.3 60.0 61.1 61.7
w 41.8 51.7 56.8 65.9 69.4 77.8 81.5 83.2

MAC
d 43.0 51.7 56.7 65.5 69.1 75.3 76.5 77.7
w 47.1 61.5 68.3 80.5 85.2 92.3 94.3 95.4

CBJ
FC

d 41.3 50.4 55.2 66.9 70.5 81.9 85.6 88.0
w 39.6 51.0 55.0 67.8 72.6 84.0 88.1 91.0

MAC
d 38.0 50.2 54.3 68.2 74.2 85.3 88.8 90.4
w 39.7 53.1 57.6 73.7 79.6 90.7 93.5 95.1

CBJR
FC

d 39.9 49.4 53.3 63.3 66.9 75.8 78.1 79.5
w 39.1 50.5 55.0 67.5 72.6 84.2 88.3 90.9

MAC
d 29.2 37.3 41.1 46.4 48.5 53.9 55.4 56.5
w 31.6 40.1 44.9 55.0 58.9 67.7 69.4 70.7

DBT
FC

d 33.8 38.0 38.8 40.8 41.5 43.9 45.8 46.7
w 37.7 47.4 50.5 61.9 66.5 77.0 80.3 83.7

MAC
d 35.8 46.2 49.4 56.6 60.0 66.6 68.0 69.3
w 37.9 49.5 54.1 68.6 74.5 85.7 89.5 91.8

DR
FC

d 32.7 37.5 39.2 41.9 42.6 44.0 44.6 45.0
w 35.1 44.4 48.1 55.4 59.8 71.9 76.3 79.4

MAC
d 32.5 41.6 45.1 51.9 53.8 59.0 60.8 62.3
w 34.4 44.3 48.7 57.8 62.5 75.2 80.3 84.5

BTD
FC

d 31.4 45.1 52.2 65.1 69.2 76.1 77.3 78.0
w 33.5 48.0 55.5 70.2 74.9 82.1 83.9 84.5

MAC
d 32.8 45.1 53.9 70.1 75.8 84.6 86.0 87.1
w 37.4 51.3 61.9 77.6 83.3 91.9 93.6 94.2

Gecode ICL_DEF 29.7 34.9 38.1 48.9 55.4 66.7 69.3 71.9
Gecode ICL_VAL 27.7 32.9 35.2 45.3 51.3 63.8 67.2 70.4
Gecode ICL_DOM 29.9 35.8 38.9 50.9 56.6 66.7 70.5 73.4

Table 2. Comparison by means of global success rates. Each line successively displays the param-
eters of the solver and the percentage of successful runs at different CPU time limits (in seconds,
over 15 runs on 1092 instances). For each backtracking mechanism we highlight in bold the best
configuration. We highlight in blue the best over all configurations.

Also, configurations using DBT or DR as backtracking mechanism and FC for prop-
agating constraints perform poorly. It was already hinted that DBT could lead to poor
performances in [16].

These global success rates on the 1092 instances of our benchmark hide very differ-
ent results when we look at each instance separately. In particular, some configurations
which have rather low success rates on the whole benchmark are the best performing
ones on some instances. We apply a simple rule to decide if a configuration is the best
for an instance i: we first compare the number of successful runs within a 30 minute
CPU time limit, and we break ties by comparing the CPU time of the successful runs.

Line (b) of Table 3 displays the percentage of instances for which a configuration is
the best among the whole set of configurations. It shows us that, even though (CBT,FC,d)
only solves 61.7% instances of the whole benchmark after 30 minutes of CPU time, it



CBT CBJ CBJR DBT DR BTD
FC MAC FC MAC FC MAC FC MAC FC MAC FC MAC
d w d w d w d w d w d w d w d w d w d w d w d w

