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In this paper, we study an estimation problem where the variables of interest are subject to both right censoring and measurement error. In this context, we propose a nonparametric estimation strategy of the hazard rate, based on a regression contrast minimized in a finite dimensional functional space generated by splines bases. We prove a risk bound of the estimator in term of integrated mean square error, discuss the rate of convergence when the dimension of the projection space is adequately chosen. Then, we define a data driven criterion of model selection and prove that the resulting estimator performs an adequate compromise. The method is illustrated via simulation experiments which prove that the strategy is successful. March 25, 2016 

Introduction

In this paper, we consider a sample (Y j , δ j ) 1≤j≤n of i.i.d. observations from the model Y j = (X j ∧ C j ) + ε j = (X j + ε j ) ∧ (C j + ε j ), j = 1, . . . , n (1)

δ j = 1 X j ≤C j ,
where the X j s are the variables of interest. All variables X j , C j (right-censoring variable), ε j (noise or measurement error variable) are independent and identically distributed (i.i.d.) and the three sequences are independent. The density f ε of the noise is assumed to be known, the X j and C j are nonnegative random variables. In other words, the data are censored and measured with error. Right censoring corresponds to observations U j = X j ∧ C j and δ j and measurement errors to observations X j + ε j . Obviously, 1 X j ≤C j = 1 X j +ε j ≤C j +ε j so that the censoring indicator is unchanged by the measurement error.

The aim of the present work is to propose an estimation strategy for h X , the hazard rate of X, defined by f X /S X where f X is the density and S X the survival function of X.

The literature has considered the two problems of measurement error and censoring mostly separately. On the one hand, deconvolution strategies have been developed for density estimation in presence of measurement error by [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] (kernels), [START_REF] Delaigle | Bootstrap bandwidth selection in kernel density estimation from a contaminated sample[END_REF] (bandwidth selection), [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]; [START_REF] Fan | Wavelet deconvolution. Information Theory[END_REF] (wavelet estimators), [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] (projection methods with model selection). Cumulative distribution function estimation in presence of measurement error is considered by [START_REF] Dattner | On deconvolution of distribution functions[END_REF]. On the other hand, nonparametric or hazard rate estimation for right censored data has been studied in [START_REF] Antoniadis | Density and hazard rate estimation for rightcensored data by using wavelet methods[END_REF], [START_REF] Li | On the minimax optimality of wavelet estimators with censored data[END_REF][START_REF] Li | On the block thresholding wavelet estimators with censored data[END_REF] (wavelets), [START_REF] Dohler | Adaptive estimation of hazard functions[END_REF] (penalized likelihood-based criterion), Brunel andComte (2005, 2008), [START_REF] Reynaud-Bouret | Penalized projection estimators of the Aalen multiplicative intensity[END_REF], [START_REF] Akakpo | Histogram selection for possibly censored data[END_REF] (penalized contrast estimators).

The only reference treating both the censor and the measurement noise is [START_REF] Comte | Hazard estimation for censored data contaminated with additive measurement error: Application to length of pregnancy[END_REF], where time between the onset of pregnancy and natural childbirth were to be estimated, from ultrasound data subject to both right censoring and measurement error. The method proposed therein is based on deconvolution strategies providing estimators of f X S C and S X S C where S C denotes the survival function of C; then taking the ratio of these quantities delivers an estimate of h X . The method is attractive, but theoretical rates are degraded by the survival step estimation. Moreover, the computation of an estimator built as a ratio is generally delicate and potentially unstable, as the denominator can get too small. This is why we explore here a one-step regression-type method. But the problem is difficult due to the double source of errors (censoring and measurement error). Here, we mainly propose an extension of the regression strategy developed in [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF] and [START_REF] Plancade | Model selection for hazard rate estimation in presence of censoring[END_REF], relying on a projection contrast method, associated with spline spaces.

The paper is organized as follows. In Section 2, we state the assumptions. The estimator is then defined as a contrast minimizer associated with a contrast which is justified and to splines projection spaces which are described. Risk bounds in term of integrated mean squared error are given in Section 3, discussion about convergence rates are then provided. A model selection procedure is finally proposed and proved to perform an adequate compromise, at least in theory. For more practical aspects, simulation results are provided in Section 4, which allow to compare the performances of the present procedure with those of a previous quotient estimator. Proofs are gathered in Section 5.

