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ABSTRACT   

In this paper, we investigate the recognition of speech produced by a person with an 
articulation disorder resulting from athetoid cerebral palsy. The articulation of the first spoken 
words tends to become unstable due to strain on speech muscles, and that causes degradation 
of speech recognition. Therefore, we propose a robust feature extraction method using a 
convolutive bottleneck network (CBN) instead of the well-known MFCC. The CBN stacks 
multiple various types of layers, such as a convolution layer, a subsampling layer, and a 
bottleneck layer, forming a deep network. Applying the CBN to feature extraction for dysarthric 
speech, we expect that the CBN will reduce the influence of the unstable speaking style caused 
by the athetoid symptoms. Furthermore, we also adopt dropout in the output layer since 
automatically-assigned labels to the dysarthric speech are usually unreliable due to ambiguous 
phonemes uttered by the person with speech disorders. We confirmed its effectiveness 
through word-recognition experiments, where the CNN-based feature extraction method 
outperformed the conventional feature extraction method. 

Keywords: Articulation disorders, Feature extraction, Convolutional neural network, 
Bottleneck feature, Dropout, Dysarthric speech. 

1 INTRODUCTION 
Recently, the importance of information technology in the welfare-related fields has 

increased. For example, sign language recognition using image recognition technology [1], text 
reading systems from natural scene images [2], and the design of wearable speech synthesizers 
for voice disorders [3, 4] have been studied. 

As for speech recognition technology, the opportunities in various environments and 
situations have increased (e.g., operation of a car navigation system, lecture transcription 
during meetings, etc.). However, degradation can be observed in the case of children [5], 
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persons with a speech impediment, and so on, and there has been very little research on orally-
challenged people, such as those with speech impediments. It is hoped that speech recognition 
systems will one day be able to recognize their voices. 

One of the causes of speech impediments is cerebral palsy. Cerebral palsy results from 
damage to the central nervous system, and the damage causes movement disorders. Three 
general times are given for the onset of the disorder: before birth, at the time of delivery, and 
after birth. Cerebral palsy is classified as follows: 1) spastic type 2) athetoid type 3) ataxic type 
4) atonic type 5) rigid type, and a mixture of types [6]. 

In this paper, we focused on a person with an articulation disorder resulting from the 
athetoid type of cerebral palsy as in [7]. Athetoid symptoms develop in about 10-15% of 
cerebral palsy sufferers. In the case of a person with this type of articulation disorder, the first 
movements are sometimes more unstable than usual. That means, the case of movements 
related to speaking, the first utterance is often unstable or unclear due to the athetoid 
symptoms. Therefore, we recorded speech data for a person with a speech impediment who 
uttered a given word several times, and we investigated the influence of the unstable speaking 
style caused by the athetoid symptoms. 

In speech recognition technology, frame-wise features such as mel-frequency cepstral 
coefficients (MFCC), linear predictive coding (LPC), and an autoregressive model (AR) have been 
widely used so far. However, these features do not capture the temporal information unless 
delta features are used. Especially for dysarthric speech, where the signals fluctuate more 
obviously than the signals uttered by a physically unimpaired person, spectral transition in the 
short term is considered to be an important factor in capturing the local temporal-dimensional 
characteristics. In this paper, we employ a convolutional neural network (CNN) [8, 9])-based 
approach to extract disorder- dependent features from a segment MFCC map. The CNN is 
regarded as a successful tool and has been widely used in recent years for various tasks, such as 
image analysis [10, 11, 12], a spoken language [13], and music recognition [14]. A CNN consists 
of a pipeline of convolution and pooling operations followed by a multi-layer perceptron. In 
dysarthric speech, the key points in time-spectral local areas of an input feature map are often 
shifted slightly due to the fluctuation of the speech uttered by a person with an articulation 
disorder. However, thanks to the convolution and pooling operations, we can train the CNN 
robustly to deal with the small local fluctuations. Furthermore, we expect that the CNN extracts 
specific features associated with the articulation disorder we are targeting when we train the 
network using only the speech data of the articulation disorder. 