(b) 27.7 4.5 11.3 9.2 2.0 1.2 1.0 0.7 0.7 1.1 1.6 0.9 1.4 0.4 0.7 0.1 1.0 3.4 0.5 0.2 14.2 12.3 0.7 3.1
(b/h) 17.8 2.3 8.8 11.1 1.1 0.3 0.3 1.1 0.8 1.6 0.0 0.8 0.8 0.2 0.5 0.0 0.5 2.7 0.5 0.2 23.3 18.8 1.3 5.1
(g/h) 27.7 9.8 12.9 19.9 4.0 3.4 2.7 7.1 2.3 4.8 2.3 2.3 1.3 5.5 2.7 2.7 2.7 7.1 2.9 2.9 42.1 26.5 5.3 10.5
(sb/h) 6.4 0.3 5.5 5.8 0 0 0.2 0.5 0 1.1 0 0 0 0 0 0 0 1.9 0 0 14.0 7.2 0.2 1.3

(sb2/h) 6.4 0.6 6.1 7.1 1.6 - 0.2 0.8 - 1.4 - - - - - - - 2.3 - - 14.6 7.9 0.3 1.3
Table 3. For each configuration c, line (b) gives the percentage of instances for which c is the best
configuration; line (b/h) (resp. (g/h)) gives the percentage of hard instances for which c is the best
configuration (resp. c is a good configuration); line (sb/h) (resp. (sb2/h)) gives the percentage of
hard instances for which c is the best configuration and all other configurations are significantly
worse than c (resp. all other configurations except (CBJ,FC,w), (CBJR,FC,d), (CBJR,MAC,*), (DBT,*,*),

(DR,FC,d) and (DR,MAC,*) are significantly worse than c).

is the best configuration for 27.7% of the 1092 instances. Of course, it is well known
that simple configurations like (CBT,FC,d) outperform more complicated configurations
on very simple instances, for which there is no need for intelligent but expensive mech-
anisms, whereas they usually have very poor performance on harder instances. In line
(b/h) of Table 3, we have removed easy instances from the benchmark: we consider
that an instance is easy if it has been solved in less than one second by (CBT,MAC,w),
for each of the 15 runs. With this definition, 470 instances of our benchmark are easy,
and 622 are more difficult. When focusing on these harder instances, line (b/h) of Table
3 shows us that some configurations (such as those using DBT) only have very few
instances for which they are the best.

As several configurations may have close results for a given instance, we also study
the number of instances for which a configuration performs well: We consider that
a configuration is good for an instance i either if it is the best one, or if there is no
statistical difference between its 15 runs and the 15 runs of the best configuration for
i. We used the Student’s t-test with p = 0.01 to decide whether a configuration is
not significantly different from another one on a given instance. Line (g/h) of Table
3 displays the percentage of hard instances for which a configuration is good. Again,
we note that configurations which are good for many instances do not always have
high global success rates on the whole benchmark. In particular, the two configurations
which are good for the largest numbers of instances (i.e., (BTD,FC,d) and (CBT,FC,d))
are far from having the highest success rates in Table 2.

All configurations are good for at least one instance of the benchmark. However,
it may happen that some configurations are good only for instances for which other
configurations are also good, i.e., some configurations are dominated by other ones. To
study this, line (sb/h) of Table 3 displays the percentage of hard instances for which a
configuration is the best and all other configurations are significantly worse than it. It
shows us that 12 configurations are dominated by the other configurations: (CBJ,FC,*),
(CBJR,FC,d), (CBJR,MAC,*), (DBT,*,*), (DR,FC,d) and (DR,MAC,*). Hence, we have re-
moved these configurations from our study, except (CBJ,FC,d): there are 10 instances for
which all good configurations belong to the set of 12 dominated configurations; as for
these 10 instances (CBJ,FC,d) is good (and the only configuration to be good on those 10



Number of hard instances Sep size Tree width
ACAD PATT QRND RAND REAL STRUCT Total (avg) (avg)

Decompose 7 8 1 14 5 177 212 4,7% 17,1%
Don’t decompose 5 50 12 23 77 63 230 25,3% 31,8%
Don’t know 9 35 5 99 3 29 180 32,9% 54,5%

Table 4. Description of the 3 sets of instances. For each set, the table displays the number of hard
instances in each benchmark class, and the average tree width and separator size (in percentage
of the number of variables) of the tree decomposition.

instances), we keep (CBJ,FC,d). Finally, line (sb2/h) of Table 3 gives the percentage of
hard instances for which a configuration is the best and all other configurations except
(CBJ,FC,*), (CBJR,FC,d), (CBJR,MAC,*), (DBT,*,*), (DR,FC,d) and (DR,MAC,*) are sig-
nificantly worse than it. The set composed of the 13 remaining configurations contains
a good configuration for every instance. This set is minimal as each of these 13 solvers
is the only one to be good for at least one instance.