Estimation procedure

2.1. Notation and assumptions. We denote by f U the density of a variable U , by S U (t) = P(U ≥ t) the survival function at point t of a random variable U and by h U (t) = f U (t)/S U (t) the hazard ratio at point t. The characteristic function of U is f * U (t) = E(e itU ). We denote by g * (t) = e itx g(x) dx the Fourier transform of any integrable function g. For a function g : R → R, we denote g 2 = R g 2 (u) du the L 2 norm. For two integrable and square-integrable functions g and h, we denote g h the convolution product g h(x) = g(x -u)h(u) du. For two real numbers a and b, we denote a ∧ b = min(a, b).

Let us give the assumptions on the noise ε. We assume that the characteristic function of the noise is known and such that ∀u ∈ R, f * ε (u) = 0. Moreover, to be able to propose sets of functions satisfying several constraints, we restrict ourselves to the case of ordinary smooth errors, i.e. we assume that f ε is such that

(2) |f * ε (u)| -1 ∼ C ε (1 + u 2 ) α/2 .
This condition allows to consider Laplace or Gamma distributions, but not Cauchy nor Gaussian.

On the other hand, for the variables X and C, we assume that the following assumption is fulfilled: Assumption (A1). We assume that both X and C are nonnegative random variables and E(X) < +∞, E(C) < +∞. Moreover, for A the compact set on which the function is estimated, we assume: Assumption (A2). There exists a constant S 0 such that, ∀x ∈ A, S X∧C (x) ≥ S 0 > 0.

2.2. Definition of the contrast. From Model (1), we observe for j = 1, . . . , n both Y j and δ j and we want to estimate the hazard rate h X of X.

Under (A1), S X∧C is integrable and square integrable on its support R + , so that S * X∧C (u) =

+∞ 0 e iuv S X∧C (v)dv is well defined. Then, the following Lemma, proved in [START_REF] Comte | Hazard estimation for censored data contaminated with additive measurement error: Application to length of pregnancy[END_REF], holds and defines an estimator of S * X∧C , useful for the sequel. Lemma 2.1. Assume that (A1) holds and let (Y j , δ j ) 1≤j≤n be observations drawn from model (1). Then the estimator S * X∧C defined by

(3) S * X∧C (u) = 1 n 1 iu n j=1 e iuY j f * ε (u) -1 is an unbiased estimator of S * X∧C (u).
Now, let t be a function such that t and t 2 are integrable, as well as t * /f * ε and (t 2 ) * /f * ε . We consider the following contrast

(4) γ n (t) = 1 2π    (t 2 ) * (u) S * X∧C (-u) du -2 1 n   n j=1 δ j e iuY j   t * (-u) f * ε (u) du    .
To understand why this proposal is relevant, let us compute the expectation of γ n (t), which, by the law of Large Numbers, coincides with its almost sure limit. First, notice that

E δ 1 e iuY 1 = E 1 X 1 ≤C 1 e iu(X 1 ∧C 1 ) e iuε 1 = E 1 X 1 ≤C 1 e iuX 1 f * ε (u) = E S C (X 1 )e iuX 1 f * ε (u) = (f X S C ) * (u)f * ε (u). (5)
Then, we can easily deduce that, by Parseval formula

(6) E δ j 2π e iuY j t * (-u) f * ε (u) du = 1 2π (f X S C ) * (u)t * (-u) du = t(x)S C (x)f X (x) dx.
Moreover, using that by Lemma 2.1, E( S * X∧C (u)) = S * X∧C (u), we get

E[γ n (t)] = 1 2π (t 2 ) * (u)S * X∧C (-u) du - 1 π (f X S C ) * (u)t * (-u) du.
By Parseval formula, this yields

E[γ n (t)] = t 2 , S X∧C -2 t, f X S C .
Lastly, using h X = f X /S X and S X∧C = S C S X , we obtain

E[γ n (t)] = (t 2 (x) -2t(x)h X (x))S X∧C (x)dx. Therefore we get, if t is A-supported, E[γ n (t)] = A (t(x) -h X (x)) 2 S X∧C (x) dx - A h 2 X (x)S X∧C (x) dx.
This is why, for large n, minimizing γ n (t) among an adequate collection of functions t amounts to minimize the term A (t(x) -h X (x)) 2 S X∧C (x) dx, and brings an estimator of h X . This contrast is new; it is of regression type and corresponds to a nontrivial generalization of the one studied in [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes[END_REF][START_REF] Plancade | Model selection for hazard rate estimation in presence of censoring[END_REF].

