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Abstract

In this paper, focus is done on spatial models for extreme events and on their respective efficiency
regarding the estimation of two risk measures: one extrapolating marginal distributions and one sum-
marizing the spatial bivariate dependence of extremes. A wide comparison is performed on a simulation
plan that has been specifically designed from a daily precipitation data set. The objective of this paper
is twofold: firstly, pointing out the inherent properties of each model, and secondly, advising users on
how to choose the model depending on the specific type of risk.
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1. Introduction

Analyses of extreme values of environmental variables such as precipitation are of great importance
since it involves human lives as well as considerable losses of money when a catastrophic event occurs.
Recently for instance, on the 3rd October 2015, the region of Cannes (France) faced such an extreme
event with a huge and sudden amount of rainfall that caused twenty deaths and millions of Euros in
damages. Accurate risk measures for such extreme phenomena are therefore needed to prevent from
this type of scenario.

The risk estimation of these events is challenging because they involve values that are beyond the
range of the observations. For this purpose, adapted tools come from extreme value theory. See for
instance de Haan and Ferreira (2006), Beirlant et al. (2004), Finkenstädt and Rootzén (2004) and
Coles (2001). Since precipitation phenomena have a spatial feature and data are generally observed
at several stations, the dedicated setting to handle this question is that of max-stable spatial models.
Detailed and helpful reviews on these models are Cooley et al. (2012), Davison et al. (2012) or Ribatet
(2013).

Six max-stable spatial models have been selected among the most popular or the most recent
in the literature. This choice includes Bayesian and frequentist concepts, and goes from simple to
smooth spatial dependence structure. Within this paper, the main goal is to answer: Which of the
six competing models yields the best prediction for extreme behaviors of simulated processes mimicking
precipitation data? Addressing this question supposes in particular a careful device of the data sets
involved, as well as a relevant choice of performance criteria.

Two comparative criteria adapted to extreme events prediction are evaluated. The estimation of
rare events at a location where no data is available is handled first; this induces the capacity of spatial
extrapolation of the extreme behavior when looking at marginal information only. A clear and well
known way to summarize this marginal information into a concrete risk measure is the return level.
Then a second and complementary criterion is the measure of extreme sets for the bivariate distribution
at a pair of locations. This aims at capturing the spatial dependence structure of extremes. One could
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also study higher dimensional indices but most of the models have tractable formulae only in two
dimensions.

Several options can be chosen to define the terms of comparison. One possible option could be
to start from an expert point of view and compare each model with an a priori value of the previous
criteria. To depart from a subjective choice, an intensive simulation study has been preferred. A para-
metric bootstrap procedure is used to produce simulations as close as possible to a true phenomenon.
More precisely, a real precipitation data set is considered over France, on which each of the six max-
stable spatial models is fitted. These fitted models are then fixed to play the role of extreme rainfall
generators. The two comparative criteria are finally evaluated on each generated sample and faced to
the corresponding (known) true value.

The remainder of this article is organized as follows. The theoretical background of extreme value
theory is addressed in the following section, with an emphasis on the so-called block maxima approach
and on the six max-stable spatial models of interest. Section 3 describes the designed simulation
plan, the two criteria of competition and the results. Conclusions are drawn in Section 4, where some
recommendations are provided with respect to different purposes.

2. Notation and models

2.1. Definition of max-stable processes

Let S be a compact subset of Rd that represents the spatial region of interest, d being a posi-
tive integer. Consider a random process Y (·) = {Y (s)}s∈S defined over S, with continuous sample
paths. Write Y1(·), . . . , YT (·) for independent copies of Y (·). The process Y is called max-stable if for
each T > 1, there exist continuous functions aT (·) > 0 and bT (·) ∈ R such that:

T∨
t=1

Yt(·)− bT (·)
aT (·)

d
= Y (·) ,

where
d
= denotes equal in distribution. Such max-stable processes arise as non degenerate limits for

pointwise maxima of stochastic processes on S, and have been introduced by de Haan (1984). In
particular, for each s ∈ S, the random variable Y (s) follows a generalized extreme value distribution
GEV(µ(s), σ(s), ξ(s)). Location µ(s) ∈ R, scale σ(s) > 0 and shape ξ(s) ∈ R parameters are indexed
by s. Recall that the cumulative distribution function (cdf) of a GEV(µ, σ, ξ) random variable Y is:

P(Y 6 y) =

{
exp

(
−
[
1 + ξ y−µσ

]−1/ξ

+

)
if ξ 6= 0

exp
(
− exp

[
−y−µσ

])
if ξ = 0 ,

where z+ denotes the positive part of z. Note that the usual lack of clear spatial pattern for the
shape ξ(·) when dealing with precipitation data, jointly with the difficulty of estimating this parameter
lead in this paper to consider ξ(·) ≡ ξ0. Thanks to the one-to-one mapping:

Z(s) =

[
1 + ξ0

Y (s)− µ(s)

σ(s)

]1/ξ0

+

, (1)

one obtains a simple max-stable process Z(·), that is with unit Fréchet margins, corresponding to
GEV(1,1,1).

