N
N

N

HAL

open science

FPGA based accelerator for visual features detection

Frangois Brenot, Philippe Fillatreau, Jonathan Piat

» To cite this version:

Francois Brenot, Philippe Fillatreau, Jonathan Piat. FPGA based accelerator for visual features detec-
tion. International Workshop TEEE Electronics, Control, Measurement, Signals and their application
to Mechatronics (ECMSM), Jun 2015, Liberec, Czech Republic. 10.1109/ECMSM.2015.7208697 .

hal-01300912

HAL Id: hal-01300912
https://hal.science/hal-01300912
Submitted on 22 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01300912
https://hal.archives-ouvertes.fr

FPGA based accelerator for visual features detection

Francois Brenot
LAAS/CNRS — Team : RAP
Toulouse — France
Email: fbrenot@1laas.fr

Abstract—In the context of obstacle detection and tracking
for a vision-based ADAS (Advanced Driver Assistance System),
one mandatory task is vehicle localization. Vision-based SLAM
(Simultaneous Localization and Mapping) proposes to solve this
problem by combining the estimation of the vehicle state (local-
isation : position and orientation) and an incremental modelling
of the environment using a perception module (feature detection
and matching) in images acquired using one camera or more.
Such a perception module requires an important computational
load that highly affects the latency and the throughput of the
system. Our goal is to implement the SLAM functionality on a low
power consumption mixed hardware and software architecture
(using a co-design approach) based on a Xilinx Zynq FPGA. This
device includes logic cells that allows to speed-up the perception
tasks to meet the real-time constraint of an ADAS. In this paper,
we present the implementation of two hardware components : a
FAST (Features from Accelerated Segment Test) features detector
and a parametrizable corner refinement module (Non Maxima
Suppression - NMS).

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) like cruise
control, automatic high beam switching or parking assistance
systems, are now widely implemented on-board commercial
car models. Vision based ADAS involve vision sensors like
cameras, which provide rich information allowing the devel-
opment of smarter systems.

Our works deal with vision-based ADAS aiming at ob-
stacles detection and tracking. One basic and mandatory task
undertakes the vehicle localization. An efficient technique for
mobile robots or vehicles localization is known in the literature
as SLAM (Simultaneous Localization And Mapping). For the
navigation of a mobile robot or vehicle in an unknown envi-
ronment, it allows to build incrementally a map of landmarks
assumed to be static; matching the landmarks in successively
acquired images allows to iteratively compute the positions
and orientation of the landmarks in a global map, while
estimating the position and orientation of the vehicle in this
map. The SLAM process is divided into 2 main steps. The first
one (perception task) allows to extract landmarks (known as
features) in the acquired images. A second step allows to match
the perceived interest points in successively acquired images;
an estimation step allows to update the landmarks positions
and uncertainties, and to estimate the robot position and its
uncertainty in the incremental map. In the literature and in the
former works lead at LAAS, the filtering step is classically
based on the use on the Extended Kalman Filter.

In our works, we intend to embed the SLAM functionalities
in an ADAS on-board a car. For such applications, strong

Philippe Fillatreau
LGP/ENIT - Team : DIDS
Tarbes — France
Email: philippe.fillatreau @enit.fr

Jonathan Piat
LAAS/CNRS — Team : RAP
Toulouse — France
Email: jpiat@laas.fr

processing times constraints have to be faced, to cope with po-
tential high vehicle speeds. Our goal is to drastically improve
processing times by integrating the SLAM process on a mixed
hardware architecture including an ARM DualCore Cortex A9
processor and a hardware accelerator (both included in the
Xilinx Zynq FPGA) to comply with the real-time constraints.
In an ADAS context, the vehicle can reach 130km/h. If the
real-time constraints are set at 30Hz (30fps), the embedded
system computes 1 image every 1.2 meters. We keep our
real-time constraints in this range to meet ADAS’s security
requirement.

