
HAL Id: hal-01300822
https://hal.science/hal-01300822v1

Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User-centric service selection, integration and
management through daily events

Zhenzhen Zhao, Nassim Laga, Noel Crespi

To cite this version:
Zhenzhen Zhao, Nassim Laga, Noel Crespi. User-centric service selection, integration and management
through daily events. MUCS 2011 : 8th International Workshop on Managing Ubiquitous Communi-
cations and Services, Mar 2011, Seatle, United States. pp.94-99, �10.1109/PERCOMW.2011.5766979�.
�hal-01300822�

https://hal.science/hal-01300822v1
https://hal.archives-ouvertes.fr

 1

Abstract—This paper presents an end-to-end framework to

manage user-centric services through daily events. In contrast to
existing service discovery, selection and composition approaches,
the proposed framework addresses the management issue from a
new perspective by firstly learning end-user's intent through daily
events, while recommending relevant functionalities to the user;
and then enabling the user to select the services offering the
required functionalities based on their own selection rules. An
event hierarchy and a selection model are proposed respectively to
retrieve relevant functional requirements and specify the service
selection rules in response to the user’s non-functional
requirements. The context-oriented system framework for
functionality discovery, user-centric service selection and intuitive
service composition, is also presented in detail. Finally, an event
based service provider (EBSP) system is introduced as a
proof-of-concept of the proposed approach.

Index Terms—Event, User centric service, Service composition,
Service management, Service selection

I. INTRODUCTION

HE current web is being increasingly adopted as a
user-centered vision. Not only the service providers are

provisioning new methods for user-centric services, but also the
users are becoming more powerful in the participation of the
service management even service creation process. This
phenomenon, which is termed user generated service (UGS) [1],
has been gradually encouraging end-users for self service
composition.

As services are becoming more prevalent and users are
becoming more initiative, tools are needed to help users find,
filter and integrate services [2]. Various standards and
developments in the markets have been proposed in service
discovery, selection and composition which leverage users’
service creation possibilities. From the end-user perspective,
three main challenges are faced during their service creation
process:

-- How to discover the relevant and useful functionalities (to
be composed) in response to their dynamic context and
intension?

-- After discovering the functionality, how to select the best
available service from the pool of services which serve the same
functionality?

This work is carried out in the frame of the Eureka-ITEA 2 "Do-it-Yourself

Smart Experiences" project. It is supported in part by the French Ministry of
Industry.

-- Finally, how to integrate the selected services in an intuitive
and easy-to-access way?
 To solve the first question, current solution in the
developments exhibit large service database and often permit
access to third party for increased system functionality. The
database consists of core building blocks of the integration,
where user can perform the semantic search. However, rich
service database is not necessarily providing a better solution
and quality of experience for the user. Tracking user’s intention
and preference for automatic service discovery, selection and
recommendation become particularly important.

Our aim is to design an intention based approach for the
end-user to create and manage their own services in response to
their dynamic context. Followed by a survey conducted on user
perception of service mashups [3], this paper presents an
event-based service integration framework. Our approach
targets the concept of event which is the direct way to reflect
user intention. We acquire the context information through user
generated event, followed by the recommendation of precisely
relevant functionalities, and then we allow the user to select the
services based on their own selection rules, the selected service
are finally integrated in an aggregated manner. Our main
contributions are three-fold, by solving the three challenges
respectively:

 --Firstly, the proposed framework allows the user to play an
active role in the context acquisition through event creation.
Instead of searching service from the large database by user
themselves, our proposed framework provides the contextual
service recommendation. The recommendation logic is
performed taking into account the overall parameters of the
event details, as well as the user profile and user history, to
analyze the precise functionalities of interest to the user.
 --Secondly, in order to select the best available service from
the pool of services with the same functionality, a selection
model is proposed to express user desires, non-functional and
dynamic requirements. It provides the users with the capability
of choosing the selection rules to apply during the process of
selecting services at runtime.
 --Thirdly, the proposed framework allows the user to do
service integration at the presentation layer. Users can visually
select services from the recommended pool of services by
specify their own selection rule, without having to worry about
programming like visual data flow diagrams.

