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A government agency delegates to a provider (hospital, medical gatekeeper, school, social worker) the decision to supply a service or treatment to individual recipients. The agency does not perfectly know the distribution of individual treatment costs in the population. The single-crossing property is not satisfied when the uncertainty pertains to the dispersion of the distribution. We find that the provision of service should be distorted upwards when the first-best efficient number of recipients is sufficiently high.

Introduction

We consider an agency in charge of supplying a service or a treatment to a population of potential recipients. Examples include medical procedures for patients, after-school programs for low-income children, social care for the disabled, or training programs for the unemployed. When the cost and the benefit of the treatment vary across individuals, efficiency recommends to supply the service only to those with a low enough cost benefit ratio. When these variables are well observed by the agency, rationing by denial can be used to implement the efficient policy.

In many instances, however, there remains substantial unobserved heterogeneity in cost and benefit conditional on observable variables. The agency then may then observe the number of treated recipients, but not their individual characteristics. In this circumstance it can rely on rationing by selection, i.e., leave the selection of recipients to the discretion of a better informed service provider [START_REF] Klein | Thinking about rationing[END_REF]) and fund the system on the basis of the number of treated recipients. However, because the provider's preferences are in general not perfectly aligned with those of the agency, the population of selected recipients typically departs from the first-best efficient recommendation. The literature generally assumes that the agency, when designing the provider's compensation scheme, perfectly knows the underlying distribution of cost and benefit in the population of potential recipients. For instance, the assumption is made in [START_REF] Makris | Optimal incentive schemes for altruistic providers[END_REF] and [START_REF] Malcomson | Supplier Discretion over Provision:Theory and an Application to Medical Care[END_REF], with the former article investigating provider altruism and the latter considering many treatment varieties -two issues not addressed here.

Perfect knowledge of the cost distribution is a strong assumption. Indeed, because of data availability, only few studies have estimated the distribution of individual treatment costs in specific contexts. It is obviously difficult for researchers and agencies to obtain information about all the individual characteristics that may affect treatment costs. One first difficulty comes from a possible selection bias when only the characteristics of the treated recipients are observed. Even assuming that a researcher observes all relevant variables for a particular sample of recipients, econometric analysis only provides agencies with statistical estimates whose precision depends, among other things, on the size of the considered sample.

We argue in this article that the imperfect knowledge of the cost distribution pertains to the dispersion as well as to the mean of that distribution.

To make this point clear, it is useful to consider a typical model used by econometricians to estimate heterogenous treatment costs. Following [START_REF] Dormont | How to Regulate Heterogeneous Hospitals?[END_REF], assume that the cost of treating recipient i by provider j at time t is given by

C ijt = X ijt γ + u j + η jt + ε ijt , (1) 
where X ijt are exogenous variables, u j is a provider-specific effect that can be assumed fixed or random, and η jt and ε ijt are zero-mean disturbances.

Assume that the linear specification ( 1) is correct and that all variables that influence cost are included. Suppose, furthermore, that the provider's compensation scheme is contingent on some of those variables, say X c ijt , but not on others, say X m ijt , for instance because the latter variables are not observed out of the sample used by the researcher. The assumption that the agency perfectly knows the cost distribution is debatable when no precise estimate of the parameters γ is available or when the distribution of the missing variables is unknown -a situation likely to be frequent in practice. Furthermore, the ignored variables X m ijt generate shifts in the mean as well as in the variance of the cost distribution across providers, i.e., both the conditional expectation E(X m ijt γ | j) and variance V(X m ijt γ | j) vary across providers. In our framework, the agency, if it knew perfectly the cost distribution, would be able to implement the first-best policy through a well-designed compensation scheme, even though some relevant characteristics of potential recipients are unobserved. Otherwise the uncertainty about the distribution of heterogeneity causes the number of recipients to be distorted relative to first-best efficiency. The direction of the distortion depends on whether the uncertainty pertains to the mean or to the dispersion of individual treatment costs. In the former case, we find that the usual Spence-Mirrlees condition is satisfied and the distortion is necessarily downwards: The number of treated recipients is lower than recommended by first-best efficiency. In the latter case, the Spence-Mirrlees condition no longer holds. We find that the firstbest optimum then governs the sign of distortion in the second-best program: The distortion is upwards when the first-best number of treated recipients is sufficiently high. Uncertainty about the cost dispersion pushes towards universal coverage policies.