In this paper, we present the progress of these works.
So far, we have designed a global hardware architecture for
the SLAM process, and have defined a partitioning of the
SLAM functionalities on the processor and on the hardware
(FPGA logic cells), using a co-design approach. We also have
defined, implemented and validated two hardware modules
implemented on the FPGA. The first is a corner detector
(certain kind of features) module, based on the use of the FAST
detector (section III-A). The second is a non maxima suppres-
sion (NMS) module, allowing to perform corner refinement by
selecting local maxima among the FAST features detected in
the images (section III-B).

This paper is organised as follows. In section II, we present
a state of the art of vision-based SLAM, of the corner detection
and of the non maxima suppression functionalities, focusing on
their integration on a dedicated hardware architecture. In sec-
tion III, we describe the implementation architecture that we
propose in order to partition the SLAM process functionalities
on our mixed target architecture. In section III-A, we propose
a hardware component architecture implementing the FAST
features detection on FPGA. In section III-B, we describe our
approach for the design of an original hardware architecture
allowing to efficiently integrate a non maxima suppression
functionality on FPGA ; the processing can be configured
and parameterised, and offers excellent prospects towards the
integration of a versatile FPGA-based module, allowing to
perform non maxima suppression as well as regions labelling
and segmentation or region filtering. Finally, we present and
discuss experimental results in section IV, and summarise our
works and the future steps in section V.

II. STATE OF THE ART
A. Vision based SLAM

Vision based SLAM [1] allows a robot to navigate in
an unknown environment; it allows to incrementally build
a stochastic map of static landmarks from images acquired

A

A / B .

Fig. 1. Steps in the SLAM algorithm

from cameras. Matching the landmarks in successively ac-
quired images allows to iteratively compute the positions and
orientations of landmarks in a global map, while estimating
the position and orientation of the vehicle in this map. A
perception step allows to extract features in the acquired
images. A filtering step allows to match interest points in suc-
cessively acquired images, to update the landmarks positions
and orientations and their uncertainties, and to estimate the
robot position and orientation and their uncertainties in the
incremental map.

Figure 1 illustrates the different steps of the SLAM process.
The robot is represented by an Euclidean coordinate system
and obstacles by hatched squares : (A) The robot observes
three landmarks for the first time (the corners of the squared
obstacles) together with the uncertainties of their positions,
represented by ellipses (the depth is less precise than the width
and the height) ; (B) the robot moves and predicts its new
position ; (C) the robot predicts the landmark position and
compares with the observation ; (D) merging this observa-
tion(s) with the map constructed previously reduces both robot
and landmarks positions uncertainties.

In the literature, three different SLAM perception methods
associated to the use of three different sensors systems can be
found: stereocam-SLAM, bicam-SLAM and monocam-SLAM.
Stereocam-SLAM uses a stereovision to acquire 3D landmarks.
The Bicam-SLAM architecture combines two monocular cam-
eras which allows to merge two 2D images acquisitions
(one per camera). Monocam-SLAM uses a Monocular camera
which acquires 2D landmarks. Our goal is to implement a
Monocular-SLAM to provide a real-time and embedded sys-
tem. A first system was presented in [2] and further developed
and implemented at Laas [3].

B. Features detection for SLAM

In the perception step of the SLAM process, one of the
goals is to detect features.

One of the most relevant types of features is corners defined
as an intersection of two edges. In image processing appli-
cations, corner detection has become a well known method
to extract stable features in images. In this field of research,
two of the most commonly used algorithms are Shi-Tomasi
[4] or SIFT (Scale-Invariant Feature Transform) [5] (Based on
Laplacian of Gaussian algorithm). Another widely used corner
detector in the literature and in the former works at LAAS
is the Harris detector [6]. It is an efficient features detector
according to [8] : this detector is usually used for SLAM
because of its detection efficiency, its computational speed and
its good repeatability.

Extracting features in an image involves to process all the
pixels. Considering the huge amount of data to be processed, it
makes sense to implement a hardware module to speed up this
task. In this way, the corresponding hardware module processes
input pixels and provides processing results of a small amount
of a higher abstraction level data (relevant features in the
image). Using a FPGA as the target processor allows to
extract those features in high resolution images and with high
processing time performances. But in [7], Berry shows that the
Harris detector, due to its computational complexity, uses a lot
of hardware resources, and the processing times performances
reached are insufficient for our application.