2.3. B-Splines spaces of estimation. As noted above, the contrast γ n (t) is well defined for functions t such that t and t 2 are integrable, as well as t * /f * ε and (t 2 ) * /f * ε . This is why we have to define our projection estimator on finite dimensional functional spaces generated by functions having very specific properties. Moreover, for technical reasons, the regression type of the contrast requires these functions to be compactly supported. This is the reason why we restrict to ordinary smooth error distributions given by (2). For simplicity, we set A = [0, 1]. Now, we specify the spaces S m of functions t among which we minimize the contrast. We choose the splines projection spaces, which verify the main properties needed for the estimation procedure. We consider dyadic B-splines on the unit interval [0, 1]. Let N r be the B-spline of order r that corresponds to the r-times iterated convolution of 1 [0,1] (x) and has knots at the points 0, 1, . . . , r. Using difference notation from de [START_REF] De Boor | A practical guide to splines[END_REF] or [START_REF] Devore | Constructive approximation[END_REF], N r is also defined as

N r (x) = r[0, 1, . . . , r]( . -x) r-1
+ . Let m be a positive integer and define,

ϕ m,k (x) = 2 m/2 N r (2 m x -k), k ∈ Z.
Note that ϕ m,k has only non zero values on ]k/2 m , (k + r)/2 m ].

For approximation on [0, 1], one usually considers the B-splines ϕ m,k which do not vanish identically on [0, 1]. Let Km denote the set of integers k for which this holds,

Km = {-(r-1), • • •-1, 0, 1, . . . , 2 m - 1} as N r has support [0; r]. Let K m denote the subset of Km of integers k such that the support of ϕ m,k is included in [0, 1], i.e. K m = {0, 1, . . . , 2 m -(r -1)}.
We now define S m as the linear span of the B-splines ϕ m,k for k ∈ K m . The linear space S m is referred to as the space of dyadic splines, its dimension is 2 m -(r -1) and any element t of S m can be represented as

t(x) = k∈Km a m,k ϕ m,k
for a vector a m = (a m,k ) k∈Km with 2 m -(r -1) coordinates. Note that the usual dyadic splines space is generated by the 2 m + (r -1) functions corresponding to k ∈ Km , and our restriction to K m has consequences on the bias order.

The following properties of the splines are useful. For any t ∈ S m , t ∞ ≤ Φ 0 2 m/2 t . Moreover, there exists some constant Φ 0 such that

(7) Φ -2 0 k∈Km a 2 m,k ≤ k∈Km a m,k ϕ m,k 2 ≤ Φ 2 0 k∈Km a 2 m,k .
In the sequel we will use the following property of ϕ derived from their r-regularity:

(8) ∀u ∈ R |N * r (u)| = sin(u/2) (u/2) r and |ϕ * m,k (u)| = 2 -m/2 sin(u/2 m+1 ) (u/2 m+1 ) r .
We denote by S the space S mn with the greatest dimension smaller than n 1/(2α+1) . It is the maximal space that we will consider. In the following, we set D m = 2 m . 2.4. Minimizer of γ n for the B-spline basis. We can rewrite the contrast γ n (t) for t = k∈Km a m,k ϕ m,k and a m denoting the vector of the coefficients of a function t in the basis, as follows

(9) 2πγ n (t) = t a m G m a m -2 t a m Υ m ,
where

G m = (ϕ m,j ϕ m,k ) * (u) S * X∧C (-u) du j,k∈Km , Υ m = ϕ * m,k (-u) 1 n n j=1 δ j e iuY j f * ε (u) du k∈Km
with S * X∧C given by (3). Note that the matrix G m is band-diagonal with bands of length r -1 on each side of the diagonal (thus a symmetric diagonal band with global length 2r -1).

