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 

Abstract—This article deals with coupling efficiency and 

reflectance analysis of graded-index expanded-beam connectors. 

We point out the best conditions to take advantage of expanded 

beam connectors for relaxing lateral offset tolerances without 

going down to critical angle misalignments tolerances. The 

influence of manufacturing defaults and coupling misalignments 

by lateral offset and tilt angle on coupling efficiency and 

reflectance are theoretical analyzed, investigated and compared 

to experimental results. The study explains an interesting 

reflectance of expanded beam connectors compared to standard 

single-mode fibers. We demonstrate and explain why we can both 

obtain high coupling efficiency and low reflectance.  

 
Index Terms— Coupling efficiency, expanded beam, graded 

index fiber, optical coupling, optical connector, reflectance.  

I. INTRODUCTION 

UE to their very small mode field diameter (MFD), 

around 10 µm at telecommunication wavelength of  

1550 nm, standard single mode fiber (SMF) connectors are 

very sensitive to contaminants, laser power [1], lateral and 

axial positioning tolerances. The idea to increase the beam at 

the fiber output to avoid these problems is not new, different 

methods have been proposed such as thermal diffusion of 

dopants [2][3], the use of lenses either discrete [4] or spliced 

to the SMF [5], for physical contact (PC) or free space 

connection, but it remains of great interest [6]. Free space 

connection has the advantage of not damaging the optical 

faces, but it is sensitive to fluid intrusion and reflections are 

complex to manage. In a previous work [7], we have proposed 

a physical contact connector easy to fabricate based on a 

graded index fiber (GIF) section spliced to a SMF that offers 

all the advantages of a large beam expansion (56 µ𝑚 of 

MFD), low insertion loss (IL), high return loss (RL) and low 

sensitivity to contaminants. We have demonstrated a good fit 
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between theoretical and experimental evolution of the beam 

diameter, low IL (< 0.5 dB) at a wavelength of 1550 nm and 

low sensitivity to contaminants such as water, oil and dust. 

But the theoretical and principal of studies for neither IL nor 

RL have been presented. 

In this paper we present a theoretical analysis of the 

coupling efficiency (which leads to IL) and reflectance (linked 

to the RL) of this kind of connectors based on GIF sections 

whose end face is either perpendicular or angled to fiber axis. 

Experimental results also will be presented to compare with 

theoretical studies.  

For this study we benefit from very useful publications 

developed as soon as 1964 by H. Kogelnik on coupling of 

optical modes [8], on Gaussian beams propagation through 

optical systems [9][10], and by other authors on coupling of 

Gaussian beams [11] and their propagation in graded index 

media [5][12][13] with or without axial, lateral and angular 

misalignment. 

The novelty of our present work consists first in the analysis 

of both coupling efficiency and reflectance with and without 

defaults, such as GIF section length default compared with the 

optimum one with offset and tilt, second we perform this 

analysis by two different methods. The first one is analytic and 

the second one is based on the beam propagation method 

(BPM) which allows to take into account the truncation of the 

beam by the cladding during its propagation in the GIF 

section. The aim is to try to point out the best conditions to 

achieve a high coupling efficiency and low reflectance. 

In a first section we will present the principle of the 

expanded beam connector and the parameters studied in our 

analysis, and we will introduce the coupling efficiency and 

reflectance equations. In a second section we will present our 

calculations first by an analytical method and second by BPM. 

Then we will summary and discuss our theoretical results 

compared with our experimental ones on both misalignment 

and fabrication tolerances before conclusion.  

II. PRINCIPLE AND THEORETICAL CONCEPTS 

A. Principle of the expanded beam connector studied 

The expanded beam connector consists of introducing a 

micro-lens at the end of the SMF. For that purpose a GIF 

section is spliced to a SMF as shown in Fig.1. Thanks to the 

parabolic transverse index profile of the GIF section, the beam 

size 2𝜔(𝑧) and the radius of curvature of the wave front 𝑅(𝑧) 

of the Gaussian beam coming from the SMF has a periodic 

evolution along the optical axis z when propagating in a length 
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of GIF, 𝐿𝐺𝐼. The index profile is considered to be a perfect 

parabolic curve conforming to the relationship: 

   𝑛(𝑟) = 𝑛0(1 − ∆
𝑟2

𝑎2) (1), 

where 𝑛0 is the central refractive index, ∆ is the relative index 

difference between 𝑛0 and 𝑛𝑐 (the refractive index of the  

GIF cladding) defined as ∆= (𝑛0
2 − 𝑛𝑐

2)/(2𝑛0
2), 𝑟 the radial 

position in relation to the optical axis and 𝑎 the core radius  

of the GIF. The numerical aperture (NA) is 

(𝑛0
2 − 𝑛𝑐

2)1/2 = 𝑛0(2∆)1/2. 

For an optimum 𝐿𝐺𝐼  referred as 𝐿𝐺𝐼𝑜𝑝𝑡, the beam size 2𝜔(𝑧) 

in the GIF is enlarged to a maximum 2𝜔𝑚𝑎𝑥. Then the beam 

size decreases in the GIF section. The value of 𝐿𝐺𝐼𝑜𝑝𝑡 depends 

on the GI refractive index profile and its core diameter. 