For the research described in this paper, we used a convolutive bottleneck network (CBN) 
[15], which is an extension of a CNN, to extract disorder-specific features. A CBN stacks a 
bottleneck layer, where the number of units is extremely small compared with the adjacent 
layers, following the CNN layers. Due to the bottleneck layer having a small number of units, it 
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is expected that it can aggregate the propagated information and extract fundamental features 
included in an input map. Furthermore, we also use a dropout technique [16] to prevent over-
fitting appeared in the output layer. Since the label data (teaching signal) is obtained by forced-
alignment from dysarthric speech where each phoneme fluctuates largely, the teaching signal 
for the training of the network is very unreliable. The dropout in the output layer ignores some 
information in the teaching signal, and thus will deal with the problem of the wrong alignment. 

This paper is organized as follows: we briefly review the fundamental method, CNN in 
Section 2. The proposed feature extraction method and the structure of the CBN used in the 
experiments are presented in Section 3. In Section 4, we show the experimental results, and we 
give our conclusions regarding in Section 5. 

2 CONVOLUTIONAL NEURAL NETWORK 
In this section, we describe a convolution layer and a pooling layer, which are fundamental 

components of a CNN (convolutional neural network). 

 

Figure 1: Feature maps in a convolutional layer (right) feed input feature maps (left) 

2.1.1 Convolution layer 

Assuming that we have a two-dimensional input feature map  and a 
convolutive filter , the output of a convolutive operation  also 

becomes a two-dimensional feature with the size of  (  and vice 
versa). A CNN generally has a number of such filters   in a convolutive layer, and 
feeds an input  using each filter to create the corresponding outputs , which is 
referred to as a feature map. 

Given all of the feature maps in the th layer , the th 

feature map  in the th (convolution) layer can be calculated as 
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, 
(1) 

 

where  and   indicate a predictable filter from the th feature map in th layer 
to the th map in the th layer and a bias map of the th map in the th layer, respectively. In 
this paper, we used an element-wise sigmoid function for the activation function f as follows 

, (2) 

where the fraction bar indicates element-wise division. 

Each unit in a convolution layer is connected to the units in the corresponding local area of 
size  in the previous layer (local receptive field). In other words, the convolution layer 
in a CNN captures local patterns in an input map using various filters (Figure 1). 

 

2.1.2 Pooling layer 

Followed by the convolution layer, a pooling procedure is generally used in a CNN, creating 
what is called a pooling layer. Each unit in the pooling layer aggregates responses in the local 
subregion  in the previous convolution layer. As a result, a feature map in the 

pooling layer has the size of . 

There exist various pooling methods (e.g. max-pooling), but we use average-pooling in this 
paper, calculated as follows 

, 
(3) 

 

where  and  are weight parameter and a bias parameter of the th feature map in 

the pooling layer ( th layer), respectively.  represents the unit in the corresponding 
subregion identified with  in the feature map in the th layer. 

This pooling process enables the network to ignore small position shifts of a key point in the 
input feature map since it aggregates information in the local area. 
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3 PROPOSED METHOD 
In our approach, we use a convolutional neural network (CNN) that has a bottleneck layer in 

the network, referred to as a convolutive bottleneck network (CBN) [15], for capturing speaker-
dependent features from a dysarthric speech signal. 

3.1 Convolutive Bottleneck Network 
A CBN consists of an input layer, convolution layer and pooling layer pairs, fully-connected 

MLPs (multi-layer perceptrons) with a bottleneck structure, and an output layer in the order 
shown in Figure 2. In our approach, the CBN feeds a mel map (two-dimensional acoustic 
features in time-mel-frequency) and outputs 54 phoneme labels. The MLP shown in Figure 2 
stacks three layers (m1 , m2 , m3 ), where we give 108 units, 30 bottleneck units, and 108 units 
in each layer, respectively. The filter sizes in the convolution layer and the pooling layer will be 
discussed in the experimental section. Since the bottleneck layer has reduced the number of 
units for the adjacent layers, we can expect that each unit in the bottleneck layer aggregates 
information and behaves as a compact feature descriptor that represents an input with a small 
number of bases, similar to other feature descriptors, such as MFCC, LDA (linear discriminant 
analysis) or PCA (principal component analysis). It is reported that a feature extraction method 
using bottleneck features improved speech recognition accuracy from a well-known ABN 
(American Broad News) corpus [17], and in this paper as well, we use such features (the unit 
values in the bottleneck layer) for speech recognition, instead of using MFCC. The extracted 
features are obtained from the statistically-trained speaker-dependent CBN; hence, it is 
expected that it better represents characteristics in the speech of the target articulation 
disordered speech than MFCC does. 