BTD is very effective on many instances. In particular, (BTD,FC,d) is good on more
than 42% of the hard instances, and it is significantly better than all other configurations
on more than 14% of the hard instances. However, on some other instances it also per-
forms poorly so that its global success rate is rather low compared to other approaches.
In order to give an insight into which instances are better solved by BTD, we partitioned
the 622 hard instances in 3 sets:

– The Decompose set contains all hard instances which are best solved by one of
the 4 BTD-based configurations (i.e., (BTD,*,*)), and for which none of the 9 non
BTD-based configuration (i.e., (CBT,*,*), (CBJ,FC,d), (CBJ,MAC,*), (CBJR,FC,w)),
and (DR,FC,w)) is good;

– The Don’t decompose set contains all hard instances which are best solved by one
of the 9 non BTD-based configurations and for which none of the 4 BTD-based
configuration is good;

– The Don’t know set contains all other instances.

Table 4 shows us how the instances of the benchmark are distributed into these sets.
Many instances of the Decompose set come from the STRUCT class, which contains
structured instances. This is not a surprise that BTD-based approaches perform bet-
ter than other approaches on these instances (see, e.g., [5]). As BTD has never been
compared with intelligent backtracking approaches, it is interesting to note that BTD
outperforms them on many of these structured instances. Only 35 instances of the 2008
competition belong to the Decompose set: Many instances of this benchmark do not
exhibit static structures that can be exploited by BTD. When looking at parameters of
the tree decomposition, we note that instances of the Decompose set have a smaller tree
width (half the size of the Don’t decompose set) and a smaller separator size (one fifth
the size of the Don’t decompose set). Instances of the Don’t know set have large tree
width. Actually, when the tree width is close to the number of variables, BTD behaves
like CBT as nearly all the variables belong to the same cluster.

On some instances, most notably some rlfap instances, the decomposition is good
but the instance is in Don’t decompose. These instances are easy (the solution is found



very quickly by (CBT,FC,d)) but huge (up to 900 variables). Restricting the search to
clusters can be detrimental as we forbid the search from going directly to the solution.

4 Per-instance algorithm selector

Experimental results reported in the previous section have shown us that the best per-
forming configurations on some instances may have very bad performance on other
instances so that they are far from having the best average success rates on the whole
benchmark. This illustration of the well-known no-free-lunch theorem motivates our
study on a per-instance algorithm selector which aims at selecting a good configuration
for each new instance to be solved.

In this study, we do not aim at improving the state-of-the-art of per-instance algo-
rithm selectors such as, e.g., CPHydra [9], ISAC [11] or EISAC [27], but we focus on
a key point of these approaches, i.e., the selection of the solvers to be included in the
portfolio. Indeed, [12] shows us that better performance may be obtained with smaller
portfolios. However, it is also important that the portfolio contains a large enough num-
ber of solvers so that there is a good solver for every instance. Experimental results
reported in the previous section may be used to definitely remove some solvers from
the portfolio: The 11 configurations which are dominated by the 13 other configurations
can be removed from the portfolio without significantly changing the performance of
a Virtual Best Selector (VBS), which always selects the best solver in the portfolio. In
this section, we describe and compare two different strategies for selecting a subset of
these 13 solvers in the portfolio: the strategy used in [12], and a new strategy. Before
describing these two strategies, we describe the basic framework of our per-instance
algorithm selector.

4.1 Basic framework of the selector

We consider a classical framework similar to the “off-the-shelf” framework of [12]. The
idea is to train a supervised classifier by giving a training set of labeled CSP instances
to it: Each instance of the training set is described by an input vector of features and is
associated with an output label, corresponding to the best solver for this instance. This
training phase allows the classifier to learn a selection model. Then, this model is used
to select solvers for new instances to be solved, given their input feature vectors.