The joint cdf of Z(·) at a set of sites {s1, . . . , sn} ⊂ S is given by:

P (Z(s1) 6 z1, . . . , Z(sn) 6 zn) = exp [−V (z1, ..., zn)] ,

in terms of an exponent measure V that contains the information about the spatial dependence of
extremes (see e.g. (de Haan and Ferreira, 2006, Chapter 9)). The two limit cases are the independence
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case, with V (z1, . . . , zn) =
∑n
i=1 z

−1
i and the total positive dependence case, with V (z1, . . . , zn) =∨n

i=1 z
−1
i . A common measure of spatial dependence between the set of sites {s1, ..., sn} is the extremal

coefficient θ of Schlather and Tawn (2003) defined by:

P (Z(s1) 6 z, ..., Z(sn) 6 z) = P (Z(s1) 6 z)
θ
.

One can interpret the coefficient θ ∈ [1, n] as the number of components of {Z(s1), ..., Z(sn)} that
are independent and it is linked to the exponent measure via the relation θ = V (1, ..., 1). Note that
θ = θ(s1, ..., sn) depends on the set of sites {s1, . . . , sn}, as does the exponent measure V .

Finally, the description of a max-stable process is done in two parts. First, the marginal effect is
captured by the processes that represent the GEV parameters. Classically, the inference is done under
a linear model involving covariates. Such details are postponed until later (as in Equation (6) for
instance). Second, the spatial dependence of extremes is measured by V (or summarized through θ).
Parametric models for V can be helpful and some examples are presented in the next section.

2.2. Spectral representation and parametric models

Max-stable processes can be described thanks to the following spectral representation, due to
de Haan (1984). Let {ζj}j∈N be a Poisson point process on (0,∞) with intensity measure dζ/ζ2 and
consider independent copies {Wj(s), s ∈ S}j∈N of a stationary processW (·) verifying sups∈SW (s) <∞
and E [W (s)+] = 1. Then the process Z(·), defined for each s ∈ S by:

Z(s) = max
j>1

ζjWj(s) , (2)

is max-stable with unit Fréchet margins. Its joint cdf is expressed as:

P (Z(s) 6 z(s), s ∈ S) = exp

(
−E

[
sup
s∈S

W (s)

z(s)

])
.

Different choices for the so-called spectral processes Wj(·) in (2) lead to different max-stable models.
Four of them are now presented.

2.2.1. The Smith model: GEVP

Consider Wj(s) = f(s−vj) , where f is the d-variate normal density with zero mean and covariance
matrix Σ, and {vj}j∈N is an homogeneous Poisson point process on Rd. In this construction, Z(s) can
be seen as the maximum over an infinite number of storms located at {vj}j∈N with severity {ζj}j∈N.
The effect of these storms at a given point s is then described by ζjf(s− vj). This particular form for
f has been considered by Smith (1991) and leads to one of the most classical max-stable model. It is
called Gaussian Extreme Value Process (GEVP) in this paper.

The exponent measure can be written for a pair of sites (s1, s2) as:

VGEVP(z1, z2) =
1

z1
Φ

(
a(h)

2
+

log(z2/z1)

a(h)

)
+

1

z2
Φ

(
a(h)

2
+

log(z1/z2)

a(h)

)
, (3)

in terms of h = s1 − s2, where a2(h) = hTΣ−1h is the Mahalanobis distance between the sites s1

and s2 and where Φ(·) is the cdf of the standard normal distribution. The extremal coefficient of this
model is given by θ(h) = 2Φ {a(h)/2}.

The dependence parameters that need to be estimated for this model are the elements of the
variance-covariance matrix Σ: precisely Σ11,Σ12 and Σ22 when d = 2.
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2.2.2. The Schlather model: EGP

A second choice is to take Wj(·) as stationary Gaussian processes, with correlation function ρ(·),
scaled so that E [W (s)+] = 1. The resulting max-stable process, defined by Schlather (2002), is called
the Extremal Gaussian Process (EGP). The corresponding exponent measure is:

VEGP(z1, z2) =
1

2

(
1

z1
+

1

z2

)(
1 +

√
1− 2

[ρ(h) + 1]z1z2

(z1 + z2)2

)
, (4)

where h is now the Euclidean distance between the sites s1 and s2. The extremal coefficient of the
EGP is θ(h) = 1 +

√
{1− ρ(h)}/2.

A shortcoming of the EGP is that the bivariate extremal coefficient does not span over the in-
terval [1, 2] as it should do, but over [1, 1.838] instead since ρ(·) is positive definite. In other words,
this model never allows independence of extremes, even when the distance between two sites increases
indefinitely.

Different correlation functions ρ(·) can be chosen. We work with the powered exponential form
ρ(h) = (1 − η) exp [− (h/λ)

ν
], where η ∈ [0, 1), ν ∈ (0, 2] and λ > 0 are respectively the nugget, the

smooth and the range parameters. They need to be estimated when fitting the EGP. We thus denote
them ηEGP, νEGP and λEGP.

2.2.3. The Brown-Resnick model: BRP

A third possibility is to take, W (·) = exp [ε(·)− γ(·)], in terms of a Gaussian process ε with sta-
tionary increments and semivariogram γ. Then, the representation (2) leads to the so-called geometric
Gaussian process. Kabluchko et al. (2009) showed that choosing ε as a fractional Brownian motion
yields the process introduced by Brown and Resnick (1977), called the Brown-Resnick Process (BRP).
Its exponent measure has a similar form to the GEVP one:

VBRP(z1, z2) =
1

z1
Φ

(
a(h)

2
+

log(z2/z1)

a(h)

)
+

1

z2
Φ

(
a(h)

2
+

log(z1/z2)

a(h)

)
, (5)

where a2(h) = 2γ(h) and h is the Euclidean distance between the sites s1 and s2. Its extremal
coefficient is therefore given by θ(h) = 2Φ{

√
γ(h)/2}.