Model

A population of individuals recipients, whose size is normalized to one, is eligible for a treatment supplied by a single provider. Individuals are indexed by two nonnegative real numbers b and c that may be correlated. The treatment of a type (b, c) recipient yields benefit b to the recipient and costs c to the provider. The corresponding net social benefit is b -(1 + λ)c, where λ is the (exogenously given) marginal cost of public funds. Assumption 1 holds true when the expected benefit decreases with cost, a case often considered in the literature, e.g., in De Fraja (2000) and [START_REF] Makris | Optimal incentive schemes for altruistic providers[END_REF]. [START_REF] Malcomson | Supplier Discretion over Provision:Theory and an Application to Medical Care[END_REF] provides health related examples where this assumption is also relevant. Under this assumption, the first-best requires to treat recipients with cost c ≤ c * * . Denoting by F the marginal distribution of individual treatment costs in the population of recipients, the first-best efficient number of treated recipients is n * * = F (c * * ).

In this paper, we assume that the agency relies on rationing by selection: The agency observes the number n of recipients but not their individual characteristics. The treatment decision is delegated to a single provider who observes the individual characteristics of recipients. The agency offers a takeor-leave-it contract specifying the number of recipients that must be treated by the provider and a compensating transfer T . The utility of the provider when she accepts the contract is U (n, T ) = T -C(n), where C(n) represents the aggregate cost of treating n recipients.

Given (n, T ), utility maximization requires that the least costly recipients be treated in priority. The provider's cost of treating n recipients, 0 ≤ n ≤ 1, is therefore given by

C(n) = F -1 (n) 0 c dF (c). The marginal cost is C (n) = F -1 (n), i.e., the cost of the marginal treated recipient is F -1 (n), the nth-percentile of the distribution F . It follows that the cost function C(n) is convex in n.
The net social benefit of treating n recipients is given by S

(n) = B(n) - (1 + λ)C(n), where B(n) = F -1 (n) 0 E(b | c) dF (c)
represents the (expected) gross social benefit. Under Assumption 1, the net social benefit function S(n) is concave in n, reaching its maximum at n * * = F (c * * ). When the agency knows the distribution of individual recipients characteristics, it can choose the number of treated recipients n and the transfer T to the provider that maximize

B(n) + U (n, T ) -(1 + λ)T = S(n) -λU (n, T )
subject to the provider's participation constraint U (n, T ) ≥ 0. The solution to this maximization problem is to set n = n * * and U = U * * = 0.

Under Assumption 1, the provider treats in priority the recipients with highest expected social values: The social net benefit and the provider's private objective are aligned. Hence, the agency can achieve first-best efficient solution if it knows the distribution of individual recipients characteristics. From that distribution, the agency infers the number n * * and the corresponding cost, C(n * * ). It is then sufficient to ask the provider to treat n * * recipients and reimburse C(n * * ).

Unknown cost distribution

We now relax the assumption that the marginal distribution of individual treatment costs, F , is perfectly known to the agency. We consider the simplest form of uncertainty, whereby F takes two possible values, F H and F L with associated probability π H and π L . Hence, the agency is faced with one provider, itself confronted with a population of recipients within which the marginal distribution of individual cost is either F H or F L . The actual marginal cost distribution function is private information to the provider. We refer to i ∈ {H, L} as the provider type. Provider i has cost function

C i (n) with C i (n) = F -1 i (n).
Assuming that the distribution of benefit conditional on cost is the same for both providers, we write the net social benefit of having n recipients treated by provider i as

S i (n) = F -1 i (n) 0 [ E(b|c) -(1 + λ)c ] dF i (c).
Assumption 1 is supposed to hold for the two provider types: The firstbest cost threshold for provider i is c * * such that E(b|c * * ) = (1 + λ)c * * . The corresponding first-best efficient number of treated recipients is n * * i = F i (c * * ). Appealing to the revelation principle, we assume without loss of generality that the agency offers a menu (n i , T i ), i = H, L, maximizing

i π i [S i (n i ) -λU i (n i , T i )] subject to the provider's participation constraints U i (n i , T i ) = T i -C i (n i ) ≥ 0 and the incentive constraints U i (n i , T i ) ≥ U i (n j , T j ) for all i, j = H, L.
Suppose first that F L first-order stochastically dominates F H : F L (c) ≤ F H (c) for all c, with strict inequality on a non-degenerated interval. In this case, the marginal cost functions are ordered, i.e.,