Defining the GIF parameter as 𝑔 = (2∆)1/2/𝑎, the optimal 

GIF length is given by  𝐿𝐺𝐼𝑜𝑝𝑡 = 𝜋/(2𝑔) [14]. In this 

configuration, as the phase front is plane at the fiber end, the 

working distance, 𝑧𝑤, (see Fig. 1) is zero and the beam waist 

(2𝜔0) is equal to the maximum beam diameter (2𝜔𝑚𝑎𝑥).  

To produce the large beam connection, each ferule connector 

contains a GIF section with this length  𝐿𝐺𝐼𝑜𝑝𝑡 spliced to a 

SMF, so the total length of two GIF sections is 2 × 𝐿𝐺𝐼𝑜𝑝𝑡, as 

illustrated in Fig. 2. Since the fiber diameter remains 125 µm 

over the length of the micro-lens, it is suitable to be inserted in 

a standard connector ferule. 

B. Coupling efficiency and Reflectance 

We have analyzed the coupling efficiency and reflectance 

of this kind of connectors when offset and tilt are present in 

the system as shown in Fig. 3. The lateral offset 𝑥1  and tilt 𝜃1 

between the incident fundamental mode of SMF1 and the 

optical axis of GIF1 are defined in the plane P1 (The plane P1 

is perpendicular to GIF1 axis). The lateral offset 𝑥1
+ and 𝜃1

+ 

between the output beam 𝜓1
+ of GIF2 and its axis, and the 

lateral offset 𝑥2 and 𝜃2 between GIF2 and SMF2 are defined 

in the plane P2, perpendicular to this axis.  The lateral offset 𝑥3  

and tilt 𝜃3 between the optical axis of GIF1 and that of GIF2 

are defined in the plane P3 as can also be seen in Fig. 3. 

Given that the SMFs are spliced to the GIFs and the GIFs 

are in contact in the connector, it is assumed that no axial gap 

is present between the fibers.  

The coupling efficiency  𝜂𝑐𝑜𝑢𝑝 is defined as the fraction of 

power coupled from the incoming fundamental mode of 

SMF1, after propagation forward in a length 2 × 𝐿𝐺𝐼  of GIFs, 

to the fundamental mode of SMF2 at the reference plane P2.  

It is given by 

𝜂𝑐𝑜𝑢𝑝 =
|∬ 𝜓1

+.𝜓2
∗  𝑑𝑥𝑑𝑦

+∞
−∞ |

2

∬ 𝜓1
+.𝜓1

+∗ 𝑑𝑥𝑑𝑦 ∬ 𝜓2.𝜓2
∗  𝑑𝑥𝑑𝑦

+∞
−∞

+∞
−∞

   (2), 

where 𝜓1
+is the complex field of the beam coming from SMF1 

expressed in the plane P2 after propagation in the GIF1 and 

GIF2 and 𝜓2 the complex field of fundamental mode of SMF2 

at the same plane P2, and asterisk denotes a complex 

conjugate. 

The reflectance  𝜂𝑟𝑒𝑓𝑙  is the fraction of power coupled at the 

plane P1 from the incoming fundamental mode of SMF1 after 

propagating forward in a length 𝐿𝐺𝐼  of GIF1, reflecting at the 

GIF1 surface end (plane P3) and propagating backward in the 

same length of GIF1 (complex field 𝜓1
−), to the fundamental 

mode of SMF1 (complex field 𝜓1). It is given by 

    𝜂𝑟𝑒𝑓𝑙 =
|∬ 𝜓1

−.𝜓1
∗  𝑑𝑥𝑑𝑦

+∞
−∞ |

2

∬ 𝜓1
−.𝜓1

−∗ 𝑑𝑥𝑑𝑦 ∬ 𝜓1.𝜓1
∗  𝑑𝑥𝑑𝑦

+∞
−∞

+∞
−∞

       (3). 

C. Analytical method 

The complex amplitude of the input field 𝜓1 in general case 

of an offset 𝑥1 and a tilt 𝜃1 between SMF1 and GIF1 in 

relation to the optical axis is given by [8]: 

       𝜓1 = (√
2

𝜋

1

𝜔1
)

1
2

𝑒𝑥𝑝 {−
(𝑥−𝑥1)2

𝜔1
2 − 𝑗𝑘𝜃1(𝑥 − 𝑥1)}     (4), 

where 𝜔1 is the mode field radius and 𝑘 = 2𝜋𝑛0/𝜆 is the 

propagation constant in the media, 𝜆 is the wavelength of light 

in vacuum. In the case of beam propagation in vacuum, the 

vacuum constant 𝑘0 = 2𝜋/𝜆 is used instead of the constant 𝑘. 

Note that the additional optical path leading to the phase shift 

(imaginary part in (4)) due to the tilt is approximated as 

𝜃1(𝑥 − 𝑥1) by assuming tilt angle to be small. 