When ε(·) is a fractional Brownian motion, the semivariogram γ(·) is given by γ(h) =
(
h
λ

)ν
, where

λ and ν are respectively the range and nugget parameters. These parameters must be estimated to
describe the spatial structure, and they are respectively denoted by λBRP and νBRP.

2.2.4. The t-extremal model: TEP

Opitz (2013) obtains the only possible max-stable limit for asymptotically dependent elliptical
processes, namely the t-extremal process, denoted TEP here. Let δ > 0 and {ζ ′i} be a Poisson point
process on (0,∞) with intensity dΛ(t) = δt−(δ+1)dt. Let the Wi(·)’s be independent copies of a

stationary standard Gaussian process with correlation function ρ(·). Set mδ = 2(δ−2)/δ
√
π
−1

Γ
(
δ+1

2

)
.

The TEP has then the following spectral representation:

Z(·) = m
−1/δ
δ max

i>1
ζ ′iWi(·) ,

and the associated exponent measure

VTEP(z1, z2) =
1

z1
Tδ+1

((
z2

z1

)1/δ

; ρ(h) ,
1− ρ(h)2

δ + 1

)
+

1

z2
Tδ+1

((
z1

z2

)1/δ

; ρ(h) ,
1− ρ(h)2

δ + 1

)
,

where Tν(·;µ, σ) is the cdf of the non-standard Student distribution with ν degrees of freedom, ρ is
the powered exponential correlation function and h is the Euclidean distance between s1 and s2.
Note that both the EGP of Schlather (2002) and the BRP of Kabluchko et al. (2009) appear to be
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special cases of the TEP model. Indeed, the EGP is obtained straightforwardly when δ = 1, while
the TEP model converges towards the BRP when δ → ∞. The dependence parameters that need to
be estimated are then: δTEP, the degree of freedom, and the parameters of the correlation function,
namely ηTEP, λTEP and νTEP.

2.3. Hierarchical modelling

Hierarchical models suppose that the response variable, say Y (·) in our case, is spatially independent
conditionally on unobserved latent processes or variables. The interested reader may find examples
in Banerjee et al. (2004) for instance. Models based on hierarchical approaches are usually defined
within the Bayesian paradigm. The estimation is generally performed through a Markov Chain Monte
Carlo (MCMC) algorithm which handles easily the conditional densities integration. Recent studies
exploiting hierarchical modelling for extreme precipitation are for instance Apputhurai and Stephenson
(2013) and Dyrrdal et al. (2015).

2.3.1. The latent variable model: LVM

Davison et al. (2012) introduces a simple hierarchical structure for spatial extremes, called the latent
variable model (LVM). The response variables {Y (s)}s∈S are assumed to be independent conditionally
on latent processes that describe the GEV parameters; more precisely

Y (s)|{µ, σ, ξ} indep∼ GEV(µ(s), σ(s), ξ(s)) ,

µ(s) = βTµ c(s) + εµ(s) ,

σ(s) = βTσ c(s) + εσ(s) ,

ξ(s) ≡ ξ0 .

The mean function of the latent processes µ(·) and σ(·) is written as a linear combination of covariates
c(·) with coefficients β.(·) ∈ R. Example of covariates are the longitude, latitude and elevation of
position s. The random part ε·(·) is assumed to be a stationary zero-mean Gaussian process with
correlation function ρ(·). As an example, Davison et al. (2012) considers the exponential form ρε·(h) =
δ· exp(−h/λ·).

2.3.2. The Reich and Shaby model: HKEVP

From Davison et al. (2012), one knows that the LVM is particularly appealing when the estimation
of the marginal distributions is of interest, as it focuses on modelling the GEV parameters. The main
drawback is that the dependence structure of extremes is not considered since spatial independence is
assumed.

The aim of this subsection is to present a model that describes both the marginal effect and the
dependence structure within a Bayesian framework. The Hierarchical Kernel Extreme Value Process
(HKEVP) has been introduced by Reich and Shaby (2012) and further developed in Shaby and Reich
(2012) and Reich et al. (2014). It is defined as follows. Suppose that Y (s) ∼ GEV(µ(s), σ(s), ξ(s))
and model the margins by: 

µ(s) = βTµ c(s) + εµ(s) ,
log[σ(s)] = βTσ c(s) + εσ(s) ,

ξ(s) ≡ ξ0 ,
(6)

The Whittle-Matérn form is taken rather than exponential one for the correlation function of εµ(·)
and εσ(·), that is: ρ(h) = 21−ν

Γ(ν)

(
h
λ

)ν
Kν

(
h
λ

)
, where ν > 0 and λ > 0 are respectively the smooth and

range parameters, and Γ(·) and Kν are the Gamma and modified Bessel functions.