One corner extraction algorithm suitable for a hardware
(FPGA) implementation is FAST. It uses basics operations
such as additions and comparisons, which are very efficient on
hardware (in terms of resource consuming and performance).
This algorithm is presented in [9] and reviewed in [8]. This
method is implemented in [11] on a FPGA.

In the SLAM context, the detected corners have to be as
accurate as possible to have a better localization. The result
of a corner detector algorithms often leads to the detection of
points clusters for each interest point in the scene. Each cluster
has to be refined to find one pixel which represent the corner,
classically by using a non maxima suppression algorithm.

C. Non Maxima suppression

Review [10] present different approaches to perform a
NMS. They have been validated through a software implemen-
tation on a standard microprocessor on a standard workstation.
In all cases, the whole image is explored in a global process
(at least one loop to test all the image pixels).

In hardware implementation, the corner refinement module
has to be achieved by using a processing pipeline fed by a
pixel streaming. In order to use as less memory as possible the
algorithm has to compute the non maxima suppression while
storing a limited number of data. In [7], the authors present
a method using a 2 pixels x 2 pixels shifting window which
keep the top left detected feature when several are detected
at one corner. The method presented requires to store 2 lines
of pixel (to create the shifting window) and uses a FIFO per
image column, storing a total of 512 (image width in pixels)
x 2 (lines) x 1 bytes (pixel size).

III. DESIGN FLOW - EMBEDDED SLAM ARCHITECTURE

Our works aim at embedding a vision-based EKF-SLAM
process in a real-time system, in the context of an ADAS.
Such an embedded platform requires low power consumption
and high computational performances. In order to do so, we
propose to integrate the SLAM process on a mixed hardware
architecture involving a microprocessor and hardware cells
(both included on Zynq FPGA).

The perception tasks involves the processing of a large
amount of pixels while the EKF filtering step involves more
complex processings on sparser information. This EKF tasks
requires a huge amount of DSP blocks and memories.

Our problem is thus to partition the functionalities between
both processors. To deal with these constraints, and to propose
an efficient partitioning, we use a co-design approach. Thus,

CAMERA

ﬂ images
andmarks

J,Lanﬂmarksa,tarrelation

Features HARDWARE
| detection

Landmarks
—>initialisation

election

’—> Prediction
@

SOFTWARE

Correction

Fig. 2. Generic architecture to solve the SLAM problem

the FPGA is used to accelerate the perception tasks to release
some bottlenecks in the microprocessor computation as :
corner detection, distortion correction, NMS, ... The hardware
architecture allows to speed up the processing times to meet
our ADAS real-time constraints.

Figure 2 shows a general view of a generic SLAM archi-
tecture realising this partitioning. It is divided into two parts.
The front-end which includes the perception tasks in red and
the back-end which concerns the EKF filtering stepin green on
figure 2.

The vision front-end is implemented on a FPGA. It in-
cludes, among others, the corner detector and NMS modules
which are described later in this article. It computes high level
features which feed the back-end EKF step.

The back-end EKF algorithm is running on a microproces-
sor.

To accelerate the perception task, we first propose to use
an implementation of a corner detector : FAST [11].

A. Design of a hardware architecture for FAST corner detector

The FAST corner detection is composed of two main steps.
The first one computes the corner score of the current candidate
(pixel), named pixel p in figure 3. The second step is the corner
validation task. It uses a 16 pixels Bresenham circle to classify
whether a candidate pixel p is actually a corner (see figure 3).
The pixels on the circle are identified using from numbers
1 to 16 clockwise. The corner validation step compares each
pixel of the circle with the current (central) pixel p. If a set
of N contiguous pixels in the circle are all brighter than the
candidate pixel p (denoted by Ip) plus a threshold (for instance
t = 10) value ¢ or all darker than the candidate pixel p minus
threshold value ¢, then p is classified as corner.

Figure 3 shows an example of a corner with the Bresenham
circle.