Features. Each CSP instance is described by a vector of features. We consider classical
features, similar to those used in [9,12], for example. The main difference is that we
also extract features from the tree decomposition, as Table 4 has shown us that the
performance of BTD depends on tree widths and separator sizes.

More precisely, we extract the following static features from each instance: Number
of variables, number of constraints, size of domains (average and standard deviation),
constraint tightness, i.e., ratio of forbidden tuples with respect to all possible tuples in
the relation (average and standard deviation), and variable degree in the constraint graph
(average and standard deviation). As the constraint graphs of some instances are not
connected, we also extract the following features: Number of connected components



in the constraint graph, number of variables in a connected component (average and
standard deviation), and number of constraints in a connected component (average and
standard deviation). Finally, we also extract features from a tree decomposition which is
computed using the greedy algorithm minFill of [19] to triangulate the constraint graph:
Number of clusters, maximum separator and cluster size, and density of constraints in
a cluster (average and standard deviation).

In order to gather more information on the instance to be solved, we also perform a
short run on it and extract dynamic features from this run. We have limited the time of
this run to 1 second. As (CBT,MAC,w) is the best configuration within this time limit, we
have chosen to run (CBT,MAC,w). Furthermore, this configuration allows us to gather in-
formation on variable weights (used by the variable ordering heuristic) and the number
of values filtered by MAC. We collect the following dynamic features: Number of nodes
in the search tree, maximum depth of a node in the search tree, number of failed nodes,
number of values removed by MAC (average and standard deviation), and weight of a
variable (average and standard deviation). In order to gather insights into the dynamics
of the run, we collect these features for 3 time limits, i.e., 0.25, 0.5 and 1 second.

Training. Given a portfolio of solvers and a training set I of instances such that each
instance i ∈ I is described by a vector of features and is associated with the solver of the
portfolio which is the best for i, the goal is to train a classifier to associate instances with
solvers. This is a classical supervised classification problem and there exist different
well-known approaches to solve this problem [28]. In this study, we have used the
Weka library [29,30] to perform this task. We have compared the different supervised
classifiers which are implemented in Weka. The best classification results are obtained
with ClassificationViaRegression with default parameters [31] so that we have used this
classifier in our experiments.

Once the classifier has been trained on the training set of instances, we can use it to
dynamically choose the best configuration of our generic solver for each new instance
to be solved. More precisely, to solve a new instance i we proceed as follows: We first
run (CBT,MAC,w) on i with a CPU-time limit of 1 second; if i is not solved within
this time limit, we extract static features from i, and dynamic features from the run
of (CBT,MAC,w); we give these features to the classifier which returns a configuration
and we run this configuration on i. Note that the time spent to extract the features and
classify i is very short (less than 0.1 seconds on average).

4.2 Selection of a subset of solvers

A key point of per-instance algorithm selection is to select the solvers to be included
in the portfolio. The goal is to select solvers with complementary behaviors so that the
portfolio contains a good solver for every instance. We may include in our portfolio
the 13 non dominated solvers identified in Section 3. However, the larger the portfo-
lio, the harder the learning task. Therefore, better results may be obtained with fewer
configurations, as observed in [12].

We compare two strategies for selecting a subset Sk of k solvers (where k ∈ [2; 13]
is a parameter to be fixed). The first strategy, called Solved, is the one used in [12]. It
selects in Sk the k solvers which maximize the number of instances solved by a VBS



at the CPU time limit. Further ties are broken by minimizing the solving time of the
VBS. The second strategy, called Good, selects in Sk the k solvers which maximize
the number of instances for which Sk contains a good solver (i.e., a solver which is not
statistically different from the best solver for this instance). Further ties are broken by
maximizing the number of instances solved by a VBS at the CPU time limit.

For both strategies, finding the optimal subset Sk is NP-hard: It is a set covering
problem between solvers and instances, where a solver s covers an instance i if s is able
to solve i (for Solved) or if s is good for i (for Good). In this study, we approximately
solve it in a greedy way: Starting from the subset S1, which contains the solver which
covers the largest number of instances, we define Si from Si−1 by adding to Si−1 the
solver which most increases the number of covered instances.