Consider now Z(·) the associated simple max-stable process. Assume that Z(·) = U(·)ϑ(·) where:

• U(·) is a spatially-independent process with common marginal distribution GEV(1, α, α). The
parameter α ∈ (0, 1] is unknown.
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• ϑ(s) =
(∑L

`=1A`ω
1/α
` (s)

)α
, with the same α as in U , describes the spatial dependence structure

driven by some kernels {ω`(·)}`=1,...,L and some random effects {A`}`=1,...,L. These last vari-
ables are assumed to be independent and identically distributed from PS(α), the positive stable
distribution with characteristic exponent α. In the definition of ϑ, {ω`(·)}`=1,...,L stands for a

family of deterministic kernel functions normalized so that
∑L
`=1 ω`(s) = 1, ∀s ∈ S.

These kernels have been chosen according to Reich and Shaby (2012)’s choice, namely as rescaled
Gaussian densities (see Smith (1991)). More precisely, let V := {v1, ..., vL} ⊂ S be a set of knots, and

ω`(s) =
K(s|v`, τ)∑L
j=1K(s|vj , τ)

,

where

K(s|v`, τ) =
1

2πτ2
exp

[
− 1

2τ2
(s− v`)T (s− v`)

]
,

for τ a bandwidth parameter that needs to be estimated, along with the dependence parameter α.
The hierarchical formulation for the process Y (·) follows:

Y (s)|µ, σ, ξ, α,A,V indep∼ GEV(µ∗(s), σ∗(s), ξ∗0) ,

µ∗(s) = µ(s) +
σ(s)

ξ(s)

(
ϑ(s)ξ(s) − 1

)
,

σ∗(s) = ασ(s)ϑ(s)ξ(s) ,

ξ∗0 = αξ0 .

The exponent measure of the HKEVP is given by:

VHKEVP(z1, . . . , zn) =

L∑
`=1

[
n∑
i=1

(
ω`(si)

zi

)1/α
]α

.

To illustrate the central role of α, consider its boundary values. If α tends to 0, the so-called
nugget process U(·) will be approximately equal to 1, so that Z(·) ≈ ϑ(·). The max-stable process
is then spatially smooth and the spatial dependence strong. Now, if the parameter α is close to 1,
the positive stable distribution PS(α) tends to be the Dirac at the singleton {1}. Combined with
the normalized condition on the kernel functions, one gets ϑ(·) ≡ 1. The process Z(·) = U(·) will
be spatially independent, which is then similar to the LVM. Note also that if, in addition, the set
of knots V is equally-spaced and its cardinal L tends to infinity, then one obtains the definition of
the GEVP.

3. Comparison of the spatial models

This section is threefold. Firstly, the design of the simulation study is settled. Secondly, the max-
stable models are fitted on the resulting simulated data, and results are analyzed. Finally, additionnal
characteristics of these models are discussed.

3.1. Designing the simulation as a precipitation data set

In this section, the six models described in Section 2, namely the LVM, HKEVP, GEVP, EGP,
BRP, and TEP are applied to a set of precipitation data recorded in France.
Along the paper, the models are sorted this way to respect an increasing “smoothness within depen-
dence modelling”, going from conditional independence to a spatial dependence structure with finite
conditioning and then to four continuous max-stable dependence structures.
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3.1.1. The precipitation data

This data set is extracted from the European Climate Assessment & Dataset (ECA&D) website
(http://eca.knmi.nl/). The thirty-nine stations we consider1 are viewed with corresponding eleva-
tion on Figure 1. At each site, focus is done on the period 1960-1999. The yearly maximum of daily
cumulative precipitation is then computed for each of these forty years. If there is more than 30 days of
missing values in a year a missing value is allocated. The resulting data set contains 1.47% of missing
values.
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Figure 1: Map of France with locations of the meteorological stations and a color code indicating the elevation. The two
stations represented by triangles (see south west) are considered later on to compute a joint probability.

3.1.2. Fitting procedures

The collected yearly maxima are considered as the realizations of some spatial max-stable process
Y (·). The six spatial models can thus be fitted through the freely available software R2. Most of
the fitting functions come from the SpatialExtremes package (Ribatet (2015)). More precisely, its
function fitmaxstab (resp. rmaxstab) allows to fit (resp. simulate) from several max-stable models,
as the GEVP of Smith (1991), the EGP of Schlather (2002), the BRP of Brown and Resnick (1977)
and the TEP of Opitz (2013), and its function latent can be used to fit spatial extremes with the
LVM of Davison et al. (2012).

As far as we know, there is no package including the fitting procedure for the HKEVP of Reich
and Shaby (2012). The only connected function is the routine abba included in the package extRemes

of Gilleland and Katz (2011) and related to the recent paper of Stephenson et al. (2015). Therein, the
model uses a CAR prior over a network of thousands of gridded locations and is therefore not designed
to make prediction outside the observed set of sites. The authors of the HKEVP propose nonetheless

1A preprocessing of the data set aimed at suppressing doubloons, merging data from the same locations, and keeping
stations with elevation less than 800 meters to avoid very specific extreme behaviour.

2Software R http://www.r-project.org/
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an open code available on Reich’s website3. Sebille (2016) recently published on CRAN the R package
hkevp that contains in particular a routine (hkevp.fit) fitting the HKEVP. This function is widely
inspired by Reich & Shaby’s code, and the main changes are listed in the reference manual of hkevp.