Then we define ĥm the estimator of the hazard rate as the minimizer of γ n (t) over all functions t ∈ S m whenever it is meaningful. For that, we derive γ n (t) to find t = k∈Km a m,k ϕ m,k such that

∀k 0 ∈ K m , ∂γ n ∂a m,k 0 (t) = 0.
This yields the following system for the vector coefficients of the estimator ˆ a m = (â m,k ) k∈Km solution of the above equations, G m ˆ a m = Υ m Then, under (A2), we set Γ m = {min sp(G m ) ≥ (2/3)S 0 } where sp(B) denotes the set of the eigenvalues of a square matrix B. Clearly, G -1 m exists on Γ m . Finally, we consider the estimator (10) ĥm = arg min t∈Sm γ n (t) on Γ m 0 otherwise.

Note that, as usual for mean square estimators, we have, on Γ m , ˆ a m = G -1 m Υ m and thus, plugging this in ( 9), ( 11)

γ n ( ĥm ) = - 1 2π t Υ m G -1 m Υ m .
Formula ( 11) allows an easy computation of the contrast, and this is useful for the sequel.

Risk bound and model selection

3.1. Risk bound and discussion about the rate. First let us study the L 2 -risk of our estimator ĥm defined by Equation ( 10). For this purpose, we introduce the norm f 2 A = A f 2 (x) dx. Let h m be the orthogonal projection of h X on the space generated by the ϕ m,k for k ∈ K m . We can prove the following result.

Proposition 3.1. Assume that f ε satisfies (2) with regularity α > 1/2 and the Y j 's admit moments of order 2. Assume also that (A1) and (A2) hold, that r > α + 1 and that f Y , S C f X and h X are bounded on A. Let ĥm be defined by (10). Then there exist constants

C 1 , C 2 , C 3 such that, ∀m such that D m ≤ n 1/(2α+1) , E h X -ĥm 2 A ≤ C 1 h X -h m 2 A + C 2,1 D 2α+1 m n + C 2,2 D (2α)∨1 m n + C 2,3 D m n + C 3 n (12) ≤ C 1 h X -h m 2 A + C 2 D 2α+1 m n + C 3 n (13)
where

C 1 = C 1 (S 0 ), C 3 = C 3 ( h X A ) are two constants and (14) C 2 = C 2,1 + C 2,2 + C 2,2 . with 2πC 2,1 = Φ 2 0 C 2 ε S C f X ∞ I 1 + (2r -1)Φ 4 0 C 2 ε h X 2 A I 2 /(2π) 2 2πC 2,2 = 2(2r -1)Φ 4 0 C 2 ε h X 2 A f Y ∞ /(2π), 2πC 2,3 = 2 α (2r -1)Φ 4 0 C 2 ε h X 2 A E[Y 2 1 ]/(2π),
where Discussion about the convergence rate. First, let us recall that a function f belongs to the Besov space

I 1 = |N * r (z)| 2 (1 + z 2 ) α dz, I 2 = |v|>1 |v| -r (1 + v 2 ) α/2 dv 2 . The first term h -h m 2 A is
B β, ,∞ ([0, 1]) if it satisfies (15) |f | β, = sup y>0 y -β w d (f, y) < +∞, d = [β] + 1,
where w d (f, y) denotes the modulus of smoothness. For a precise definition of those notions we refer to DeVore and Lorentz (1993) Chapter 2, Section 7, where it is also proved that

B β,p,∞ ([0, 1]) ⊂ B β,2,∞ ([0, 1]) for p ≥ 2.
This justifies that we now restrict our attention to B β,2,∞ ([0, 1]). It follows from Theorem 3.3 in Chapter 12 of DeVore and Lorentz (1993

) that h X -hm 2 A = O(D -2β m ), if h belongs to some Besov space B β,2,∞ ([0, 1]) with |h| β, 2 ≤ L
for some fixed L and hm is the projection of h X on the space generated by the ϕ m,k for k ∈ Km .

Consequently, under Besov regularity assumptions with regularity index β, we know that h Xhm

2 A = O(D -2β m ), which implies, for a choice D mopt = O(n 1/(2α+2β+1) ), and if h X -hm 2 A h X -h m 2 A , a rate E h X -ĥmopt 2 A = O n -2β/(2α+2β+1)
Note that this rate is the optimal rate for density estimation in presence of noise satisfying (2) without censoring (see [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] for Hölder regularity), therefore, it is likely to be optimal here as well. However, it is not straightforward to evaluate the distance between h X -hm 2 and h X -h m 2 , even if this difference is likely to be small in practice. This also justify why we use Km in the implementation of the estimator.