Fig. 3. Fast segment test. The pixels 1 through 16 form the circle

In the example given on figure 3 pixels 1 to 5 pixels have
the same value that pixel p. Pixels 6 to 16 are brighter than
p. As they are all contiguous, it means than the pixel p is a
corner and its score is validated.

Circle's pixgls]
Block NxN Corner Score %
(7x7) > Score validation
>
Central CornerScore module delay :TZ pclk
Pixel .
> bright
. > Thresholder Contiguity
Threshold -8-Bits ek
Fig. 4. FAST architecture

--. Threshold
TN

X

“n ly+x| X 5 yn>x
central Y) ™ n=16 EETET
score
X x| ynsx module
y-X g —
Y, ly-x| n=16
yn

Pixels on Bresenham Circle

Fig. 5.

Thresholder and comparator module

The corner score is computed according to equation 1
where ¢ is a threshold, I, is the intensity of the segment
test pixel and I, is the pixel’s intensity under test.

V=maz(> |oa—Dl—t, Y =Tl —t) ()

xzeSbright zeSDark

The corner score function V, given in equation 1, is defined
as the sum of absolute differences between the intensity of the
central pixel and the intensities of the pixels on the Bresenham
circle.

The FAST hardware implementation is composed of two
modules, the corner score and the corner validation modules.
Both can be computed in parallel. Those modules are fed by
the Bresenham circle stored in BRAM. A N x N pixels Bloc
stores (N —1)lines+ (N —1)pizels to make the circle available
for the FAST processing. Figure 4 shows the FAST hardware
architecture.

The validation module computes a contiguity test by pro-
cessing 8 comparisons. Thus, Eight comparators are used to
test arcs of 9 contiguous pixels (a segment test). The 9 pixels
input segment tests are given by Inputs[l+m to 9+ m] with
m € [0 to 7]. The 8 comparisons are processed in parallel.

The architecture of the hardware implementation of the
thresholder and comparator module is presented in figure 5,
and figure 6 summarizes the hardware architecture of the
corner score computation (according to equation 1).

The main hardware acceleration is provided by the adder
tree instantiation which computes pipelined additions. It allows
to perform, in our case, additions of 8 inputs per clock cycle
instead of 8 clock cycles using a basic processor.

The proposed global hardware architecture for the FAST
algorithm is generic. The circle size can be easily parameter-
ized and the design can also be implemented on a Xilinx or
Altera FPGA. We have set the size of the Bresenham circle

Thresholder

Threshold v T
V= 8
o 8 538, e
<> | ‘4"5 E% " S
Circle foxs,] < < | E
\pixels ly=x| ly-x| 1% 8 Comer
16 times 16 x8 16 times E —sfore
N P
\\‘ \\ - 'a”)‘ g
16x8 3o 3
| 588 3
<T2
<

Sy

L
Central Thresholder

pixel

Fig. 6. Corner score module

to 16 pixels and the contiguity test to an arc of 9 pixels. This
configuration is the most efficient one according to [9].

Due to its logic resources cost (in terms of memory
and LUT consumption), the implementation also allows a
parallelism by duplicating the architecture. Combined to image
downscaling or circle parameterisation, it can provide a multi-
scaling FAST corner detector. This can be a good way to solve
the FAST non scale invariance problem.

B. Design of an hardware architecture for NMS

The output score image is composed by regions which
correspond to each corner found. To refine those corners’
locations, we propose an original hardware implementation of
a NMS algorithm.

Our NMS algorithm can be performed considering a 4 con-
nected or a 8 connected pixels connectivity. In this document,
we present the 4-connected pixels connectivity configuration.

The small FPGA memory size obliges to compute algo-
rithm on a pipelined architecture where lines are acquired one
line at the time. Figure 7 presents the data flow in which P is
the current pixel. We can see a first half of the image which
was acquired previously and an unknown future part which
will be sent by the camera later. NMS is performed upon data
reception while keeping track of past computations.

image

Past

line N + 1

line N
WIP]

Future

Present

line N + 1 MP Future t

acquisition time———
Past line N

Fig. 7. Streaming process

Our pipelined NMS algorithm is based on State Machine
(figure 9) and three main different cases can be found:

1) A new region is found, a new memory allocation is
created which will store the maximum score of this
region;

2) An already known region (defined as an unclosed
region) is found , the maximum of the previous line
in this region is read from the memory and is updated
if needed;

3) A known region is closed, the maximum can be
released.