The ABCD matrix of GIF is used to analytically 

characterize the propagation of a Gaussian beam in GIF1 and 

GIF2 [10]. The beam ray is calculated at the beam width 

defined at 1/𝑒2 of maximum intensity and determined by the 

height 𝑥 and the angle slope 𝜃 as 

        [
𝑥
𝜃

] =  [
cos(𝑔𝑧)

sin (𝑔𝑧)

𝑔𝑛0

−𝑔𝑛0sin (𝑔𝑧) cos (𝑔𝑧)
] [

𝑥1

𝜃1
]        (5). 

We have also the 𝑞2 parameter at z position given by 

        𝑞2 =  
𝐴𝑞1+𝐵

𝐶𝑞1+𝐷
                                            (6), 

where 𝑞1 is the q-parameter at the input plane P1 [9]. It is 

 

Fig. 1.  Principle of the SMF-GIF micro-lens. 

 

Fig. 3.  Tilts and offsets in the connectors 

 
Fig. 2.  Principle of the expanded beam connector. 
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given by 𝑞1 = 𝑗𝜋𝜔1
2/λ (assuming an input beam from the 

SMF1 with a plane wave front). The beam size 𝜔1(𝑧) and the 

radius of phase front curvature 𝑅1(𝑧) are calculated from the 

complex 𝑞-parameter as 

         𝜔1(𝑧) =  √−
𝜆

𝜋𝐼𝑚(1
𝑞2⁄ )

            (7), 

           𝑅1(𝑧) =  
1

𝑅𝑒(1
𝑞2⁄ )

               (8). 

The complex field at any plane along 𝑧-distance can be 

formed from 𝜔1(𝑧), 𝑅1(𝑧), offset 𝑥1, and a tilt 𝜃1. In this case 

at the plane P2, the complex field 𝜓1
+ which has propagated 

forward (+) from an initial field 𝜓1 can be written as 

 𝜓1
+ = (√

2

𝜋

1

𝜔1(𝑧)
)

1
2

𝑒𝑥𝑝 {−
(𝑥−𝑥1

+)2

𝜔1
2(𝑧)

− 𝑗𝑘
(𝑥−𝑥1

+)2

2𝑅1(𝑧)
− 𝑗𝑘𝜃1

+(𝑥 − 𝑥1
+)}       

                       (9), 

where 𝜔1(𝑧) and R1(z) are the beam radius and the radius of 

phase front curvature of the Gaussian beam at the output plane 

P2 after a propagation of a distance z in GIF. 𝑥1
+ and 𝜃1

+ are 

the offset and tilt of the complex field 𝜓1
+ with respect to 

optical axis of GIF2 as seen in Fig. 3. 

By referring to optical axis of GIF2 and considering that the 

phase front curvature of complex field at one end of SMF2 is 

infinity, the complex field of 𝜓2 can be given by 

𝜓2 = (√
2

𝜋

1

𝜔2
)

1
2

𝑒𝑥𝑝 {−
(𝑥−𝑥2)2

𝜔2
2 − 𝑗𝑘𝜃2(𝑥 − 𝑥2)}     (10),  

where 𝜔2 is the beam radius of the Gaussian beam of SMF2 at 

the plane P2, 𝑥2 and 𝜃2 are the offset and tilt respectively 

between SMF2 and GIF2 optical axis. 

The coupling efficiency of complex fields 𝜓1
+ and 𝜓2 is 

then calculated by using (2). An analytical expression by using 

the Gaussian beam approximation [11] could also be applied 

to this case.  

The study on coupling efficiency of expanded beam 

connectors deals with not only in the plane P2 but also in the 

plane P3 between GIF1 and GIF2. In this case, we consider 

that two Gaussian beams are injected in GIF1 and GIF2 from 

SMF1 and SMF2, respectively. At each input plane P1 and P2, 

the SMF and GIF are positioned at different lateral positions 

and misalignment angles to examine beams coupling in the 

plane P3. The coupling efficiency is then calculated from two 

complex fields 𝜓1
+ and 𝜓2

+ from two initial complex fields  𝜓1 

and 𝜓2 by using the same (2) as above. 

The expanded beam connectors experimentally reported  

in [7] have lower reflectance compared to SMF or multimode 

fibers. To understand this advantage of SMF-GIFs, the 

reflectance on GIF surface end of SMF-GIF connectors is 

theoretically investigated. The GIF-end surface is examined as 

a plane surface which can be either a perpendicular end or an 

angled end to GIF optical axis.  

The beam rays after being reflected by the surface 

propagate backward to the input fiber. The reflected complex 

field 𝜓1
− ("" denotes the backward) is illustrated as dash lines 

in Fig. 3. The reflectance is then obtained by using the integral 

equation for two complex fields 𝜓1
− and 𝜓1. Referring to GIF1 

optical axis, the complex field 𝜓1 is displaced of an offset 𝑥1 

and tilted of an angle 𝜃1. The reflected field 𝜓1
− is displaced 

by an offset 𝑥1
− and a tilt 𝜃1

− which are obtained by using (5), 

(6), and (7). 