 

 
Figure 2: Convolutive Bottleneck Network (CBN) 
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3.2 Bottleneck feature extraction from dysarthric speech 

Figure 3 shows a system flowchart of our method, where speaker-specific features are 
extracted using a CBN. First, we prepare the input features for training a CBN from a speech 
signal uttered by person with an articulation disorder. After calculating short-term mel spectra 
from the signal, we obtain mel maps by dividing the mel spectra into segments with several 
frames (13 frames in our experiments) allowing overlaps. For the output units of the CBN, we 
use phoneme labels that correspond to the input mel-map. For example, when we have a mel 
map with the label /i/, only the unit corresponding to the label /i/ is set to 1, and the others are 
set to 0 in the output layer. The label data is obtained by forced alignment using a hidden 
Marcov model (HMM) from the speech data. The parameters of the CBN are trained by back-
propagation with stochastic gradient descent, starting from random values. The bottleneck (BN) 
features in the trained CBN are then used in the training of another HMM for speech 
recognition. 

In the test stage (“Feature extraction” in Figure 3), we extract features using the CBN, which 
feeds the mel maps obtained from test data and tries to produce the appropriate phoneme 
labels in the output layer. Again, note that we do not use the output (estimated) labels for the 
following procedure, but we use the BN features in the middle layer, where it is considered that 
information in the input data is aggregated. Finally, the system recognizes dysarthric speech by 
feeding the extracted BN features into HMMs. 

 
Figure 3: Flow of our feature extraction method for dysarthric speech using a convolutive bottleneck network 
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4 EXPERIMENTAL EVALUATION 
4.1 Word recognition experiments (speaker A) 

In this section, we discuss and evaluate our experiments of word recognition using a CBN 
presented in the previous section. Since we want to investigate the effectiveness of the CBN, 
we did not use dropout in the output layer of the CBN in these experiments. 

4.1.1 Conditions 

Our feature extraction method was evaluated on word recognition tasks for one male 
person (identified with “speaker A”) with an articulation disorder. We recorded 216 words 
included in the ATR Japanese speech database [18] repeating each word five times (Figure 4). 
The utterance signal was sampled at 16 kHz and windowed with a 25-msec Hamming window 
every 10 msec. Then we clipped each utterance manually. In our experiments, the first 
utterances of each word were used for evaluation, and the other utterances (the 2nd through 
5th utterances) were used for the training of both a CBN and an acoustic model. We used the 
HMMs (54 context-independent phonemes) with 5 states and 8 mixtures of Gaussians for the 
acoustic model. 

We trained and evaluated three CBNs: 28 units, 30 units, and 32 units in the bottleneck (BN) 
layer. The extracted BN features from each CBN were compared with 28-, 30-, and 32-
dimensional MFCC+∆MFCC, respectively. 

 
Figure 2: Example of recorded speech data 

4.1.2 Training of CBN 

In this section, we explain the training conditions of the CBN in detail. We trained the 
network using pairs of a mel map from the 2nd through 5th utterances and the label, as shown 
in Figure 3. 

Each value of the convolutive filter  (and the weight ) is initialized by [19] as 
follows: 

, 
(3) 
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where  denotes uniform distribution at the interval from  to .  and  
indicate the numbers of input dimensions and output dimensions at the th layer, respectively. 

The bias parameters  and  were set to 0 as initial values. 

These parameters were trained so as to minimize the errors between the target labels and 
the output values using a back-propagation algorithm. We iterated batch-based training with 
50 frames in a mini-batch 100 times, with a fixed learning rate of 0.1. 

4.1.3 CBN architectures 

In this section, we discuss our preliminary experiment in which we change the architecture 
of a CBN (such as the number of feature maps and the size of a convolution filter) as shown in 
Table 1. In this preliminary experiment, we will see which architecture produced the best 
recognition accuracy. All the architectures have two pairs of a convolution layer and a pooling 
layer followed by three-layer MLPs with a bottleneck layer, forming a nine-layer network in 
total. We used 108, 30 and 108 units in the MLP part, in this order, for all the architectures (the 
bottleneck feature had 30 dimensions in this preliminary experiment). For the input layer, we 
used a 39-dimensional mel map with 13 frames without overlapping. The size of the map was 
39×13. When we use ‘Arc1’ in Table 1, for example, the feature maps in each convolution and 
pooling layer have 36×12, 12×4, 9×3, and 3×1 sizes, in this order. In this case, 3×27(= 81) units 
are fully connected to the first layer of the MLP part. 