3.2. Model selection. The aim of this section is to provide a data-driven estimator of the hazard rate h X with a L 2 -risk as close as possible to the oracle risk defined by inf m h X -ĥm 2 . Thus we follow the model selection paradigm introduced by [START_REF] Birgé | From model selection to adaptive estimation[END_REF], [START_REF] Birgé | An alternative point of view on Lepski's method[END_REF], [START_REF] Massart | Concentration Inequalities and Model selection[END_REF] which yields to a choice of the dimension of projection space m according to a penalized criterion.

To obtain the data driven selection of m, we propose the following additional step. We select

(16) m = arg min m∈Mn γ n ( ĥm ) + pen(m) with pen(m) = κ C 2 D 2α+1 m n , M n = {m, D 2α+1 m ≤ n},
where C 2 is given by ( 14) and κ is a numerical constant. Then we consider the estimator h = ĥ m . We recall that γ n ( ĥm ) is given by ( 11) and thus easy to compute. Then we can prove the following result.

Theorem 3.2. Assume that the assumptions of Proposition 3.1 hold and the Y j 's admit moments of order 10 and consider the estimator ĥ m with m given by ( 16). Then there exists κ 0 such that for all

κ ≥ κ 0 , (17) E h X -h 2 A ≤ C 1 inf m∈Mn h X -h m 2 A + pen(m) + C 3 n ,
where

C 1 = C 1 (S 0 ) and C 3 = C 3 ( h X A ) are positive constants.
The first term is the squared bias. The second term pen(m) is of order of the variance term. The oracle inequality is achieved up to the negligible term C 3 /n.

Many terms are known in C 2 , but there are also unknown terms namely

S C f X ∞ , h X 2 A , f Y ∞ and E[Y 2 1 ].
In practice, they are replaced by estimators.

Illustrations

The whole implementation is conducted using R software. The integrated squared errors h X -h 2 A are computed via a standard approximation and discretization (over 300 points) of the integral on an interval A. Then the mean integrated squared errors (MISE) E h X -h 2 A are computed as the empirical mean of the approximated ISE over 500 simulation samples. 4.1. Simulation setting. The performance of the procedure is studied for the four following distributions for X. All the densities are normalized with unit variance.

Mixed Gamma distribution: X = W/ √ 5.48 with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1),

A = [0, 5.5]. Beta distribution: X ∼ B(2, 5)/ √ 0.025, A = [0, 2.5]. Gaussian distribution: X ∼ N (5, 1), A = [0, 5.5]. Gamma distribution: X ∼ Γ(5, 1)/ √ 5, A = [0, 2.5].
Data are simulated with a Laplace noise with variance σ 2 = 2b 2 as follows:

f ε (x) = 1 2b 2e -|x|/b and f * ε (x) = 1 1 + b 2 x 2
Since the four target densities X are normalized with unit variance, it allows the ratio 1/σ 2 to represent the signal-to-noise ratio, denoted s2n. We consider signal to noise ratios of s2n = 2.5 and s2n = 10 in the simulations which means that b = 1/(2 √ 5) and b = 1/( √ 5). The censoring variable C is simulated with an exponential distribution, with parameter λ chosen to ensure 20% or 40% of censored variables. We consider samples of size n = 400 and 1000.

We choose the same design of simulation as in [START_REF] Comte | Hazard estimation for censored data contaminated with additive measurement error: Application to length of pregnancy[END_REF] in order to compare our procedure with theirs. 4.2. Practical estimation procedure. The adaptive procedure is implemented as follows:

For m ∈ M n = {m 1 , . . . , m n }, compute γ n ( ĥm ) + pen(m). Choose m such that m = arg min m∈Mn γ n ( ĥm ) + pen(m) .