D. Beam Propagation Method 

In order to understand beam truncation due to the GIF core-

cladding boundary, the propagation of beam is numerically 

modelled by using beam propagation method (BPM) [12, 15, 

16]. The propagation of light through GIFs can be simulated 

with arbitrary refractive index profiles. The intensity fields in 

3D are calculated in order to understand the beam truncation. 

The refractive index profile of GIF from (1) can be 

rewritten as 𝑛(𝑥, 𝑦) = 𝑛𝑐 + 𝛿𝑛(𝑥, 𝑦), where 𝛿𝑛(𝑥, 𝑦) = 𝑛0 −

𝑛𝑐 + ∆(𝑥2 + 𝑦2)/𝑎2 is a small transverse index variation. 

The complex field amplitude 𝜓1 at the input plane P1  

(𝑧 = 0) can be expressed in (𝑥, 𝑦) coordinates as  

𝜓1(𝑥, 𝑦, 0) = (√
2

𝜋

1

𝜔1
)

1
2

𝑒𝑥𝑝 {−
(𝑥−𝑥1)2+(𝑦−𝑦1)2

𝜔1
2   

                          −𝑗𝑘𝜃1𝑥(𝑥 − 𝑥1) − 𝑗𝑘𝜃1𝑦(𝑦 − 𝑦1)}   (11), 

where 𝑥1, 𝑦1 are the offsets on 𝑥, 𝑦 axes, 𝜃1𝑥, 𝜃1𝑦 are the tilts 

of initial field with respect to optical axis of GIF1. 

The complex field amplitude relating 𝜓1(𝑥, 𝑦, 𝑧) to 

𝜓1(𝑥, 𝑦, 0) can be implemented by the fast Fourier transform 

(FFT) and inverse FFT (IFFT) algorithms in BPM method. 

The field is sampled on a 𝑀 × 𝑀 computational grid of a 

window dimension 𝐿. The sampling interval on spatial domain 

is ∆𝑥 = ∆𝑦 = 𝐿/𝑀. In spectral domain of (𝑓𝑥, 𝑓𝑦) coordinates, 

the field is also sampled by FFT with an interval of  

∆𝑓𝑥 = ∆𝑓𝑦 = 2𝜋/𝐿 of a spectral dimension 2𝜋𝑀/𝐿. The total 

length of the GIF is split into a number of small ∆𝑧 distances. 

Propagation is readily handled in the spatial and spectral 

domains using FFT and IFFT for a small step of ∆𝑧. 

The field amplitude 𝜓(𝑥, 𝑦, ∆𝑧) at a small distance of ∆𝑧 is 

obtained from the well-known Helmholtz equation. With a 

small index variation 𝛿𝑛, it can be approximately written as 

𝜓(𝑥, 𝑦, 𝑧 + ∆𝑧) ≅ 𝑒𝑥𝑝(𝐷̂∆𝑧)𝑒𝑥𝑝(𝑆̂∆𝑧)𝜓(𝑥, 𝑦, 𝑧)  (12). 

where 𝐷̂ and 𝑆̂ are linear differential operator and space-

dependent operator, respectively. Here, 𝐷̂ and 𝑆̂ are 

noncommuting operators and they are assumed to be  

z-independent. The first operator of (12) is the propagation 

operator. It considers the effect of diffraction between two 

adjacent planes 𝑧 and 𝑧 + ∆𝑧. Its expression in spectral 

domain is  

𝐹𝐷 = 𝐹𝐹𝑇[𝑒𝑥𝑝(𝐷̂∆𝑧)] = 𝑒𝑥𝑝 [𝑖(𝑘𝑥
2 + 𝑘𝑦

2)
∆𝑧

2𝑘𝑛(𝑥,𝑦)
] (13), 

where 𝑘𝑥 = 2𝜋𝑓𝑥 and 𝑘𝑦 = 2𝜋𝑓𝑦 are the spatial frequencies. 

The rest of (12) is expressed in spectral domain by FFT as  

     𝐹𝑆 = 𝐹𝐹𝑇{𝑒𝑥𝑝(𝑆̂∆𝑧)𝜓(𝑥, 𝑦, 𝑧)} 

      = 𝐹𝐹𝑇{𝑒𝑥𝑝(−𝑖𝑘𝛿𝑛(𝑥, 𝑦))𝜓(𝑥, 𝑦, 𝑧)}     (14). 

The field amplitude after propagating a single step ∆𝑧 is then 

computed with the well-known IFFT algorithm 

𝜓(𝑥, 𝑦, ∆𝑧) = 𝐼𝐹𝐹𝑇{𝐹𝐷. 𝐹𝑆}          (15). 

The coupling efficiency and the return losses are obtained 

by applying an integration between two fields using (2) and 

(3) as in the above discussion. In the calculation of beam 
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Fig. 6. (a) Misalignment between two SMF-GIF connectors at plane P3. CL 
of two 55 µm SMF-GIF connectors with respect to (b) lateral offsets and (c) 

angular misalignments at plane P3.  