3.1.3. Fitting the models on the ECA&D precipitation data set

The fitting functions introduced previously are now applied to the data set of yearly maxima of
daily precipitation described in Section 3.1.1. The marginal GEV parameters are estimated at each
of the thirty-nine meteorological stations. Available covariates are used in their estimation. More
precisely, the following linear forms are used through the routine fitmaxstab for the GEVP, EGP,
BRP and TEP fits: µ(s) = βµ,0 + lon(s)βµ,1 + lat(s)βµ,2 + alt(s)βµ,3 + msp(s)βµ,4,

σ(s) = βσ,0 + lon(s)βσ,1 + lat(s)βσ,2 + alt(s)βσ,3 + msp(s)βσ,4,
ξ(s) = βξ,0 ,

(7)

for all s ∈ S where lon(s), lat(s), alt(s) and msp(s) stands respectively for the longitude, the latitude,
the altitude and the mean seasonal precipitation (msp) associated to the position s. The choice of the
msp as spatial covariate is motivated by Cooley et al. (2007). The spatial form (7) is consistent with
the one used in Davison et al. (2012), though it adds the altitude and msp covariates in the location
and scale parameters.
For the LVM and the HKEVP, the estimation of marginal parameters is included in the routines. The
same spatial covariates in (7) are used to model the mean function of the latent processes.

Estimations of µ(·), σ(·) and ξ(·) are very similar from one model to another. Their values are
not presented here for seek of concision. For a visual information, the location and scale parameters
obtained using the BRP are given on Figure 2. To complete these patterns, note that the shape
parameter varies from -0.04 to 0.27.
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Figure 2: Map of France with positions of the meteorological stations and a color code indicating the values of the GEV
location (left) and scale (right) parameters, estimated with the BRP.

Table 1 summarizes the estimated values of the unknown dependence parameters for the different
models described in Sections 2.2 to 2.3.2. Recall that LVM does not appear in the list since it assumes
independence. We observe that, under each model, the estimated spatial dependence structure is close

3Homepage http://www4.stat.ncsu.edu/∼reich/
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Model Parameter Estimation (sd)
HKEVP α 0.846 (0.021)

τ 1.21 (0.096)
GEVP Σ11 0.064

Σ12 0.035
Σ22 0.02

EGP ηEGP 0.999
λEGP 2.965
νEGP 0.839

BRP λBRP 0.103 (0.029)
νBRP 0.723 (0.092)

TEP δTEP 15.899 (17.09)
ηTEP 0.047 (0.085)
λTEP 3.819 (5.699)
νTEP 0.941 (0.35)

Table 1: Estimated dependence parameters (and standard deviation when available) for the HKEVP, GEVP, EGP, BRP
and TEP when fitted on the ECA&D precipitation data set described in Section 3.1.1.

to independence. For the GEVP, the covariance matrix is almost degenerate. In the EGP case, the
nugget ηEGP is near one, which results in a process close to pure noise. For the BRP model, the range
parameter λBRP is lower than 0.1622, the minimum distance between observed positions. For the TEP,
the high value of δTEP is a sign for independence since the bivariate extremal coefficient θ tends to 2
as δ tends to infinity. Finally, the HKEVP reveals a structure close to the conditional independence
with α near 0.94. Note that standard deviations are not displayed for the GEVP and the EGP since
maximization procedures of the log-likelihood functions did not converged. It can also be remarked
that standard deviations for δTEP and λTEP are abnormally large. This is actually observed on more
general fits: estimation of these two dependence parameters with the TEP on simulations from simple
max-stable processes are highly uncertain, with very large standard deviations.

The near-independence pattern observed in Table 1 is consistent with the fact that the meteoro-
logical network used in this article is rather sparse over the region of interest (see Figure 1). Extreme
precipitation data are known to show a low range of spatial dependence. For instance, Fawcett and
Walshaw (2014) found out that the dependence between extreme precipitation in Great Britain is
genuine for a distance h < 100km. A brief analysis on the data set used in the present paper shows
that there is roughly 6% of all the inter-distances between the meteorological stations that are under
this limit case. Our approach remains nevertheless justifiable since the case of independence is allowed
by most of the spatial models considered in this paper. The only exception is for the EGP, though
this disadvantage could be solved by using the ideas of Davison and Gholamrezaee (2012). In their
max-stable model, the Gaussian spectral processes {Wj(·)}j∈N are defined over compact random sets
{Bj}j∈N and equal 0 elsewhere. In this case, the independence is obtained when the distance between
two sites becomes greater than the volume of the Bj ’s.

3.2. Comparative study of the spatial models

The six spatial models will compete through the simulation design presented below.

3.2.1. Simulated data sets

The aim of this section is to present the way to produce simulations of annual maxima of daily
precipitation via a parametric bootstrap procedure. For this purpose, samples are drawn from the six

4Details for HKEVP and LVM fit: 30.000 iterations run, the first 10.000 burned to assess convergence. Median of
the last 20.000 is taken as point estimate.
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models with parameters fixed from Section 3.1.3. Routines rmaxstab and hkevp.rand are used from
packages SpatialExtremes and hkevp respectively. We denote by:

Y(k)
MS

:=


Y

(k)
1 (s1|MS) . . . Y

(k)
1 (sn|MS)

...
. . .

...

Y
(k)
ny (s1|MS) . . . Y

(k)
ny (sn|MS)


ny×n

,

the k-th replicate, for k ∈ {1, ...,K = 50}, coming from the simulation model MS . Data are gen-
erated on the n = 39 positions {s1, ..., sn} coinciding with the sites of Figure 1. The number of
simulations ny = 40 is the maximal length observed of yearly maxima series per station on this data
set.