Figure 10 shows an overview of our proposed hardware
NMS architecture. Two modules can be seen : a “memory
manager” and a “maximum comparator’.

1) Maximum comparator: This module allows to detect
regions (in our case the FAST scores image) and test each pixel
of a given region to find the maximum. it relies on a pattern of
3 pixels, shown in figure 8. Where, NNV is the maximum found in
the previous lines of the current region. C' is the current score
send by the camera. W is the maximum score of the whole
known region (including the previous lines). Those scores are
compared and the result is pushed to W.

» Maximum N : Streaming pixel stored

[N}> between in memory
W, N, C C : Streaming pixel sent
‘W c)resmt by the camera

Fig. 8. How the NMS pattern of comparison is fed

Figure 9 shows the state machine of this NMS algorithm.

=i

/
Known
region

@

i,

region

Fig. 9. State Machine

5 main cases determine the state’s transition conditions
(refer to red numbers in figure 9 and letters in figure 8):

- Conditions 1 : C'# 0 (C = X), C has a non-null score,
means that the current score is a part of a new region. If this
new area appears to belong to an already known region in a
future shift, the oldest region will be merge with the newest
one;

- Condition 2 : As N # 0 and C' # 0, we can assume that
the region has been discovered (opened) during the previous
line. The highest score is kept and pushed to W;

- Conditions 3 : The pattern is closing the current region.
During the process, a reference counter is used and updated
to know how many scores are belonging to this region. This
counter is decreased each time N # 0 and C' = 0. If it falls
to zero, the region is closed (exploration of the current region
is over) and the definitive maximum is now known.

- Conditions 4 : This state shows that the pattern is in
a known, unclosed, region. If NV and C belong to different
regions, both regions are merged, the oldest region (of V) is
merged with the newest (of C);

- Condition 5 : This condition means that the maximum can
be updated. N and C belong to different regions, both regions
are merged

2) Memory manager: In order to explain the memory
manager module, let I be a w x h sized image. The coordinates
of the current pixel position in the image is given by (m,n)
with m the row index and n the column index. (m,n) refers
also to the current computed score named Ip(y, r)-

We have chosen to store some data to keep track of past
computations. First, this module uses a memory (RAMgcore)
which stores the highest score of each region. It also stores the
related (m,n) position. For each score, a label is stored by a
second memory according to the region to which it belongs
(it will be presented in details later). This second memory
is called RAM;p4ee.- A third memory ref_counter, which
contains the region size, is a reference counter for each region.

hsync
vsync CONTROL
pclk

Y

REFERENCE
MAX COUNTER [>
COMPARATOR

current_score.
I

max_column

RAM
SCORE

max_previous

RAM @

(o L 5 [
REGISTERS

MEMORY MANAGER

Fig. 10. Corner refinement architecture

Our architecture uses 2 memories. One pointers memory,
RAM _index, which stores the region numbers (also known
as labels). Those labels point to the second memory which
stores maximum (RAMj..). Both shown in figure 10.

| score region 1
score region 2

pointer table Y

11]a]a]1]2]a]o
region 1

=)

o[2[2]2[o]o]o

region 2 RAM

score

Fig. 11. NMS memory architecture

The RAM _index memory (in figure 10) stores an entire
line of pointers as shown in figure 11. The column numbers of
the image are the addresses of the memory in order to know
in which region each pixel of the current line is. For instance,
in figure 11, the region 1 is 7 pixels wide and region 2 is 3
pixels wide on this current line.

A reference counter (ref_counter) is updated to know
how many scores are belonging to this region. When it falls to
zero, the memory allocation in RAM _score can be released,
the region has been fully explored.