The remainder of the paper is organized as follows. In
Section II, related work and existing approaches for service

User-Centric Service Selection, Integration and
Management through Daily Events

Zhenzhen Zhao, Nassim Laga and Noel Crespi

T

 2

discovery, selection and composition are briefly discussed.
Section III presents an overview of the proposed framework for
user-centric service management. Section IV and Section V
discuss the details of the proposed event hierarchy and the
service selection model, respectively. A usage scenario and
prototype are introduced in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK AND MOTIVATION

The ongoing evolution in UGS is evident in the increasing
trend of end-users owning their environments to create their
services from heterogeneous resources. In the introduction part
we address three challenges in the service creation process,
which are functionality discovery, user-centric service
selection, and intuitive service composition. In the following
paragraphs we will discuss the state of the art by going to each
of them respectively.

A. Functionality Discovery

The first challenge in service creation is to discover the
functionality (building blocks) based on the user’s
requirements. Search engine in large database is always
considered discouraging, how to capture user behavior and
preferences, or how to let user expose their needs and intentions
in an effective way, becomes essential. In the current research,
one dynamic approach is through natural language (NL) request
[4]. Based on the user request, the NL analyzer is invoked to
analyze the functionalities through key words and logical
sequence in the sentence, then it starts the service discovery
process to retrieve relevant services, which can be seen as a
successful case of intent-based service composition.

User intent and behavior can be also acquired through user
context. Extensive works have been done on the context aware
systems to provide ubiquitous services based on user’s dynamic
manner, i.e. to recommend services when the user is in certain
situation, such as location-aware systems, context-managing
frameworks and context-aware service composition architecture
[5-7]. However, the user always plays a passive role when
unconsciously receiving system recommended services, an
approach needs to be discovered to allow the user to expose
their needs and intentions. Moreover, these systems normally
take one or limited context parameters (for example, location or
time) to handle the user’s changing manner, an overall context
of the user needs to be investigated.

In our proposal, we target the concept of daily event which is
the direct way to reflect user intention. Our proposed framework
allows the user to play an active role in the context acquisition
through event creation. Moreover, the framework takes the
event as an overall parameter to analyze user’s intention. More
details are presented in Section IV.

B. User-centric Service Selection

After the requirement exposure, the next challenge consists in
how to select precisely useful service from a pool of similarly
appearing services. Significant research work has been done in

both functional and non-functional based service selection. The
first approaches focused on the goal based discovery and
selection using semantic technologies [8-11], but as several
services may have exactly the same functional signature,
selecting a service only by matching the user goal and the
functionality provided by the service is no longer sufficient.
Thus, new approaches which consider non-functional
parameters such as the Quality of service (QoS) and the user
context have emerged [12-18]. The non-functional parameters
could be static such as price, or dynamic such as user location or
the user presence status. In [14] for example, authors propose
the eFlow framework: a service composition framework that
supports automatic adaptation according to the composite
service parameters. The framework enables the users to express
their needs through service nodes and associate to each of them
a selection rule that refers to runtime values of existing
parameters of the composite service. [15] introduces an
approach where context information is published with services,
and user context be included in the request to enable the system
to match the best service. However, these approaches rely on the
rules defined by the selection mechanisms themselves and do
not enable the user to specify their own rules during the
selection process, which are considered not user-centric.

Indeed, for the same service, the different user may have
different selecting preferences, and for the different services,
the same user may set different selecting parameters. For
example, while certain users may want to select the service that
minimizes the price, others may want to select the service that is
most suited to their context, while some others may want to
select the service according to the language they speak.

We propose in this paper a generic selection model to enable
the definition of selection rules that are able to take into account
both static and dynamic parameters. Through this model, user is
allowed to specify which rule to apply in the selection process of
a given functionality. More details are shown in Section V.