Since the generated data come from the fitted models, the marginal and dependence parameters
used are the ones estimated on real data. This procedure aims first at producing simulations as close
as possible to real annual maxima of precipitation and second to depart from one particular simulation
model MS that may favor one of the six spatial models put in competition.

However, numerical issues are encountered when simulating from the GEVP and the BRP:

- the non-definite form of the covariance matrix Σ prevents from simulating data with the GEVP,

- the low value of the range λBRP generates a bug inside the simulation function rmaxstab: the
margins of the obtained process Z(·) are no longer unit Fréchet.

For these reasons, simulations from these two models are not taken into account in the next sections.
Therefore, we have MS ∈ {LVM,HKEVP,EGP,TEP}.

3.2.2. Two comparative criteria

The performance of the competing spatial models is measured on the two criteria described below.
The first criterion focuses on the quality of spatial extrapolation of the GEV marginal distribution.

It consists in the estimation of the T -year return level at a “target” site s∗ where no data is available.
For any period of time T , this value is a quantile (denoted by yT (s∗)) of the marginal distribution
that we expect to be exceeded once over T years. It is therefore defined by P(Y (s∗) 6 yT ) = 1− 1/T .
Knowing the marginal parameters µ, σ and ξ evaluated at s∗, it is possible to explicitly compute its
value:

yT (s∗) = µ(s∗) +
σ(s∗)

ξ(s∗)

[
log

(
T

T − 1

)−ξ(s∗)

− 1

]
. (8)

The second criterion provides a measure of the spatial dependence structure of a specific model. It
is simply the estimation of a joint probability at a pair of sites (s1, s2):

p := P {Y (s1) 6 yT (s1), Y (s2) 6 yT (s2)} ,

where yT (s1) and yT (s2) are respectively the T -year return levels of precipitation at sites s1 and s2. It
is easy to see that this is equivalent to computing the exponent measure V (z1, z2) evaluated at (s1, s2)
with

z1 = z2 =

[
log

(
T

T − 1

)]−1

.

For this criterion, the pair (s1, s2) is chosen as the two closest sites of {s1, ..., sn} in order to capture
some spatial correlation, because of the low range of dependence observed on precipitation data. This
pair is referred by triangles in Figure 1. With T = 100, we have p ∈ [0.9801, 0.99], spanning the
different cases between independence (for p = 0.9801) and complete dependence (for p = 0.99). Since
we decided to generate ny = 40 years of data per simulation set, the same as in the real data set, it is
reasonable to apply these criteria for the fixed value T = 100.
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Concerning the models GEVP, EGP, BRP and TEP, the linear expression (7) allows to extrapolate
directly the GEV parameters at s∗. The associated 100-years return level can then be computed thanks
to (8). For the two hierarchical models, namely the LVM and the HKEVP, there are several ways to
estimate this criterion. We choose to extrapolate the value of the GEV parameters at s∗ for each
MCMC step r, using a simple kriging estimator. Formula (8) leads to the associated 100-years return
level for each MCMC step r. The point estimate is then taken as a functional (the median in our case)

of the sample {y(r)
100(s∗)}r=1,...,R, where R = 20.000 is the number of iterations kept in the fit.

3.2.3. Estimating the comparative criteria under the six models

Let MF be a fitting model chosen among LVM, HKEVP, GEVP, EGP, BRP, TEP. The two

criteria defined in Section 3.2.2 are estimated via MF over each set of simulated data Y(k)
MS

. We
denote by y100(si,MS) the exact value of the 100-years return level evaluated at si for i ∈ {1, ..., n}
with the parameters according toMS and by p(MS) the joint probability corresponding to the second
criterion evaluated with the modelMS over real data. Following this notation, we respectively denote

by ŷ100
(k)

(si,MS |MF ) and p̂(k)(MS |MF ) the estimations of y100(si,MS) and p(MS) provided by

the model MF over the k-th set of simulated data Y(k)
MS

.
Note that the first criterion y100(si,MS) is estimated at one of the meteorological stations si of

the ECA data set, though it has been decided in Section 3.2.2 to study the spatial extrapolation of the
GEV margins. Therefore, to obtain the k-th estimation of this criterion at si, the six spatial models

are fitted over the simulated set Y(k,−i)
MS

, i.e. the set Y(k)
MS

minus the observations at si, which is then
treated as a target site. This procedure is repeated for each i ∈ {1, ..., n}.
In constrast, the estimation of the joint probability p is obtained by fittingMF over the complete set
of 39 stations. This choice has been motivated by the fact that different conclusions can be drawn
depending on target position s∗ where the first criterion is defined, while it is not the case for the joint
probability. Indeed, this second criterion only depends on the distance between the two sites (s̃1, s̃2)
for four of the six models, that are said isotropic. The two exceptions are the GEVP and the HKEVP,
but no genuine differences have been observed by choosing a different pair (s̃1, s̃2) to compute the joint
probability for these two models.