Finally, both RAM_index and RAM_score memories
lead to a latency. It takes 2 clock cycles to update a maximum.
In order to be able to update and read this maximum in the
next clock cycle, we implemented registers for feeding the W
register of the pattern (Figure 8). During the score update, the
memory and the registers are both updated.

Moreover, The NMS architecture can be easily
parametrized to perform a 4 or 8-connected pixels connectivity
Non Maxima Suppression. This functionality will only affect
the comparison module. As shown in figure 12 it will compare
the Northern, previous, current and North-eastern scores for

4-connected 8-connected

Current
‘ X Je— score [x

Fig. 12. Pixels connectivity parametrisation

FAST + NMS (4-connected) result

Fig. 13.

taking into account 8 neighbours (it will merge each related
regions).

IV. RESULTS

We presented the implementation of 2 perception modules
in II-A and III-B. We first validated those architectures by
using SystemC before describing them in VHDL.

SystemC has semantic similarities to VHDL, has a syntac-
tical overhead compared to VHDL when used as a hardware
description language. It offers a greater range of expression,
similar to object-oriented design partitioning and template
classes. It can be used for system-level modeling, architectural
exploration, performance modeling, software development,
functional verification, and high-level synthesis.

The sequence of images used to validate our proposed hard-
ware modules were acquired using a mobile robot navigating
in an outdoor scene at LAAS. Figure 13 shows the results
obtained after processing one of this images by our FAST and
NMS hardware modules. The original image is visible in the
background. Each detected corners appears as surrounded by
a square (generated by an OpenCV software). The squares’
colors depend on scores’ values : from dark red to yellow for a
very good feature. It shows that our architecture provides good
corners despite the quality of the foreground (gravel surface).

On our FPGA target (Xilinx Zynq zc7z20), the process-
ing times can reach the maximum frequency of 134 MHz.
This means the algorithm can deal with a maximum of 134
Mpixels/s. For example, this bandwidth corresponds to 60
frames/second for a HD resolution image (1920*1080 pixels)
with a maximum power consumption of 2.5 Watts (estimated
by the Xilinx Xpower Analyser tool). Those results highlight
the very good ratio computation/power consumption of an
FPGA architecture on this application. Table I summarizes the
slice logic utilization.

TABLE 1. ZYNQ XC7220-1CLG484 - LOoGIC SLICES UTILIZATION
Slice Logic Utilization Used Available Utilization
Slice LUTs 5963 53200 11%
BRAM (18k/36K) 32 140 (38K) 2%
Slice registers 8281 106400 7%

Moreover, in [9], it is shown that FAST+NMS algorithms
use 26.5% of a Pentium III 850MHz during 5.29ms to process
a 768 x 288 image. Our implementation can handle this task
to free up this host’s processing time with a latency of only 4
pixels (thanks to the streaming pipeline).

Unlike the hardware implementation of FAST presented in
[11], the non-maxima suppression presented here is not based
on the storage of 5 lines using FIFOs. It stores the important
information : the maximum score of each current known but
unclosed regions (opened regions). The memory increasing
corresponds to the storage of those unclosed regions. The
wider is the image, the higher is the number of simultane-
ously unclosed regions. In the worst case, on one line, every
other pixel belongs to different regions : I'mageWidth/2
opened regions. The memory usage is processed as follow

(ImageWidth/2) x (Qrange_score + Qrange_posX +
Q@range_posY + Qrange_indexTab) Where Qrange_ is the
range of the address vector.

Here is the one proposed by [11] by using FIFOs to store
and compute 5x 5 neighbourhood NMS : (5x ImageWidth) x
Qrange_score

Our implementation is even more efficient when a descrip-
tor is associated to the detected corner. The descriptor output
is stored in the RAM _score memory like the corner score,
the x and y positions. If the descriptor is BRIEF, a 128 bit
vector is generated to describe the detected corner thanks to
its neighbourhood. Figure 14 shows the memory consumption
comparison between two architectures (FAST + BRIEF +
NMS) : our architecture and another one based on [11]. For
the same algorithm, our architecture needs 45% less RAM
memory. Our implementation computes FAST, BRIEF and
then NMS. To perform the same algorithms, implementation
presented in [11] needs to compute FAST, NMS (with a storage
of the intensity in FIFOs) and then BRIEF.