C. Intuitive Service Composition

After discovery and selection, the third step in service
creation process is service composition. Recently much
research is being carried out to introduce new and intuitive
platforms for service composition, and to address issues
pertaining to this process. [19] introduces Mashmaker, to allow
non-expert users to easily create their own mashups based on
data and queries produced by other users and by remote sites.
Using this tool, users can create mashups by ‘browsing’ around,
without need to type, or plan in advance what they want to do.
This particular approach, calls for a much intuitive browsing
experience and adequate system recommendation to users. [20]
describes Margmash as a tool which allows end-users to add
mashup fragments to their favorite web sites. Service
composition is done within the browser environment and
involves various steps like creating a page for instance,
identifying visual clues by selecting markup chunks, and
identifying markup fragments. However, these models are still
regarded complex, subject to the need of understanding data
flows between the services.

 3

We propose in this paper a strong emphasis on “functionality
integration” rather than “data integration. We further manage
the intuitive issue by presenting a high level of abstraction to
end-users through service aggregation at the presentation layer.

III. PROPOSED SYSTEM FRAMEWORK

This section presents a brief overview of the proposed system
framework and its functionalities. The primary goal of the
framework is to solve the three limitations in the service
creation process as described in section II. The proposed
framework consists of three layers: Knowledge Layer, Logic
Layer and Presentation Layer. Firstly, in the presentation
layer, the user exposes his intent by entering the details in a
daily event like meeting, travelling etc. Then the user input data
with user identity and profile are passed to the logic layer,
where the data is processed, and reasoning is performed. During
this process, resources and rules are looked up from the
knowledge layer for the system recommendation and user
service selection. Finally, the service integration is done in the
presentation layer. Fig. 1 presents the schematic description of
the main components of the framework.

In the knowledge layer, there are four local databases in the
system: user database (user id, user profile, and user history),
event hierarchy database, service selection database (static and
dynamic selection rules) and resource database (content, data or
application functionality).

The logic layer consists of four engines: data processing
engine, event reasoning engine, service selection rule engine
and service composition engine. The logic layer extracts
resources from the knowledge layer according to two rules: 1)

system recommendation based on the event hierarchy, user
profile and user’s selection history; 2) user service selection
based on the selection rules. The subsequent two sections
explain the idea of the event hierarchy and describe the steps of
the service selection process, respectively.

In the presentation layer, after the user generating the events
by entering the details, the relevant functionalities are pooled
and sent back to the presentation layer as service
recommendation to the user. Of the recommended
functionalities, the user selects the services of interest with their
own selection rules. The selection of services sends a trigger to
the logic layer to record the selection history, and update it to
the knowledge layer. The finalization of service selection will
allow the end-user to create a composite application through
service integration. The integration is done in a visually
intuitive manner, aggregating and linking selected services from
heterogeneous resources. The actual application will be a
workspace created by the users themselves to suit their
individual need, without skills being required for programming.

IV. PROPOSED EVENT HIERARCHY

This section describes the methodology of the functionality
recommendation based on the event hierarchy.

Since our system aims at bringing the concept of event to
explore the user intention for service integration and
management, the first challenge is how to define event in an
efficient way to retrieve and organize relevant services, i.e. the
functional description of the event. In current event-based
system, the related event elements are nothing less than event
theme, occurrence place, occurrence time and involved people,
which can be expressed as what, where, when and who. In our
approach, we follow the same definition of event elements. As
shown in Fig. 2, each event element comprises a hierarchy of
related information organized in a dependent manner. Each
element (attribute) of the event is related to the user’s goal,
which is further associated with the functional description of the
event to retrieve relevant services. What defines the user’s main
objective, which is associated with the event category; Where is
associated with location and presence service; When is
functionally related to the time based service and notification
service; and finally, Who defines whether the event is a personal
or a social event, which is associated with personalized service,
communication and social service. Note that the event attributes
are regarded as the first layer of the event hierarchy.

Among those attributes the event category is the most

Fig. 1. System framework.

Fig. 2. Functional descriptions of event.

 4

important factors in choosing related services, which is defined
further firstly by the related functional requirements, and then
the specific services. The contribution of this event category
hierarchy is two-fold. On the one hand, it defines the useful
functionality inside each event activity/type for purposes of
filtering out less useful or useless services, i.e. increase the
accuracy of retrieved services; on the other hand, it provides the
relationships among different events, thereby enabling
reusability of the functionality for different events.