3.2.4. Results

After a quite intensive simulation from MS ∈ {LVM,HKEVP,EGP,TEP} and fitting proce-
dure via MF ∈ {LVM,HKEVP,GEVP,EGP,BRP,TEP}, a pseudo-sample of estimated criteria
is produced. To display the results of the estimated 100-years return levels, we focus on biases
{B(si,MS |MF )}i=1,...,n and root-mean-square errors (RMSE) {R(si,MS |MF )}i=1,...,n per site, re-
spectively defined by:

B(si,MS |MF ) =
1

K

K∑
k=1

[
ŷ100

(k)
(si,MS |MF )− y100(si,MS)

]
and

R(si,MS |MF ) =

√√√√ 1

K

K∑
k=1

[
ŷ100

(k)
(si,MS |MF )− y100(si,MS)

]2
,

for i ∈ {1, ..., n}. These are respectively given in Figure 3 and Figure 4. The estimated joint proba-
bilities {p̂(k)(MS |MF )}k=1,...,K are directly plotted in Figure 5 since the comparison has been made
once for this criterion.

For the record, more robust summarizing tools have also been considered. More precisely, the
sample of median errors{

Med
k=1...,K

(
ŷ100

(k)
(si,MS |MF )− y100(si,MS)

)}
i=1,...,n
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and L1-distances {
1

K

K∑
k=1

∣∣∣ŷ100
(k)

(si,MS |MF )− y100(si,MS)
∣∣∣}

i=1,...,n

have also been drawn, but they are not provided since they showed similar results to Figures 3 and 4.
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Figure 3: Boxplots per site of the biases {B(si,MS |MF )}i=1,...,n for the estimation of the 100-years return level.

In Figure 3, 4 and 5, the model MS used to produce the simulated data is indicated at the top of
each of the four plots. The results are then displayed by fitting modelsMF , whose name are indicated
at the bottom of each boxplot. The dashed red line corresponds to 0 in Figure 3 and 4 and to the
exact value p(MS) in Figure 5. From these three figures, it is possible to order roughly the six spatial
models of extreme values by their performances over the two criteria defined in Section 3.2.2.

The “best” one may be the TEP of Opitz (2013). It shows indeed great precision toward the
extrapolation of the 100-years return level and has a good robustness on the simulation model MS .
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Figure 4: Boxplots per site of the RMSEs {R(si,MS |MF )}i=1,...,n for the estimation of the 100-years return level.

Moreover, in terms of spatial dependence structure, this model is the most flexible and the most precise
to estimate the joint probability p.
The LVM of Davison et al. (2012) outperform the five others if the goal is the extrapolation of the
marginal effect, represented in this comparative study by the 100-years return level at a target site.
This is not surprising since it is the only one whose construction focuses only on the spatial modelling
of the marginal parameters. However, this model fails down if the goal of the user is to estimate p
or any measure linked to the dependence structure, because of the assumption that the whole spatial
dependence is explained by the margins. It can thus be observed in Figure 5 that the joint probability
is always estimated by p = 0.9801 = 0.992 which means total independence.
The BRP of Brown and Resnick (1977) and the HKEVP of Reich and Shaby (2012) may be classified
as quite good compromises for the two criteria. The former tends to underestimate the 100-years
return level, in particular if MS is the LVM, while the latter seems to overestimate this criterion, in
particular if MS is the EGP. Since this criterion is a well-used risk measure, the safest choice for this
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Figure 5: Boxplots of the estimated joint probabilities {p̂(k)(MS |MF )}k=1,...,K .

criterion between these two models may then be the HKEVP over the BRP. As for the estimation of
the joint probability, the performances of these two models are quite comparable and depend strongly
on the model MS used to produce the simulations. One drawback of the HKEVP comes from its
Bayesian nature: the independence may never be totally reached numerically (see Section 3.3), as it
can be seen in upper-left plot of Figure 5, the best choice to describe a bivariate structure between
these two models is then the BRP.
The EGP of Schlather (2002) and the GEVP of Smith (1991) are the most unsatisfactory models.
Indeed, in Figure 4 the GEVP has always a strong RMSE and his bias in Figure 3 is reasonably
low only when MS is the LVM. The EGP tends to overestimate the extrapolation of the 100-years
return level, except when MS is the EGP itself, showing a lack of robustness toward the simulated
data set. Concerning the estimation of the second criterion of comparison which represents the spatial
dependence structure, it can be seen from Figure 5 that the GEVP always find spatial independence
of the data, with a joint probability p estimated at 0.9801. This model seems to have difficulties
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to detect any trace of spatial dependence, even when MS is the TEP where the exact value of p is
relatively high. The estimations of this joint probability with the EGP are nearly always degenerated
at p ≈ 0.98299. This enlightens the main drawback of this model discussed in Section 2.2.2, that is,
the fact that θ(h) 6 1.838 and therefore that the EGP cannot account for spatial independence even
if the distance h tends to infinity. The only exception where estimations are not degenerated at the
lower bound case p is when MS is the EGP itself, which is of limited use.

3.3. Beyond the scope of this study: some additional comparisons

In the previous section, a comparative study has been driven between six spatial models based
on two risk measures. The first one assesses the marginal behavior through the extrapolation of a
100-years return level, while the second evaluates the dependence structure with a joint probability.
While these two criteria summarize the efficiency of the models for spatial extreme value analyses, it
may seem insufficient to just look at these values for a valid competition. In this section, we discuss
other properties of the six spatial models that have not been fully taken into consideration yet. The
aim is to guide the practitioner for a better choice of model, depending on the pursued goal.