900Ko
g 800Ko
2 700Ko
£
€ sooko
& s00K0
£ 400Ko
£ 300Ko
< 200Ko
100Ko
0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

== NMS(Marek Kraft) == NMS (Our implementation) Image width

Fig. 14. Memory consumption comparison

By following the same logic, each informations related to
the pixel (intensity, descriptor, RGB values, image scale...)
can be stored in the RAM _score memory with a very small
memory consumption cost.

V. CONCLUSION & FUTURE WORK

In this article, we proposed an efficient SLAM architecture
partitioning. The perception task is computed by a hardware
implementation while the EKF filtering is processed by a
microprocessor. The hardware part deals with the processings

involving large amount of data (pixels) while the software part
undertakes the complex computations on sparser data.

We also presented 2 hardware architectures allowing to effi-
ciently integrate a corner detector and non maxima suppression
functionality on FPGA.

The first architecture presented is an implementation of
the FAST algorithm. It will become a multi-scale module by
duplicating the FAST architecture to involve several Bresen-
ham circle size. Finally, we will add a dynamically adjusted
threshold. All these future upgrades will allow to find better
corners in order to increase the estimation precision and then
the robot position.

The second proposed hardware module integrates an NMS
processing. it will be upgraded to be versatile. With very small
modifications, it can perform region filtering and labelisation.
One configuration can perform region filtering. A simple pixel
counter measures the area of each regions allows to removes
all the smallest regions. The second one, labelisation, allows to
assign a same label (number) to each related pixels which have
homogeneous parameters. Afterwards, these object properties
or object features can be associate to a classification algorithm.

Our future work will also concern the challenging SLAM
implementation by integrating the FAST and NMS algorithms.
This work will lead to the detection and obstacle tracking.

This work is related to DICTA, a project funded by the
”Midi-Pyrenees” region, and involving the LAAS-CNRS, the
LGP-ENIT and the DTSO (Delta Technologies Sud-Ouest)
company. F. Brenot’s PhD work is funded by the “Midi-
Pyrenees” region and DTSO.

REFERENCES

[1] Davison. Real-time simultaneous localisation and mapping with a single
camera. pages 1403-1410 vol.2. IEEE, 2003.

[2] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse.
MonoSLAM: real-time single camera SLAM. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 29(6):1052-1067, June 2007.

[3] Cyril Roussillon, Aurélien Gonzalez, Joan Sola, Jean-Marie Codol,
Nicolas Mansard, Simon Lacroix, and Michel Devy. RT-SLAM: a
generic and real-time visual SLAM implementation. In Computer Vision
Systems, volume 6962, pages 31-40. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[4] Jianbo Shi and Tomasi. Good features to track. pages 593-600. IEEE
Comput. Soc. Press, 1994.

[5] David G. Lowe. Object recognition from local scale-invariant features.
In Computer vision, 1999. The proceedings of the seventh IEEE inter-
national conference on, volume 2, page 1150-1157. Ieee, 1999.

[6] Chris Harris and Mike Stephens. A combined corner and edge detector.
In Alvey vision conference, volume 15, page 50. Manchester, UK, 1988.

[71 BIREM Merwan and BERRY Francois. Fpga-based real time extraction
of visual features. In Circuits and Systems (ISCAS), Seoul, South Korea,
May 2012.

[8] Mohammad Awrangjeb, Guojun Lu, and Clive S. Fraser. Performance
comparisons of contour-based corner detectors. IEEE Transactions on
Image Processing, 21(9):4167-4179, September 2012.

[9]1 Edward Rosten and Tom Drummond. Fusing points and lines for high
performance tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 2, page 1508-1515. IEEE, 2005.

[10] A. Neubeck and L. Van Gool. Efficient non-maximum suppression.
pages 850-855. IEEE, 2006.

[11] Marek Kraft, Adam Schmidt, and Andrzej J. Kasinski. High-speed

image feature detection using FPGA implementation of fast algorithm.
In VISAPP (1), page 174-179, 2008.