When considering the 15 runs of our 13 solvers on the 622 hard instances, we obtain
the following orders:

– Order of selection of solvers with the Solved strategy:
1-(CBT,MAC,w), 2-(BTD,FC,w), 3-(CBJR,FC,w), 4-(DR,FC,w), 5-(CBJ,MAC,w),
6-(CBT,MAC,d), 7-(BTD,FC,d), 8-(BTD,MAC,w), 9-(CBT,FC,d), 10-(CBJ,FC,d),
11-(CBJ,MAC,d), 12-(BTD,MAC,d), 13-(CBT,FC,w)

– Order of selection of solvers with the Good strategy:
1-(BTD,FC,d), 2-(CBT,MAC,w), 3-(BTD,FC,w), 4-(CBT,FC,d), 5-(CBT,MAC,d),
6-(DR,FC,w), 7-(CBJ,MAC,w), 8-(BTD,MAC,w), 9-(CBJ,FC,d), 10-(CBJR,FC,w),
11-(CBT,FC,w), 12-(BTD,MAC,d), 13-(CBJ,MAC,d)

Of course, this order strongly depends on the composition of the benchmark. For exam-
ple, if we remove half of the STRUCT instances, the Good strategy selects (CBT,FC,d)
in third position and (BTD,FC,w) in fourth position, while all other positions are un-
changed. However, if we remove all STRUCT instances, the order becomes very differ-
ent and the best BTD-based approach is (BTD,FC,w) and it is selected in fourth position.

Let us note Ss
k the subset which contains every solver whose rank is lower than or

equal to k for the strategy s ∈ {Solved ,Good}, and VBS(Ss
k) the VBS associated with

Ss
k. This VBS selects the best solver of Ss

k for each instance to be solved so that any
selector built upon Ss

k cannot outperform VBS(Ss
k).

Table 5 compares the two strategies by means of VBS success rates. Let us first
note that VBS(SSolved

k )=VBS(SGood
k ) when k = 10 or k = 13 as SSolved

k = SGood
k

in these two cases. Also, VBS(SSolved
k ) outperforms VBS(SGood

k ) at the time limit of
1800s, when k ≤ 9, and both approaches are equivalent when k ≥ 10. This comes from
the fact that the Solved strategy maximizes the number of solved instances at the time
limit. As a counterpart, VBS(SGood

k ) outperforms VBS(SSolved
k ) for lower time limits

or smaller values of k. This comes from the fact that the Good strategy maximizes the
number of instances for which the portfolio contains a good solver, independently from
the time limit.

For example, when k = 4, the difference between the success rates of VBS(SGood
4 )

and VBS(SSolved
4 ) is equal to 2.2, 3.5, 2.4, 1.3, and 0.2 when the time limit is equal to

1, 5, 10, 50, and 100s, respectively, whereas it becomes negative after 100s. However,
the difference is less important (−0.4, −0.7, and −0.7 at 500, 1000 and 1800s, re-
spectively). Actually, with SSolved

3 ={(CBT,MAC,w), (BTD,FC,w), (CBJR,FC,w)}, a VBS
is able to solve 99.4% of the runs, but SSolved

3 contains a good solver for only 294 of the



1 5 10 50 100 500 1000 1800
Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good

2 52.0 52.7 68.9 70.6 75.4 77.2 87.5 88.7 91.8 92.3 96.7 96.9 98.2 98.2 98.7 98.6
3 52.4 53.2 69.2 71.6 75.9 77.8 87.8 89.0 92.5 92.8 97.6 97.3 99.0 98.4 99.4 98.8
4 52.5 54.7 69.4 72.9 76.1 78.5 88.2 89.5 92.8 93.0 97.8 97.4 99.1 98.4 99.5 98.8
5 52.7 55.8 69.4 73.1 76.1 78.7 88.3 89.7 93.0 93.0 97.8 97.4 99.2 98.4 99.6 98.8
6 54.5 55.9 69.7 73.3 76.4 79.0 88.8 90.3 93.1 93.6 97.8 97.8 99.2 98.8 99.7 99.3
7 55.6 56.0 72.3 73.3 78.7 79.0 90.2 90.3 94.0 93.9 98.3 98.1 99.3 99.2 99.7 99.6
8 55.7 56.1 72.3 73.3 78.8 79.2 90.4 90.5 94.0 93.9 98.3 98.1 99.4 99.2 99.7 99.6
9 56.2 56.4 73.4 73.5 79.3 79.3 90.5 90.6 94.1 94.1 98.4 98.2 99.4 99.2 99.7 99.6