C H (n) = F -1 H (n) < C L (n) = F -1 L (n), (2) 
for all n. Given that C H (0) = C L (0), this implies that the cost functions themselves are ordered in the same way, C H (n) < C L (n) for all n. The first-best menu (n * * i , C i (n * * i )) is not incentive compatible. However the usual single-crossing condition is satisfied:

∂T ∂n U H = C H (n) < C L (n) = ∂T ∂n U L ,
for all n. This is the standard pattern in adverse selection problems. The efficient provider can mimic the inefficient one and gets the informational rent

U H = C L (n L ) -C H (n L ). As π L S L -λπ H (C L -C H ) decreases with n L above n * *
L , the number of patients treated by the inefficient provider is distorted downwards relative to n * * L . The focus of our paper is on the case where F H is a mean-preserving spread of F L : Both distributions F H and F L have the same mean, Moreover, the provider marginal cost functions are no longer ordered as in (2). Setting n = F L (ĉ) = F H (ĉ) and using the link between marginal costs and percentiles, we find

C L (1) = ∞ 0 c dF H (c) = ∞ 0 c dF L (c) = C H (1), 1 ) (c F L ) (c F H ) (c F H n ˆc ) ( ) ( 1 1 n F n F L H    Figure 1: Individual cost cdf ) (n C L ) (n C H ˆn n ˆ1
C H (n) < C L (n) for n < n and C H (n) > C L (n) for n > n. The cost difference C L (n) -C H (n) increases from zero to C L (n) - C H (n)
as n rises from zero to n, then decreases to zero as n goes to one.

Figure 2 shows that cost dispersion translates into an efficiency advantage under rationing by selection. The efficient provider, provider H, is the one faced with the most dispersed individual treatment costs. When required to treat a given number of patients, that provider indeed has more freedom of choice when picking in priority the least costly ones in the population.

The single-crossing property does not hold, but Assumption 2 restricts the pattern of violation of this assumption, delimitating two different regions:

∂T ∂n U H = C H (n) < C L (n) = ∂T ∂n U L ⇐⇒ n < n, (3) 
Assumption 2 yields a partitioning of the space of allocations into a positive single crossing area and a negative single crossing area similar to the one used by [START_REF] Araujo | Adverse selection problems without the Spence-Mirrlees condition[END_REF]. The resulting single crossing in the cost difference allows us to sign local distortions in our adverse selection problem.1 

Proposition 1. Suppose that F H is a mean-preserving spread of F L and that Assumption 2 holds. If c * * > ĉ (c * * < ĉ), the agency has a local incentive to distort the number of recipients treated by provider L upwards (downwards) from n * * L . Proof. At the efficient allocation (n * * H , n * * L ), the transfers T H and T L that maximize the welfare are such that the efficient provider earns the informational rent U H = C L (n * * L ) -C H (n * * L ) > 0 and the inefficient provider earns U L = 0. The inefficient provider's incentive constraint can thus be written as 0

≥ C L (n * * L ) -C H (n * * L ) + C H (n * * H ) -C L (n * * H ), which is equivalent to n L n H [C L (n) -C H (n)] dn ≤ 0.
Under Assumption 2, the above inequality holds at the efficient allocation (n * * H , n * * L ), and it is strict when c * * = ĉ. For instance, when c * * > ĉ, we have

n * * L > n * * H > n and C L (n) -C H (n) < 0 for n ∈ [n * * H , n * * L ].
The inefficient provider's incentive constraint is therefore satisfied in a neighborhood of the first-best allocation (n * * H , n * * L ). Locally, when choosing n L close to n * * L , the regulator faces a standard rent versus efficiency tradeoff, choosing n L that maximizes

K(n L ) ≡ π L S L (n L ) -λπ H [C L (n L ) -C H (n L )].
(4)

The first derivative of this function at

n * * L is λπ H [C H (n * * L ) -C L (n * * L )], since S L (n * *
L ) = 0. By (3), it is positive if and only if n * * L > n. Heterogeneity is about the dispersion of the marginal cost distribution implies a failure of the Spence-Mirrlees condition. This failure can be exploited by the agency to reduce the type H informational rent C L (n L )-C H (n L ). For n L close to n * * L the rent is decreasing in the number of recipients treated by provider L when n * * L > n. The agency then has a local incentive to increase the number of treated above n * * L . Thus, in contrast to the standard result in the literature, the sign of the local distortion is driven in our setting by the first-best number of treated recipients: A high number of treated recipients at the first-best optimum yields a local upward distortion at the second-best optimum.