One example of the event category hierarchy is shown in Fig.
3. In this scenario, the event category is shown as meeting, party
and travelling, among which the travelling can be reused as a
functional sub-requirement for the meeting. In each of these
event activities, at least one reusable requirements
“organization” has been included, with the identical list of
relevant functionalities and specific services associated. The
definition of event category hierarchy not only makes the
searching process more accurate (which is particularly
important when today the services are growing at an ever faster
pace), but also paves the way to understand the user behavior
through the user selection in the reusable functionality in
different event activities.

The detailed recommendation process is reasoned by two
rules: on the one hand, it is based on the current activity of the
user which provides an explicit definition of the context for the
system. The system performs a contextual, hierarchy based
search, for recommending functionalities to the user. The
service recommendation feature is useful in providing precise
functionalities of interest to the user, in the absence of which the
user would have to search for each service manually from the
often large service databases, and often yielding less useful

results. On the other hand, the recommendation process being
based on the user profile and service selection history realizes
an implicit means of context acquisition by the system, and
makes the service recommendation process an automatic one,
by keeping track of user preferences in the system. It is
particularly important to keep track of user’s activities in the
system, as it is a means to know about user’s preferences, which
can be different to another user in the system. This feature of
creating session management to keep track of user behavior, and
recommend functionalities based on user’s preferences and
current activity brings in the system context-orientation and
personalization abilities, which are considered much important
to improve user experience in information systems.

V. PROPOSED SERVICE SELECTION MODEL

In this section, we discuss the user selection process of the
specific services from the similar or the same functionality. In
order to select the best available service at runtime, we need
mechanisms to assess services and to decide which one to select.
As we previously detailed, the assessment of these services
differ from one user to another. As a consequence, we need a
user-centric approach in the selection process: an approach
where the users specify themselves the rules to apply in the
selection mechanism. This requires a generic model, where both
static and dynamic parameters could be considered. Fig. 4
describes the model which focuses on the selection rule class.

There are two types of rules:
 --Constraint rules: aims to remove services that do not

fulfill a list of constraints. The result of the rule evaluation is
true or false value. Constraint rules enable the database to
specify conditions that the selected service must satisfy. For
instance, if we consider an SMS sending functionality, a
constraint rule could be formulated as follows: select services
whose home network location is the same as the location of the
recipient.

 --Objective rules: aims to rank a service from the
perspective of a given objective. The result of the rule is a
quantitative value that enables the classification of the different
services. Objective rules might be for instance the optimization
of the price of the selected service. It can also be a linear
objective function that refers to several parameters such as

meeting

party

organization

traveling

organization

Event

Category

Required

Requirements

Required

Functionalities

traveling

organization

Task Manager

booking

documentation

entertainment

budget

Specific

Services

- Todo List

- Todo Task

- …...

Task Manager

budget

Task Manager

budget

- Calculator

- …...

- Todo List

- Todo Task

- …...

- Todo List

- Todo Task

- …...

- Calculator

- …...

- Calculator

- …...

Fig. 3. Example of event category hierarchy.

selection rule

rule parameter

static parameter dynamic parameter Software Service

refers to

1..*

knowledge base

generates

0..*

generates

0..*

constraint rule objective rule

Fig. 4 Service selection rule model.

 5

price, bandwidth, or reputation.
Both constraint rules and objective rules indirectly refer to

static parameters and/or dynamic parameters. Static parameters
are those whose value is known before runtime; service price
and user preferences are typical examples of such parameters.
Dynamic parameters are instead those whose value is known
only at runtime. These parameters are usually results of the
execution of other services such as presence and location. Thus,
in order to cover all possible parameters in our rule model, we
assume that each parameter (static or dynamic) is either known
by the system database (e.g. service price, negotiated QoS
parameters…etc), or require the execution of a service (e.g.
presence status, user location…etc). The former are generated
through the invocation of the knowledge base component, and
the latter are generated through the invocation of the
corresponding service in the resource database. Therefore, in
the rule language, it is important to be able to refer to the
knowledge base component as well as to any existing service
present in the database.