Two Bayesian models have been used: the LVM and the HKEVP. The results obtained when fitting
these two models are Markov chains that, if convergence is assumed, represent a posterior distribution
for each parameter or for a functional of parameters like the 100-years return level. To be feasible,
the competition of the previous section needed to focus on point estimations of the two criteria and
it has been chosen to take the median of the posterior distributions. This choice may therefore seem
rather restrictive for such models that can provide much more information on a given parameter.
An example is the case of the HKEVP, when the model MS used to produce the simulation is the
LVM and therefore the spatial independence is assumed. To accept independence, the parameter α
in the HKEVP must be equal to 1, its upper bound. Numerically, the Markov chain cannot afford
for α = 1 exactly since all values of the random effect, which is updated at each iteration, should then
be degenerated to 1. Taking the median of the chain as point estimation for α implies in this case a
slight underestimation of its true value, which can explain the behaviour of this model on upper-left
plot of Figure 5.

However, the Bayesian models present two main drawbacks at the inference step. First, they
have generally more entry parameters than for the non-Bayesian ones. For instance, the user of the
function latent must provide values that control initial steps, prior distributions, random walks of
proposal distributions and, above all, the number of iterations to use in the algorithm for assessing
convergence (burn-in period) and to provide a satisfactory sample of the posterior distribution. In the
function hkevp.fit, default values are available for these arguments, though they should be considered
with care. Second, these models are more time consuming, especially when the length desired of the
posterior samples is high. The HKEVP is the heaviest in this case and parallel computing is advised
when using this method. The choice of the number L of knots used in the HKEVP has to be seen
as a trade-off between efficient estimation and computational burden: all the values of the random
effect are updated at each MCMC step, which represents L × T parameters. This has been studied
in Reich and Shaby (2012) and the conclusions were roughly that too few knots may lead to a larger
bias in the estimation of the GEV parameters, while too many knots than necessary does not improve
significantly these estimations.

The HKEVP has another drawback: when the exact value of α is near 0, that is, the case of very
strong spatial dependence. In this case, convergence of the Markov chains are very slow due to the
fact that the values of the random effect A are nearly uniformly distributed over R+\{0}. However, it
has to be noted that this feature is purely theoretical, since annual maxima of a natural phenomenon
such as precipitation has apparently no reason to show such strong dependence.

Finally, it can be remarked that the joint probability, i.e. the second criterion of comparison, has
been evaluated on a set of only two sites. The reason for this is that closed-form for the exponent
measure are not always available. For instance, Genton et al. (2011) shows that the joint cdf of the
GEVP cannot be explicitly given for n > d + 1 sites, where d is the dimension of the space. In our
case we have d = 2, which allows then to compute a trivariate joint probability at the most for this
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model. For the EGP, the BRP and the TEP, the joint cdf of an arbitrary number of sites n involves a
multivariate Student or normal cdf that has to be numerically computed. Conversely, the joint cdf of
the HKEVP has an explicit and simple form in any dimension.

As a summary, Table 2 provides a visual assessment of the six models over the two criteria and the
points discussed above.

LVM HKEVP GEVP EGP BRP TEP

Marginal extrapolation 3 ≈ 7 7 ≈ 3

Joint probability 7 ≈ 7 7 3 3

Bayesian approach 3 3 7 7 7 7

Fast program ≈ 7 3 3 3 ≈
Explicit multivariate cdf 3 3 7 7 7 7

Table 2: Sketch of the characteristics of the six spatial max-stable models.

4. Discussion and conclusion

In this article, six models for spatial extreme values have been put in competition over two risk
measures that represent usual interest in application: the extrapolation of a 100-years return level at
an ungauged site and the estimation of an extreme joint probability.

Results from Section 3.2.4 show dissimilarities between models and tend to discard some of them,
depending on what is the main objective. On the one hand, if the interest lies in the estimation of the
marginal effect, one should prefer the LVM of Davison et al. (2012) and may also consider the TEP of
Opitz (2013). On the other hand, if the goal involves the modelling of the joint dependence structure,
the TEP is the best choice but the BRP and the HKEVP may also provide reliable estimations. In
any case, the GEVP of Smith (1991) and the EGP of Schlather (2002) show results that are generally
unsatisfactory on the two criteria defined for the competition.

However, this comparison of models has been made under given circumstances that may influence
the general conclusions. Namely, the set of precipitation data we used is rather sparse over a large
domain, which results in weak spatial dependence as already pointed out in Section 3.1. But we took
care of avoiding subjective choices for the simulation plan, relying only on the real precipitation data
set by using the parametric bootstrap procedure.

As discussed in Section 3.3, the comparison between models may generally be more complex because
of several features that characterize each of them. For instance, the HKEVP is the only one which
can give an explicit formulation of the dependence structure for an arbitrary set of sites, therefore
allowing a conditional sampling of the yearly maxima process. However, his inference is less tractable:
it involves a lot of arbitrary choices like the positions of the knots, and it demands more computational
resources than the other five models to be properly fitted.

This paper can be regarded as a practical guide when fitting annual maxima of precipitation data.
Depending on the question of interest, the user has to choose between max-stable (TEP and BRP) or
hierarchical max-stable (LVM and HKEVP) models. Moreover, the simulation plan is based on real
precipitation data so that the comparison made here does not suffer from subjectivity.
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