Compute h(

x) = k∈ K m â m,k ϕ m,k (x).
Gathering ( 11) and ( 16), our procedure consists in computing

m = arg min m∈Mn -t Υ m G -1 m Υ m + κC 2 D 2α+1
m n with κ = 0.5 and M n = m ∈ N, m ≤ n 1/5 / log 2 . We chose splines with r = 4. When there is no noise (NN), our procedure reduces to Plancade (2011)'s, and G m and Υ m become more simply G NN m and Υ NN m defined by

G NN m =   1 n n j=1 A ϕ m,k (u)ϕ m,k (u)1 {u≤Y j } du   k,k ∈ Km , Υ NN m =   1 n n j=1 δ j ϕ m,k (Y j )   k∈ Km
where here Y j = X j ∧ C j . The selection is performed via [START_REF] Plancade | Model selection for hazard rate estimation in presence of censoring[END_REF] shows that κ > 1 is a theoretical suitable value for the adaptive procedure. Since we do not use the same basis as the author we take κ = 5. Moreover, as in [START_REF] Plancade | Model selection for hazard rate estimation in presence of censoring[END_REF] for sake of simplicity, we do not estimate h X ∞ and suppose that this quantity is known. Some preliminary numerical studies show that replacing it by its estimator hardly affects the result. Thus in our procedure we do not estimate h X ∞ either.

m NN = arg min m∈M NN n -t Υ NN m (G NN m ) -1 Υ NN m + κ h X ∞ D m n , with M NN n = {m ∈ N, m ≤ n/ log 2}.
To evaluate the quality of the estimators, we approximate via Monte Carlo repetitions the minimal risk of the collection ( ĥm ) (risk of the oracle), the quadratic risk of ĥ m, and the risk of the quotient estimator. More precisely, we denote ror and rad :

(18) ror = min m∈Mn E h X -ĥm 2 A and rad = E h X -ĥ m 2 A
where E is the approximation of theoretical expectation computed via Monte Carlo repetitions. We denote rquot the estimated risk of the quotient estimator obtained by [START_REF] Comte | Hazard estimation for censored data contaminated with additive measurement error: Application to length of pregnancy[END_REF].

4.3. Simulation results. The results of the simulations are given in Table 1. In the Table we report estimations of MISE when the data are not censored, or not noisy, or neither censored nor noisy. First we see that the risk decreases when the sample size increases. Likewise the risk increases when the variance and the censoring increase.

We can see that for the mixed Gamma distribution our results are less good than those of [START_REF] Comte | Hazard estimation for censored data contaminated with additive measurement error: Application to length of pregnancy[END_REF]. But we can notice that for a mixed distribution, our results are similar to those of [START_REF] Plancade | Model selection for hazard rate estimation in presence of censoring[END_REF]. However when the censoring level is high and the sample size small we obtain a better result. For the Gaussian distribution, the results of the two methods are equivalent. Our method improves the estimation for the Beta and Gamma distributions. Globally, we get better results than [START_REF] Comte | Hazard estimation for censored data contaminated with additive measurement error: Application to length of pregnancy[END_REF] in 65% of the cases, which is good performance.

Note that our procedure requires only one constant calibration whereas [START_REF] Comte | Hazard estimation for censored data contaminated with additive measurement error: Application to length of pregnancy[END_REF] use an estimator which is a quotient and choose independently the two dimensions and thus two constant calibrations.

Proofs

5.1. About the spline basis. Any function t ∈ S m can be decomposed as t(x) = k∈Km a m,k ϕ m,k (x). Moreover, when t = 1, we have k a 2 m,k ≤ Φ 0 from (7). The following relations will be used in the proofs.

Lemma 5.1.

1) For all j = J, . . . , m and k ∈ Λ j , we have

ϕ m,k (•) = 2 m/2 N r (2 m • -k), ϕ * m,k (u) = 2 -m/2 e iuk/2 m N * r u 2 m .
2) For any m and any k, k , Lemma 4 from Lacour ( 2008) yields Let us also consider the sets

(2π)|(ϕ m,k ϕ m,k ) * (u)| = |ϕ * m,k ϕ * m,k (u)| ≤ |2 -m u| 1-r if |u| > 2 m 1 if |u| ≤ 2 m .

Proof of Proposition

∆ m = ω / ∀t ∈ S m , t 2 S X∧C ≤ 3 2 Ψ n (t) , ∆ = m∈Mn ∆ m .
It is easy to see that ∀m ∈ M n , ∆ ⊂ ∆ m ⊂ Γ m , see [START_REF] Lacour | Least squares type estimation of the transition density of a particular hidden markov chain[END_REF]. Moreover, we can prove in the same way that P(∆ c ) ≤ c/n 3 .