10 56.5 56.5 73.5 73.5 79.5 79.5 90.7 90.7 94.2 94.2 98.4 98.4 99.4 99.4 99.7 99.7
11 56.5 56.5 73.5 73.7 79.5 79.6 90.8 90.7 94.3 94.2 98.4 98.4 99.4 99.4 99.7 99.7
12 56.5 56.5 73.5 73.7 79.5 79.6 90.8 90.7 94.3 94.2 98.4 98.4 99.4 99.4 99.7 99.7
13 56.6 56.6 73.7 73.7 79.6 79.6 90.8 90.8 94.3 94.3 98.4 98.4 99.4 99.4 99.7 99.7

Table 5. Comparison of Solved and Good. Each line successively displays: the number k of
solvers selected in Sk and, for different time limits in seconds, percentages of successful runs of
virtual best selectors built upon the sets defined with Solved and Good (over 15 runs on the 1092
instances). For each (Sk,time) couple, we highlight the strategy with the highest success rate.

622 hard instances. When adding new solvers to SSolved
3 , we only very slightly increase

the success rate of the VBS. The solver which most increases the number of solved
instances is (DR,FC,w) and it allows us to solve 26 more runs (among 622*15 runs).
However, (DR,FC,w) is a good solver for a rather small number of instances and adding
it to SSolved

3 increases the number of hard instances for which we have a good solver
by 24. As a comparison, adding (BTD,FC,d) to SSolved

3 would allow us to solve 12 more
runs (instead of 26, among 622*15) but it would increase the number of hard instances
for which we have a good solver by 168 (instead of 24, among 622 instances).

5 Experimental evaluation

Experimental setting. We consider the 1092 instances of the benchmark described in
Section 3, and the training set is composed of the 622 hard instances of this benchmark.
We use a leave-one-out scheme: for each instance i of the benchmark, if i is a hard
instance which belongs to the training set, then we remove i from it and we train the
classifier on all hard instances but i; finally we ask the classifier to select a solver for i.

Comparison of classification rates obtained with different sets Sk. The learnt solver of
an instance i is the solver returned by the classifier, and we say that i is well-classified
if its learnt solver is the best solver for i among the set Ss

k of candidate solvers (or if
it is not statistically different from the best solver for i in Ss

k). The second and third
columns of the left part of Table 6 gives the percentage of well-classified hard instances
for Solved and Good, respectively. It shows us that this percentage decreases when the
number of configurations in Ss

k increases, both for Solved and Good: It decreases from
81.7% and 84.6% with 2 configurations to 65.4% with 13 configurations. However, the
left part of Table 6 also shows us that the learnt solvers of instances which are not well



Ranking of the learnt solvers
1 2 3 4 5 6 ≥7 # good solvers

Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good

2 81.7 84.6 18.3 15.4 2 36.7 54.5
3 78.6 77.3 12.4 16.2 9.0 6.4 3 36.5 56.4
4 78.6 75.7 10.6 15.8 6.3 6.8 4.5 1.8 4 37.3 61.4
5 77.0 75.1 7.2 14.6 6.6 5.9 4.7 3.2 4.5 1.1 5 38.4 67.2
6 73.2 71.5 6.6 13.8 6.6 7.1 3.9 5.0 5.8 2.3 4.0 0.3 6 41.3 66.4
7 66.1 71.2 13.8 11.9 5.5 5.5 4.3 3.9 5.5 4.7 2.4 2.6 2.4 0.3 7 59.8 67.8
8 63.8 70.7 11.6 10.5 5.9 5.8 5.6 5.8 5.9 3.1 3.1 1.9 4.0 2.3 8 58.7 69.0
9 65.6 67.7 11.4 9.8 6.1 5.6 4.3 7.1 4.0 3.9 3.4 2.4 5.1 3.5 9 64.8 67.2