 

propagation in a GIF, it should take into account the boundary 

condition of refractive index profile. The beam truncation is 

not only affected by the refractive index difference of core-

cladding boundary but also that of cladding-air border. 

III. RESULTS AND DISCUSSION 

In order to confirm theoretical studies, the SMF-GIFs are 

fabricated with the GIF length around 𝐿𝐺𝐼𝑜𝑝𝑡 defined in (4).  

Fig. 4a illustrates the evolution of beam waist and working 

distance of the SMF-GIFs with the variation of GIF length 𝐿𝐺𝐼  

at a wavelength of 1550 nm. The analytic and BPM 

calculations present nearly the same evolution. The maximum 

theoretical beam waist is about 57 µm for both calculation 

methods. The calculation also proves that at the GIF length 

of 𝐿𝐺𝐼𝑜𝑝𝑡, the beam waist is largest and the working distance is 

null. The measured MFD with respect to the GIF length 

compared with theoretical calculation is presented in Fig. 4b. 

The measurement shows in fact that the MFD is slightly 

smaller than theoretical calculation. The maximum MFD is 

measured to be 55µm. The beam truncation due to cladding-

core boundary may cause the beam size reduction [17]. 

The coupling loss (CL) and the return loss (RL) are 

theoretically and experimentally investigated. For a given 

MFD of GIF1 and GIF2, they depend on the relative positions 

between SMF1 and GIF1, between GIF1 and GIF2, and 

between GIF2 and SMF2, and fiber surface end designs. We 

will consider the case of identical MFD of GIF1 and GIF2. 

A. Misalignment coupling tolerances 

Firstly, coupling loss of two identical Gaussian beams with 

identical MFD is analytically calculated. Since the MFDs are 

identical the optimum CL is 0 dB if no air gap is present. 

However, it increases as a function of lateral offset and 

angular misalignment between the two Gaussian beams 

depending on the MFD. In fact, the larger MFD, the better 

lateral tolerances we have. However, larger MFD cause 

angular sensitivity. The positional tolerances corresponds to 

the lateral offset and angular misalignment that lead to an 

excess loss compared to the optimum. Fig. 5 gives a 

comparison of positional tolerances at 1 dB and 0.25 dB 

excess loss for the case of coupling two SMFs 

(2𝜔1~10.4 µm at 1550 nm) and the case of larger Gaussian 

beams (2𝜔1 = 55 µm and 2𝜔1 = 180 µm at 1550 nm). For  

1 dB CL (solid or red curves), 55-µm-Gaussian beams and 

180-µm-Gaussian beams taking the advantage of larger beams 

have significant lateral-offsets of about 13 µm and 43 µm, 

respectively. Angular misalignment of 55-µm-Gaussian beams 

however is critical to 0.35° compared to 1.8° of SMFs. The 

theoretical calculation shows that expanded-beam connectors 

should not have an MFD larger than 180 µm. This ensures that 

CL not exceed 1 dB due to a crucial angle (0.1°), which is the 

mechanical limitation of standard optical connector 

fabrication. 

Keeping in mind the above theoretical coupling calculation 

of two Gaussian beams, the 55-µm SMF-GIF connectors are 

now taken into account. The input beam from the SMF1 is 

expanded to its maximum at 𝐿𝐺𝐼𝑜𝑝𝑡 before converging at the 

plane P2. The maximum beam-size of this type of connectors 

takes place at the plane P3. It means that at the plane P3 the 

connectors may have good lateral tolerances but they also may 

suffer angular sensitivity. Misalignments at the plane P3 is 

examined. In this case, defaults at the plane P1 and P2 are 

neglected (Fig. 6a). The Gaussian beam from SMF1 

propagates through GIF1 before being coupled into GIF2, then 

to SMF2. CL integral calculation is applied at the plane P2 

between arriving complex field 𝜓1
+ and a Gaussian field 𝜓2

+ of 

SMF2. Figs. 6b and 6c present CL with respect to lateral 

offsets and angular misalignments. This coupling simulation 

of two SMF-GIFs is in accord with the coupling of two 

Gaussian beams as presented previously in Fig. 5. For 

example, CL = 1 dB if 𝑥3 = 13 µ𝑚 and 𝜃3 = 0° (Fig. 6a); or 

if 𝑥3 = 0 µ𝑚 and 𝜃3 = 0.34° (Fig. 6b). CL tolerances of  

55 µm connectors were measured with the help of a refractive 

index liquid to avoid reflection losses. The normalized CLs 

agree well with the theoretical simulation as seen in Fig. 6. 

 
Fig. 5. Coupling tolerances of two Gaussian beams with lateral offset and 
angular misalignment. Solid or red curves correspond to 1 dB of CL and dash 

or blue curves correspond to 0.25 dB of CL. 