Table 2 shows recognition accuracies obtained from each architecture. As shown in Table 2, 
we obtained the best word recognition accuracies from ‘Arc1’, although it did not always 
outperform the other architectures with respect to the MSE and label classification accuracy. 
This is considered to be due to the fact that the extracted bottleneck features of ‘Arc1’ were 
more abstract and suited to the acoustic model in word recognition. For the remaining 
experiments, we used ‘Arc1’ for the CBN architecture except for the number of units in the 
bottleneck layer. 

Table 1: Filter size and number of feature maps for each architecture. The values for C1 (and C2) indicate filter 
size of the first (and the second) convolution layer that has #1 maps (and #2 maps), respectively. Each 

convolution layer is associated with the pooling layer (S1 and S2). The values for S1 and S2 mean the pooling 
factor M) 

 C1 S1 #1 C2 S2 #2 

Arc1 4×2 3 13 4×2 3 27 

Arc2 10×4 2 13 10×4 2 27 

Arc3 4×2 3 18 4×2 3 36 

Arc4 4×2 4 13 4×2 2 27 
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Arc5 8×6 2 13 8×2 3 27 

Table 2: Word recognition accuracies using the bottleneck features (Word-Acc.) obtained from each 
architecture, along with the mean squared error of the closed data (MSE), and the open classification accuracies 

of the phoneme labels using a CBN only (without using the acoustic models) (Phoneme-Acc.) 

 Arc1 Arc2 Arc3 Arc4 Arc5 

MSE ( ) 2.42 2.01 2.32 2.43 2.09 

Phoneme-Acc. (%) 48.7 49.3 47.9 49.4 49.5 

Word-Acc. (%) 88.0 87.7 82.4 84.3 83.8 

 

4.1.4 Results and discussion 

Figure 5 shows the word recognition accuracies comparing our CBN features with the 
conventional MFCC features, when changing the number of feature dimensions. As shown in 
Figure 5, the use of bottleneck features in a convolutive network improved the accuracies from 
84.3% to 88.0% (30 dimensions). This is due to the robustness of the CBN features to small local 
fluctuations in a time-melfrequency map, caused by the dysarthric speech. 

We further investigated our method to check the effectiveness of the convolution layer 
(and pooling layer). In this evaluation, we replaced some convolution layers (here we refer to 
the pair of a convolution layer and a pooling layer as simply a “convolution layer”) with fully-
connected layers in the network (‘Arc1’). First, we replaced the second convolution layer (‘Layer 
2’ in Figure 2) with a fully-connected layer with 108 units. Second, we alternated two 
convolution layers with two fully-connected layers with 108 units, which is regarded as a 7-layer 
DBN (deep bottleneck network). The results are summarized in Table 3. From Table 3, we notice 
that the more convolution layers the network had, the better the performance of the system. 
Again, we consider that this is because the convolution filter captured characteristics in the 
input maps, making it robust to local fluctuations. When we compare the fully-connected 
model (DBN) with the MFCC, we see that the DBN performs poorly since it tends to suffer from 
over-fitting and a lack of robustness to the open data, especially in dysarthric speech, which 
fluctuates every time the speaker begins speaking. 
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Figure 5: Word recognition accuracies (%) for the utterances of “speaker A” using bottleneck features in a 

convolutional network 

 

Table 3: Word recognition accuracies as the number of convolution layers changed. 

# of conv v.s. full layers Acc. (%) 

No conv, 5 full (DBN) 83.3 

1 conv, 4 full (CBN) 84.7 

2 conv, 3 full (CBN) 88.0 

Baseline (MFCCs) 84.3 

 

4.2 Word recognition experiments (speaker B) 
We confirmed improvement of recognition accuracies by using a CBN feature extraction 

method in the previous experiments. However, the symptom of the articulation disorder and 
the tendency of the fluctuation in dysarthric speech vary on the speaker. In this section, we 
show experimental results using speech uttered by another person (female; “speaker B”) with 
an articulation disorder. 