10 66.1 66.1 10.9 10.9 5.9 5.9 4.0 4.0 3.2 3.2 3.5 3.5 6.3 6.3 10 65.4 65.4
11 66.2 66.7 10.0 10.5 6.3 6.1 3.5 3.9 3.4 2.7 1.9 2.9 8.6 7.2 11 65.8 66.6
12 64.8 65.8 9.8 10.5 6.1 6.8 3.9 3.7 4.3 3.2 1.9 2.1 9.1 8.1 12 64.1 65.6
13 65.4 65.4 9.8 9.8 6.8 6.8 3.4 3.4 3.9 3.9 1.8 1.8 8.9 8.9 13 65.4 65.4

Table 6. Ranking and goodness of learnt solvers. For each set Sk and each rank j ∈ {1, . . . , k},
the left table displays the percentage of hard instances whose learnt configuration is the jth best
among the k configurations in Sk. For each set Sk, the right table gives the percentage of hard
instances for which the learnt solver is a good solver.

classified often correspond to solvers which perform well: Given a set Sk of solvers, and
given an instance i, we rank each solver of Sk from 1 to k according to its performance
on i (the solver ranked 1 being the best one for i, and the solver ranked k being the
worst one). For example, let us look at the results for S13: For 65.4% of the instances,
the learnt solver is the best one; for 9.8% of the instances, it is the second best one; for
6.8% it is the third best one; . . . ; and finally, for 8.9% of the instances it is the seventh
best one, or it is worse than the seventh best one.

The fact that the learnt solver is well-classified for an instance i does not necessarily
imply that it is good for i (except when k = 13): This depends on whether Sk contains
a good solver for i or not. The right part of Table 6 displays the percentage of hard
instances for which the learnt solver is good (i.e., it is the best among the 13 solvers,
or it is not statistically different from the best on this instance). For the Solved strategy,
this percentage increases from 36.7% with SSolved

2 to 65.8% with SSolved
11 , whereas for

the Good strategy it increases from 54.5% with SGood
2 to 69% with SGood

8 .

Comparison of success rates. Table 7 displays the percentage of instances solved at
different time limits for the best solver, (CBT,MAC,w), and for the per-instance algorithm
selector with different portfolios Ss

k with k ∈ [2; 13] and s ∈ {Solved ,Good}, on
average over 15 runs. We have used the Student’s t-test with p = 0.01 to decide whether
the 15 success rates at a given time t and a given size k are significantly different for
the two strategies and we highlight in blue the best strategy when the test is positive.
At one second, all variants of the selector have the same success rate as (CBT,MAC,w)
because the selector runs (CBT,MAC,w) during one second before starting the selection
process. However, after 5 seconds, all variants of the selector have better success rates
than (CBT,MAC,w). The Good strategy is significantly better than the Solved one when



Success rates of per instance solver selectors (average on 15 runs):
1 5 10 50 100 500 1000 1800

k Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good

2 47.1 47.1 64.2 66.7 72.1 73.9 84.7 86.5 88.8 90.2 94.4 95.1 96.0 96.3 96.6 96.8
3 47.1 47.1 64.5 66.5 71.9 73.8 84.4 86.0 88.6 90.1 94.3 95.3 95.6 96.2 96.1 96.6
4 47.1 47.1 64.8 67.8 72.1 74.6 84.7 86.3 88.7 89.9 94.4 95.4 95.7 96.3 96.2 96.8
5 47.1 47.1 64.9 68.4 72.0 75.1 84.5 86.3 88.6 89.9 94.4 95.6 95.8 96.5 96.3 96.9
6 47.1 47.1 64.3 68.7 71.5 75.0 83.5 86.6 87.7 89.7 93.2 95.1 94.6 95.9 95.2 96.4
7 47.1 47.1 66.7 68.2 73.1 74.5 85.0 86.1 88.4 89.4 94.0 94.8 95.0 95.9 95.7 96.5
8 47.1 47.1 66.0 68.2 72.7 74.7 84.8 86.2 88.0 89.7 93.7 95.0 94.8 95.7 95.6 96.3
9 47.1 47.1 67.8 68.2 74.0 74.6 85.1 86.0 88.4 89.4 94.0 94.7 94.9 95.5 95.5 96.1