 
Fig. 4. (a) Analytical and BPM calculation of MFD, and (b) measured MFD 

of fabricated SMF-GIF connectors compared with theoretical calculation. 
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B. Fabrication defaults 

CL is then investigated with respect to total GIF lengths 

(GIF1 + GIF2) relating to 2 × 𝐿𝐺𝐼𝑜𝑝𝑡 with lateral and angular 

defaults due to the fact of fabrication at the plane P1 (between 

SMF1 and GIF1) and at the plane P2 (between SMF2 and 

GIF2), assuming that misalignments at the plane P3 are 

ignored (𝑥3 = 0 and 𝜃3 = 0°), see Fig. 3. Let’s start with a 

case of no default at the plane P2 (𝑥2 = 0 and 𝜃2 = 0°). 

Reminding that although there is no default at the plane P2, the 

arrived field 𝜓1
+ still can be misaligned with SMF2 due to 

input defaults at the plane P1. Fig. 7 presents CL regarding to 

total GIF lengths 2 × 𝐿𝐺𝐼  (GIF1+GIF2) as respect to  

2 × 𝐿𝐺𝐼𝑜𝑝𝑡 relating to different offsets 𝑥1 and different tilts 𝜃1 

as well as measured CLs. Here, the measured CLs were taken 

for faultless expectation of fabrication. The blue curve in Fig. 

7a presents the ideal case if 𝑥1 = 0 and 𝜃1 = 0°. When SMF1 

and GIF1 are concentrically spliced, CL increases with tilts 

but its variation is identical for the same absolute tilts. As seen 

in Fig. 7a, the solid red curve (𝜃1 = −2°) and the dash green 

curve (𝜃1 = 2°) are overlapped. Fig. 7b is an example of CL 

with an offset 𝑥1 = 1 µ𝑚 for different tilts. For a given 

2 × 𝐿𝐺𝐼, CLs are different for different tilts even if tilts are the 

same absolute value. This could explain the scattering in CL 

measurement of SMF-GIFs because of unexpected defaults. 

CL is now examined with a fixed angular tilt but the lateral 

offset is varied. In this case, the splice between GIF2 and 

SMF2 is also assumed to be perfect (𝑥2 = 0 and 𝜃2 = 0°).  

Fig. 8 shows CL regarding to total GIF lengths (GIF1+GIF2 

for different lateral offsets 𝑥1, for 𝜃1 = 0° (Fig. 8a), and for 

𝜃1 = 1° (Fig. 8b). The previously measured CLs in Fig. 7 are 

also reproduced in Fig. 8. In the case of 𝜃1 = 0°, CL increases 

with the increment of lateral offset 𝑥1.  

However at the minimum CLs, the total GIF length is 

always equal to 2 × 𝐿𝐺𝐼𝑜𝑝𝑡. In the perfect case (offsets and tilts 

are zeros at all planes), CL is null at the GIF length of 

2 × 𝐿𝐺𝐼𝑜𝑝𝑡 as the minimum point on the blue curve in Fig. 8a. 

Moreover, this curve points out that the fabrication process is 

very tolerant with respect to a default in LGI length compared 

to the optimum one, 𝐿𝐺𝐼𝑜𝑝𝑡.  As can be seen on Fig. 8a, an 

error of ±50 µ𝑚 (very easy to achieve) compared with 

𝐿𝐺𝐼𝑜𝑝𝑡  leads to less than 0.2 dB excess loss.  However, CL 

increases to about 0.3 dB when SMF1 and GIF1 are tilted of 

1° as seen in Fig. 8b. The offset increase leads to increment of 

CL. In the case of angular default presence, the minimum CL 

occurs at a shorter GIF length than 2 × 𝐿𝐺𝐼𝑜𝑝𝑡 if 𝑥1𝜃1 > 0 

(Fig. 8b) and at longer GIF length than 2 × 𝐿𝐺𝐼𝑜𝑝𝑡 if 𝑥1𝜃1 < 0. 

That is why, for a given GIF length, CL varies quite fast for 

different offsets in the case of tilt existence. 

Defaults at the input (between SMF1 and GIF1) can be 

fortunately corrected by defaults at the plane P2 between GIF2 

and SMF2. The input defaults can be compensated or not 

depending on the relative position between GIF2 and SMF2. 

With input defaults, the beam arriving at the plane P2 is 

absolutely off axis as seen in Fig. 9a for an example of  
𝑥1 = 3 µ𝑚 and 𝜃1 = −10°. However, despite the imperfection 

at the input, CL can still be diminished if defaults at the plane 

P2 counterbalance to those at the plane P1. This corresponds to 

the field with the dotted green curve which is overlapped with 

the arriving field in red curve (Fig 9b). On the contrary, CL 

increases due to misalignment between the arriving field 𝜓1
+ 

and the SMF2 field at the plane P2 (the dash green and solid 

green curves in Fig 9b, for examples). 

Fig. 10 illustrates CL for both cases of default correction 

and of CL increment due to defaults between GIF2 and SMF2. 