Remark. It is known that upward distortions may result from countervailing incentives arising when the type-dependence of the outside options induces the inefficient type to mimic the efficient type (see, e.g., [START_REF] Jullien | Participation Constraints in Adverse Selection Models[END_REF] and [START_REF] Lewis | Countervailing incentives in agency problems[END_REF]). This is not the case in our setup where, due to Assumption 2, the only relevant incentive constraint is that of the efficient provider.

The usual single crossing assumption in the cost deals with both local and global distortions from the first-best optimum. Our single crossing assumption in the cost differences does not ensure that the global optimum involves treating n * L < n * * L recipients in the case where n * * L is above n. To go beyond the local results of Proposition 1, we introduce Assumption 3. The distributions F L and F H are symmetric around ĉ, i.e. F i (c) + F i (2ĉ -c) = 1 for all c and i = H, L.

Under Assumptions 2 and 3, the distributions are equal to one half at the point where they cross:

n = F H (ĉ) = F L (ĉ) = 1/2.
Proposition 2. Suppose that Assumptions 2 and 3 hold, F H is a meanpreserving spread of F L , and n * * L is larger than 1/2. Then the number of recipients treated by provider L is distorted upwards if S L (1) > S L (1 -n * * L ).

Proof. Assuming that provider L's incentive constraint is slack, which we check later, the second-best number n * L of recipients treated by that provider maximizes the function K(n) given by (4). By Assumption 3, the rent

U H (n L ) = C L (n L ) -C H (n L ) is symmetric around its global maximum at n = 1/2, i.e., U H (n) = U H (1 -n) for all n. We want to show that n * L > n * * L when n * * L > 1/2. The proof proceeds in three steps: 1. Let ñL = 1 -n * * L < 1/2. Since U H (n) = U H (1 -n) and S L increases below n * *
L , the maximum of K on [ñ L , n * * L ] is achieved above 1/2.

2. Since S L is increasing and U H is decreasing on the interval [1/2, n * * L ], K is increasing on this interval, implying that the maximum of K on [ñ L , n * * L ] is achieved at n * * L .

3. By symmetry of U H and monotonicity of S L on the intervals [0, n * * L ] and [n * * L , 1], we have 

K(n) -K(1 -n) = S L (n) -S L (1 -n) ≥ S L ( 

Assumption 1 .

 1 The (expected) net social benefit of treatment for a given cost level c, E(b | c) -(1 + λ)c, is a non-increasing function of cost c with a unique zero, denoted by c * * .
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  1) -S L (1 -n * * L ) > 0 for all n ≥ n * * L . It follows that the maximum of K(n) on [0, 1] is achieved at the right of n * * L . By Proposition 1, the maximum is achieved at n * L strictly above n * * L . Provider L's incentive constraint is slack because inequality (3) evaluated at (n * * H , n * L ) is strict as n * L > n * * L > n * * H > n and C L < C H on [n * * H , n * L ]. This global result is closely reminiscent of Proposition 1: The number of recipients is distorted upwards from the first-best optimum if the agency prefers the inefficient provider (the one faced with less dispersed individual treatment costs) to treat a sufficiently high number of recipients.The global condition in Proposition 2 depends on whether treating all the population is socially preferred to treating only a fraction 1 -n * * L . It should be satisfied in practice: If the first-best optimum recommends to treat n * * L = 80% of the population, the agency should prefer providing universal coverage to treating only 1 -n * * L = 20% of the population. 2

In our setup, however, C H (n) -C L (n) is non-monotonic in n, hence[START_REF] Araujo | Adverse selection problems without the Spence-Mirrlees condition[END_REF]'s Assumption A2 does not hold.

This condition follows from the symmetry Assumption

Global results involving an upwards distortion obtain for asymmetric distributions when, for high values of n (n > n), the first-best surplus for the inefficient provider is sufficiently high, and the difference between the aggregate cost functions of both providers decreases sufficiently with n.