10 47.1 47.1 67.9 67.9 73.9 73.9 85.3 85.3 88.9 88.9 94.3 94.3 95.2 95.2 95.7 95.7
11 47.1 47.1 67.9 68.2 73.9 74.3 85.3 85.5 89.1 88.8 94.4 94.5 95.3 95.3 95.7 95.7
12 47.1 47.1 67.8 68.1 73.7 74.4 85.3 85.8 88.6 89.2 94.5 94.7 95.4 95.7 95.8 96.2
13 47.1 47.1 68.5 68.5 74.5 74.5 85.8 85.8 89.2 89.2 94.6 94.6 95.7 95.7 96.3 96.3

Success rates of (CBT,MAC,w) (average on 15 runs):
47.1 61.5 68.3 80.5 85.2 92.3 94.3 95.4

Table 7. Each line displays the size k of the portfolio, followed by success rates of per-instance
solver selectors built upon SSolved

k and SGood
k at different time limits (for 15 runs on the 1092

instances). For each time limit and each size k, we highlight in blue the cell with the best result if
it is significantly better. For each time limit and each strategy s ∈ {Solved ,Good}, we highlight
in bold the highest success rate whatever the size k. The last line of the table recalls the success
rates of (CBT,MAC,w).

k ≤ 9, at all time limits. When k ≥ 10, the two strategies often have results which are
not significantly different.

For the Solved strategy, the best results are obtained with the largest portfolio, S13,
up to 500 seconds. After that, the best results are obtained with S2. For the Good strat-
egy, the best results are often obtained with a portfolio of 5 or 6 solvers. Figure 1 plots
the evolution of the percentage of solved instances with respect to CPU time for the best
solver (CBT,MAC,w) and for the selector with SGood

5 and SSolved
13 . It also plots results of

VBS(SGood
5 ) and VBS(SSolved

13 ).

6 Conclusion

We have extended the generic framework of [6] by adding three new backtracking
mechanisms (CBJR, DR and BTD), thus defining a unified framework for comparing
24 different configurations corresponding to state-of-the-art approaches. As far as we
know, this is the first time that approaches based on tree decomposition (BTD) are ex-
tensively compared with other search mechanisms such as CBJ, DBT, and DR, when
combined with two different constraint propagation techniques (MAC and FC) and with
two different variable ordering heuristics (d and w). Experiments have shown us that al-
though BTD has lower global success rates than the best approaches, it also performs
significantly better than them on many instances.

We have used a per-instance algorithm selector to choose a good configuration for
each new instance to be solved. This selector is parametrized by the size k of the port-
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Fig. 1. Evolution of the percentage of solved instances with respect to CPU time (in seconds)

folio and we have introduced a new strategy for selecting the k solvers. This strategy is
independent from the CPU time limit and aims at maximizing the number of instances
for which the portfolio contains a good solver. We compare this strategy with the one
used in [12], which aims at maximizing the number of instances solved within a given
CPU time limit. We experimentally show that our new strategy allows the selector to
solve more instances.

In this first study, we have extracted rather simple features to characterize instances
and we plan to study (i) the usefulness of these different features for the classifica-
tion task and (ii) the possibility of adding new features such as other dynamic features
gathered when running other algorithms (e.g., greedy search or local search). We also
plan to extend this work to build runtime prediction models by using linear regres-
sion techniques, as done for example in SATzilla. This kind of prediction model could
then be used to schedule configurations in a portfolio approach, as done for example in
CPHydra. Further work will also concern the extension of our generic solver to n-ary
constraints and to impact-based or activity-based variable ordering heuristics [32]. Fi-
nally, our generic framework allows us to change dynamically the configuration during
the solving process. Therefore, we plan to extend our work to dynamic configuration as
proposed, for example, in [33] or [34].

Acknowledgements: Many thanks to Pierre Flener and Justin Pearson for enriching
discussions on this work.
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