The example is for input offset default 𝑥1 = 2 µ𝑚 and angular 

default 𝜃1 = 2°. If there is no default between GIF2 and 

SMF2, minimum CL is equal to 1.6 dB. CL can be canceled if 

defaults at the plane P2 are opposite to the input defaults. Here, 

if 𝑥2 = −2 µ𝑚 and 𝜃2 = −2°, the CL is returned to 0 dB 

(blue curve). However, if defaults at the plane P2 are the same 

signs with the inputs, CL considerably increases to 6.8 dB. 

 
Fig. 7. Coupling losses with respect to total GIF lengths relating to  

2 × 𝐿𝐺𝐼𝑜𝑝𝑡 for a fixed offset with different angular misalignments at the 

input: (a) when SMF1 and GIF1 are concentric (𝑥1 = 0) and (b) when SMF1 

and GIF1 is 1 µ𝑚 off axis. 
 

 
Fig. 9. (a) Beam ray propagation in GIF section with an input offset and a 

tilt, and (b) field arrives at the plane P2 (red curve) and SMF2 field without 
default (green solid curve), with positive defaults (dash red curve), and with 

negative defaults (dotted green curve). 

 

 
Fig. 8. Coupling losses with respect to total GIF lengths relating to  

2 × 𝐿𝐺𝐼𝑜𝑝𝑡 for a fixed tilt with different lateral offsets at the input: (a) for the 

case of 𝜃1 = 0°, and (b) for the case of 𝜃1 = 1°. 
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Fig. 12. An example of beam rays reflected at the GIF end surface return to 

SMF at the plane P1: (a) normalized field intensity of initial beam and 

reflected beam at the plane P1 and (b) forward (red curves) and reflected 
(blue curves) beam propagations in GIF section. 

 

 
Fig. 13. RL with angled end face relating to surface angle φ of SMF and 55 

µm SMF-GIF in comparison: (a) SMF and (b) 55 µm SMF-GIF. 

C. Return losses 

The reflectance is studied on the GIF1 surface end in 

contact with air, while the other end is spliced to the SMF1. 

Along GIF section, beam rays do not propagate parallel to the 

optical axis but progressively deviate by successive refractions 

in the parabolic transverse index profile. Reflected rays 

therefore are bent. In the ideal case of no default between 

SMF1 and GIF1 and if GIF length equals to 𝐿𝐺𝐼𝑜𝑝𝑡 and if GIF 

surface is flat and perpendicular to optical axis, the reflected 

rays will be firstly reflected parallel to optical axis then 

converged into the SMF1. In this case, the return beam is 

perfectly coupled back to SMF1. In any other way, this leads 

to a bad coupling back to the input SMF1. This explains why 

the reflectance of SMF-GIF is as low, compared to standard 

SMFs or multimode fibers, as will be shown below. 

Fig. 11 shows calculated RLs for different 𝐿𝐺𝐼  with an air-

gap end perpendicular to the optical axis. The fabricated SMF-

GIF connectors with faultless expectation were measured and 

also shown in both Fig. 11a and Fig. 11b. RL is calculated by 

taking into account the Fresnel reflection at the GIF1 surface 

end and loss by re-coupling the return beam into SMF1. The 

case in Fig. 11a, no lateral offset between SMF1 and GIF1 is 

considered, but angular misalignment is taken into account. 

RL varies depending on 𝐿𝐺𝐼, but it remains the same for all 

beams deriving from the input with the same absolute angle 

(𝜃1  = −2° and 𝜃1  = 2° as an example in Fig. 11a). It will be 

different if an offset appears. Fig 11b shows RL for an 

example of 1-µm offset between the SMF1 and GIF1. RL 

varies considerably in regard to 𝐿𝐺𝐼  when beam is angled. 

However, at the optimal length 𝐿𝐺𝐼𝑜𝑝𝑡, for a given offset 𝑥1, 

RL is independent to tilts. This can be seen as the intersection 

of three curves in Fig. 11b. For this example, RL is equal to 

15.34 dB referred to 14.7 dB of RL at SMF surface. 

In the case of RL, the lateral offset dependence is more 

critical compare to the angular misalignment (assuming that 

the GIF surface-end is perpendicular to the optical axis). As 

shown in Fig. 12, if the input offset is 𝑥1, the spot, where 

return chief ray arrives back at the input plane P1, depends on 

the GIF length but will suffer an offset far from SMF1 center 

of about 2𝑥1. So offset defaults always lead to an increment of 

RL. The tilt of the return beam might be different from the 

input tilt 𝜃1 but they provide a good counterbalance to each 

other. So RL is less sensitive to input tilt. As seen in Fig. 12b, 

the input beam chief ray (red solid curve) launches in GIF at 

the beginning position above the optical axis (black horizon 

solid line). Therefore, the offset 𝑥1 is positive (𝑥1 > 0). 

However, the return chief ray (blue solid curve) arrives at the 

plane P1 with a negative offset (𝑥1
− < 0). The center of the 

return field and the SMF1 axis are distant from each other of  

|𝑥1| + |𝑥1
−| as seen in Fig 12a. 