In order to select the best available service that responds to
the functionality, satisfies constraint rules and optimizes the
objective rule selected by the user, we introduce the Interpreter
component. As we illustrate in Fig. 5, the first action carried out
by the interpreter component is the discovery of all available
services that perform the received functionality. Thereafter, the
discovered services are filtered according to a set of constraint
rules. Each constraint rule may refer to the static parameters, the
dynamic parameters, and the inputs provided by the user. The
static parameters are referenced through the knowledge base
component (e.g. services prices, and QoS parameters); the
dynamic parameters are referenced through the corresponding
service (e.g. invocation of localization for a user location
parameter); and the inputs are referenced through the
corresponding tag. Once all constraint rules are applied and a
set of services is selected, the interpreter evaluates the objective
rule if present. Such as constraint rules, the objective rule may
refer to static parameters, dynamic parameters, and the inputs
values provided by the user. At the end, a set of services is

selected: services that satisfy the constraint rules and optimize
the objective rule. This list of selected services is sent back to
the user. One example of service selection process is shown in
Fig. 6.

VI. USER SCENARIO AND PROTOTYPE

In this section we introduce our prototype - event based
service provider (EBSP) system. Firstly, to proof the concept of
intention based functionality discovery, we provide an interface
that allows the end-user to enter event details and get
recommended functionalities (Fig. 7-8). Secondly, the system
enables the user to personalize the selection criteria of a given
functional need, select the best service, and execute it. (Fig. 9)
The aggregation of selected services is presented as a collection
of ready-to-use gadgets on the calendar, which is an intuitive
service composition approach (Fig. 10).

Fig. 7. User input in the event details.

Discovery Of Services reponding to the functionality

Constraint Rules Evaluation

Single Constraint Rule Evaluation

List of Services, One Constraint Rule

Functionality

List of Services, Constraint Rules

Objective Rule Evaluation

List of Services, Objective Rule

List Of Services

Fig. 5. Service selection algorithm.

Communication

Service

Send Email

Send SMS

Send IM

VOIP Call

Event

Hierarchy

“ WHO ”

Required

Functionalities

Non-functional and dynamic

Rules
Specific Service

- by recipient presence

- by recipient location

- by send location

- by price

- by recipient location

- by sender location

- by delivery guaranty level

- by recipient presence

- by recipient location

- by send location

- by price

- by bandwidth

- by recipient location

- by sender location

- Gmail

- Yahoo mail

- Hotmail

- …...

- Orange send SMS

- Telefonica Send SMS

- …….

- Gtalk

- MSN messenger

- Skype

- Facebook

- Skype

- VOIP

- …...

Social

Service
……. ……. …….

Fig. 6. Example of the service selection process.

 6

Fig. 8. Service recommendatio. System automatically recommends
functionalities, based on the event entered details, user profile and user
selection history, which are shown as event categories in the left panel. The
default view gives all services in all for the chosen event. User can browse from
different categories to find precise services of interest.

Fig. 9. User-centric service selection. For each functionality that the system
recommend, the user needs to select the rules to apply to get the specific
service. After selection of services, the user clicks on “Go to Calendar
Dashboard”.

Fig. 10. Service integration on the calendar. User-selected services are mashed
up on the calendar (shown as circular green icons on top of the specified event),
and can be accessed and used directly from the calendar.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an end-to-end framework to

manage the user-centric services though daily events. The
contributions for the service creation process including
event-based functionality discovery, user-centric service
selection, and intuitive service integration have been illustrated
respectively. We have further implemented an event based
service provider (EBSP) system to prove our concept.
Concerning the limitations of our work, at present the service
selection rules haven’t been integrated into the current
prototype. One direction for future work will be semantic
approach for the functionality recommendation.

ACKNOWLEDGMENT

Our sincere thanks to Ms. Sirsha Bhattarai for her user
research studies on end user perspective of service creation, and
Mr. Hui Wang, Mr. Honguang Zhang for their efforts on system
construction.

REFERENCES

[1] Z. Zhao, N. Laga, N. Crespi, “A Survey of User Generated Service,” in
in Proc of IC-NIDC 2009, Beijing, China. pp. 241--246, Nov. 2009.

[2] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic composition of web
services using semantic descriptions,” in Web Services: Modeling,
Architecture and Infrastructure” workshop in conjunction with
ICEIS2003, 2003.