4.2.1 Conditions 

We conducted word recognition experiments similarly to the previous experiments using 
speech of words included in the ATR Japanese speech database, uttered by “speaker B”. The 
speech data consists of 200 words, each of which was repeated three times (600 word speech 
in total). In the experiments, the first utterances of each word (200 words) were used for the 
test, and the other utterances (400 words) were used for the training of a CBN and acoustic 
models. The other configurations were set same as the experiments with “speaker A”. 
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4.2.2 Results and discussion 

 
Figure 6: Word recognition accuracies (%) for the utterances of “speaker B” using bottleneck features in a 

convolutional network 

Figure 6 shows experimental results of “speaker B”. As shown in Figure 6, unlike the results 
with “speaker A”, we did not see improvements of recognition accuracy with CBN features. One 
of the reasons is considered to be due to the assigned phoneme labels included in the training 
data. In other words, there exist gaps between the estimated labels obtained by forced 
alignment and actual labels, because the speaker could not utter some words correctly. It 
means that we give incorrect teaching signals to the network, which degrades the performance 
in the training. According to the experimental results, this problem arises especially on the 
second speaker. Figures 7 and 8 show examples of alignment for “speaker A” and “speaker B”, 
respectively. Each figure compares the results of forced-alignment obtained by using HMMs (a) 
and manually-assigned actual labels (b). As shown in Figure 7, the forced-alignment result of 
“speaker A” was similar to the actual labels. However, in case of “speaker B”, the segment for 
phoneme /y/ was enlarged and the following phoneme bounds were quite wrong as shown in 
Figure 8. This means that the features that should correspond to the phoneme /a/ or /m/ were 
regarded as the phoneme /y/ in the training. 

 

C o p y r i g h t  ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  11 
 



Toru Nakashika, Toshiya Yoshioka, Tetsuya Takiguchi et. al.; Convolutive Bottleneck Network with Dropout for Dysarthric Speech 
Recognition, Transactions on Machine Learning and Artificial Intelligence,  DOI: 10.14738/tmlai.22.150 ; Online-First (Ahead of Print) 
 

 
Figure 7: Example of forced-alignment for “speaker A” 

 

 
Figure 8: Example of forced-alignment for “speaker A” 
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4.2.3 Dropout effect 

To solve the problem discussed in the previous subsection, we employ a dropout technique 
[16] when training the CBN, in this paper. The dropout gives the network generalization 
capabilities by ignoring some randomly-selected units (setting the weights to zero) in a layer. 
We expect that the network with dropout in the output layer (training signal) prevents over-
fitting to the label data that is unreliable because of forced-alignment. Specifically, given an 

input vector , the output of a network  is obtained by applying  a binary mask as 
follows: 

 (4) 

where  denotes element-wise product, and each value of  is randomly set to 1 with a 
probability  (0 with a probability ). When each unit in the output layer randomly takes 
the value of 0 even when the value is activated, the network tries to capture abstracts hidden in 
the data. In our experiments, we used . 

Figure 9 shows experimental results, adding the result of a CBN with dropout from Figure 6. 
As shown in Figure 9, the accuracy was highly improved when we apply dropout. Compared 
with the baseline (MFCC+∆MFCC), the dropout method (CBN+DR) achieved an up-to-5-point 
improvement. Through these experiments, “ambiguous” training using dropout worked well 
especially for the speech where phonemes fluctuate largely and it is difficult to prepare the 
exact labels, as the speech uttered by “speaker B”. 

 
Figure 9: Word recognition accuracies (%) for the utterances of “speaker B” using bottleneck features and 

dropout (DR) 

 

5 CONCLUSIONS 
The articulation of speech uttered by persons with speech disorders tends to become 

unstable due to strain on their speech-related muscles. This paper described a robust feature 
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extraction method using a convolutive bottleneck network (CBN). In word recognition 
experiments, our method achieved an approximately 4-point improvement compared with the 
conventional MFCC features for a male speaker (“speaker A”). For the another speaker 
(“speaker B”), we could not obtain better performance from the same technique as “speaker 
A”, because the speech fluctuates largely and it was difficult to estimate boundaries of 
phonemes correctly by forced-alignment. However, when we realize ambiguous training using 
dropout, our method achieved a 5-point improvement compared with MFCC features for 
“speaker B”. 

Since the tendency of the fluctuation in dysarthric speech depends on the speaker, we 
would like to apply and investigate our method to more persons with speech disorders in the 
future. 
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