RL of SMF-GIF connectors is now considered with angled 

surface end, which is at an angle 𝜑 to the normal to the fiber 

axis as seen in Fig. 13. The theoretical calculation of RL is 

implemented in the case of air-gap reflection. Theoretical RL 

of SMFs against surface angles is plotted in Fig. 13a and it is 

recalled in Fig. 13b as a reference for theoretical RL of 55 µm 

SMF-GIFs. For SMF, at the typical angle 𝜑 = 8°, theoretical 

RL is about 53 dB. For 55 µm SMF-GIF, we consider there is 

no fabrication default, neither GIF length (𝐿𝐺𝐼 = 𝐿𝐺𝐼𝑜𝑝𝑡) nor 

input default at the input plane P1 (𝑥1 = 0 and 𝜃1 = 0°). In 

this case, any angle at surface end of SMF-GIFs always leads 

to a good RL (high RL) compared to SMFs one.  Indeed, in 

the case of no input default, the chief ray of beam after being 

 
Fig. 11. RL of SMF-GIF to air-gap with respect to LGI for different angular 

misalignments and different lateral offsets: (a) 𝑥1 = 0 and (b) 𝑥1 = 1µ𝑚. 

 

 
Fig. 10. Coupling loss correction of input defaults for the case of 𝑥1 = 2 µ𝑚 

and 𝜃1 = 2° by the defaults at the plane P2. 
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Fig. 14. Beam perturbation after propagating through GIF section.  

2𝜔𝑚𝑎𝑥 = 55 µ𝑚, 2𝑎 = 100 µ𝑚, 𝜌 = 0.55. 

reflected at the GIF end is tilted from the fiber axis of an angle 

2𝜑. This tilt causes lateral and angular misalignments between 

the reflected beam and SMF core. It leads to a significant 

increase of RL with the surface angle 𝜑 of the SMF-GIF 

compared with the SMF one as illustrated in both Fig. 13a and 

Fig. 13b. For example, if the surface angle 𝜑 = 1.6°, RL of an 

angled SMF-GIF is as high as 100 dB compared to 16.6 dB of 

1.6°-angled SMF. This could explain the scattering in RL 

measurements shown in Fig. 11. 

Above calculations of CL and RL are investigated by both 

analytical method and BPM method. The calculations show 

that both methods almost give the same results if the 

maximum beam size diameter (2𝜔𝑚𝑎𝑥) of beam in GIF is less 

than fiber core-radius 𝑎. In other words, if the ratio 

𝜌 = 𝜔𝑚𝑎𝑥/𝑎 is less than 0.5 typically [18]. However, if the 

maximum beam size 2𝜔𝑚𝑎𝑥 exceeds the core radius or 

𝜌 ≥ 0.5, the beam will be perturbed during propagating in 

GIF. This perturbation leads to somewhat differences between 

two methods. The larger ratio 𝜌, the more different in results 

we have. This can be explained by beam truncation during 

propagation in GIF as we can see in Fig. 14. The analytical 

method is simple and fast. Nevertheless, the BPM method is 

needed when doing investigation for large beams (𝜌 ≥ 0.5) to 

take into account perturbation. 

In summary from the above discussion, defaults at the input 

plane P1 or angled surface end of SMF-GIFs always lead to a 

low reflectance. Good RLs hence can be obtained. Defaults at 

the input plane P1 and at the output one P2 can give a good 

coupling efficiency in transmission (low CL) if these defaults 

compensate each other. 

IV. CONCLUSION 

We have theoretically analyzed and experimentally 

demonstrated the coupling losses and return losses of GIF-

based expanded-beam connectors. We have studied the 

influence on coupling losses of misalignment positioning and 

SMF-GIF fabrication defaults. We have pointed out the 

interest to expand the beam up to a certain limit to relax 

sensitivity of connectors to lateral offset without decreasing 

too much the tolerance to angular misalignment. A lateral 

offset of 2.5 µm leads to 1 dB excess CL for SMF connectors 

whereas it is relaxed to 13 µm and 43 µm in a connection 

with 55 µm and with 180 µm Gaussian beams, respectively.  

But it shouldn’t be larger than 180 µm to ensure that excess 

CL not exceed 1 dB due to critical angle of 0.1° (1.8° for 

SMFs) which is the mechanical limitation of standard optical 

connector fabrication. Then we have studied the CL and RL 

results with fabrication defaults such as a 𝐿𝐺𝐼  length different 

to the optimum one with offset and tilt between SMFs and 

GIFs. We have pointed out that the fabrication process of 

SMF-GIF is very tolerant to an error in GIF length since an 

error of ±50 µm leads to less than 0.2 dB excess loss and it 

remains very tolerant even in the presence of lateral offsets 

and tilts between SMF and GIF. Moreover we have 

highlighted the interest of SMF-GIF connectors to improve the 

RL even with non-angled end face compared to SMF. And an 

only 1° angled surface end of SMF-GIF leads to the same RL 

of 53 dB as an 8° angled SMF face. And finally, in this work 

we have demonstrated and explained why we can both obtain 

high coupling efficiency and low reflectance with this SMF-

GIF technology in expanded-beam connector fabrication.  
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