[3] S. Bhattarai, Z. Zhao and N. Crespi, “Consumer Mashups: End-User
Perspectives and Acceptance Model,” in Proc of iiwas 2010, Paris,
France, 2010

[4] F. Lécué, E. Silva, L.F. Pires, “A Framework for Dynamic Web Services
Composition,” in WEWS 07, Halle (Saale), Germany, 2007.

[5] L. Baresi, D. Bianchini, V. D. Antonellis, M. G. Fugini, B. Pernici, P.
Plebani, “Context-aware Composition of e-Service. In Technologies for
E-Services,” Third International Workshop, TES 2003, Berlin, German,
Sep, 2003.

[6] A. Sanchez, B. Carro, S. Wesner, “Telco services for end customers:
European Perspective,” in Communications Magazine, IEEE, vol.46,
no.2, pp.14-18, Feb 2008.

[7] A. K. Dey, D. Salber, G. D. Abowd, “A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware
applications,” Human-Computer Interaction, 16, pp, 1-67, 2001.

[8] N. Blum, S. Dutkowski, T. Magedanz, “InSeRt - An Intent-based Service
Request API for Service Exposure in Next Generation Networks,” in Proc
of 32nd Annual IEEE Software Engineering Workshop, Porto Sani
Resort, Kassandra, Greece, Oct 2008.

[9] C. Rolland, N. Kraiem et R. Kaabi “On ISOA : Intentional Service
Architecture,” in CAISE’07,Trondheim, Norway, pp158-172, Springer,
2007

[10] F. Piessens, B. Jacobs, E. Truyen, W. Joosen, “Support for
Metadata-driven Selection of Run-time Services in .NET is Promising but
Immature. Journal of Object Technology, Special issue: .NET: The
Programmers Perspective, 2003.

[11] Google. Intents and Intent Filters. Available at
http://developer.android.com/guide/topics/intents/intents-filters.html,
accessed on August 12th, 2010.

[12] Ben Hassine, A., Matsubara, S., Ishida, T. A constraint-based approach to
horizontal web service composition. In ISWC, pp. 130-143, (2006).

[13] Santhanam, G. R., Basu, S., and Honavar, V. On Utilizing Qualitative
Preferences in Web Service Composition: A CP-net Based Approach. In
Proceedings of the 2008 IEEE Congress on Services, Services - Part I,
2008, vol., no., pp.538-544, 6-11 July 2008.

[14] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M. Shan, “Adaptive and
Dynamic Service Composition in eFlow”. in Proc of the 12th
interna-tional Conference on Advanced information Systems
Engineering Lecture Notes In Computer Sci-ence, vol. 1789.
Springer-Verlag, London, 13-31. Jun. 2000

 7

[15] G. Spanoudakis, K. Mahbub, A. Zisman, “ A Platform for Context Aware
Runtime Web Service Discovery” in ICWS 2007, vol., no., pp.233-240,
9-13 July 2007

[16] M. A. Cibrán, B. Verheecke, W. Vanderperren, D. Suvée and V.
Jonckers, “Aspect-oriented Programming for Dynamic Web Service
Selection, Integration and Management,” World Wide Web 10, pp
211--242, Sep. 2007

[17] Y. Liu, A. H. Ngu, L. Z. Zeng, “QoS computation and policing in
dynamic web service selection,” in Proc of the 13th international World
Wide Web Conference on Alternate Track Papers &Amp; NY, pp66—73,
May. 2004.

[18] Q. Ding, X. Li and X. Zhou, “Reputation Based Service Selection in Grid
Environment,” in Proc of the 2008 international Conference on
Computer Science and Software Engineering - Volume 03, Washington,
DC, pp58--61. Dec. 2008.

[19] R. Ennals, and M. Garofalakis, “Mashmaker: Mashups for the Masses,”
in Proc of the 2007 ACM SIGMOD International Conference on
Management of Data, China, pp. 1116--118, 2007.

[20] O. Diaz, S. Perez, and I. Paz, “Providing Personalized Mashups within the
Context of Existing Web Applications,” in WISE, pp. 493--502, 2007.