Let h m be the orthogonal-L 2 (A, dx) projection of h X on S m . We have

E h X -ĥm 2 A ≤ 2 h X -h m 2 A + 2E[ ĥm -h m 2 A ] and ĥm -h m 2 A = ĥm -h m 2 A 1 ∆ + ĥm -h m 2 A 1 ∆ c .

Now we have the following Lemma:

Lemma 5.2. Under the Assumptions of Proposition 3.1, for any m ∈ M n , we have ĥm 2 ≤ n 2 a.s.

This yields

E h X -ĥm 2 A ≤ 2 h X -h m 2 A + 2E ĥm -h m 2 A 1 ∆ + 4E ĥm 2 A + h X 2 A 1 ∆ c ≤ 2 h X -h m 2 A + 2 S 0 E ĥm -h m 2 S X∧C 1 ∆ + 4 n 2 + h X 2 A P [∆ c ] ≤ 2 h X -h m 2 A + 3 S 0 E Ψ n ( ĥm -h m )1 ∆ + 4 n 1 + h X 2 A n 2 . (19) Now let us define ν n,1 (t) = 1 2π t * (-u) ( θY (u) -E[ θY (u)]) f * ε (u) du with θY (u) = (1/n) n j=1 δ j e iuY j , ν n,2 (t) = 1 2π (th m )(-u) S * X∧C (u) -E S * X∧C (u) du.
We have

γ n ( ĥm ) -γ n (h m ) = Ψ n ( ĥm -h m ) -2ν n,1 ( ĥm -h m ) -2ν n,2 (h m -ĥm ) + 2 ĥm -h m , h m -h X S X∧C .
Then writing that on ∆ ⊂ Γ m , (20)

γ n ( ĥm ) ≤ γ n (h m )
and defining B(m) = {t ∈ S m , t = 1}, we get, on ∆,

Ψ n ( ĥm -h m ) ≤ 2ν n,1 ( ĥm -h m ) + 2ν n,2 (h m -ĥm ) + 2 ĥm -h m , h X 1 A -h m S X∧C ≤ 2ν n,1 ( ĥm -h m ) + 2ν n,2 (h m -ĥm ) + 1 4 ĥm -h m 2 S X∧C + 4 h X 1 A -h m 2 S X∧C ≤ 1 4 ĥm -h m 2 S X∧C + 8 S 0 sup t∈B(m) ν 2 n,1 (t) + 8 S 0 sup t∈B(m) ν 2 n,2 (t) + 1 4 ĥm -h m 2 S X∧C + 4 h X 1 A -h m 2 S X∧C Then, as ĥm -h m 2 S X∧C 1 ∆ ≤ 3 2 Ψ n ( ĥm -h m )1 ∆ , we obtain that, on ∆, (21) 1 4 Ψ n ( ĥm -h m ) ≤ 4 h X 1 A -h m 2 S X∧C + 8 S 0 sup t∈B(m) ν 2 n,1 (t) + 8 S 0 sup t∈B(m) ν 2 n,2 (t).
Now, plugging ( 21) in ( 19), we get

E h X -ĥm 2 A ≤ C 1 h X -h m 2 A + E sup t∈B(m) ν 2 n,1 (t) + E sup t∈B(m) ν 2 n,2 (t) + 4 n 1 + h X 2 A n 2 . (22) with C 1 = max i=1,2 (C 0,i ) with C 0,1 = 2 + 48/S 0 , C 0,2 = 96/S 2 0 .
To conclude, we use the following proposition proved below: Proposition 5.3. Under the assumptions of Proposition 3.1, for i = 1, 2

(23) E sup t∈B(m) ν 2 n,i (t) ≤ K i D 2α+1 m n ,
where K 1 , K 2 are constants which do not depend on n nor m.

Inserting ( 23) in ( 22) gives the result and ends the proof of Proposition 3.1.

5.2.1.

Proof of Lemma 5.2. If ĥm is non zero, then we are on Γ m . Therefore ĥm

2 ≤ Φ 2 0 ˆ a m 2 = G -1 m Υ m 2 ≤ [9/(4S 2 0 )] Υ m 2 . Then, using that | θY (u)| ≤ 1 a.s., we get Υ m 2 = k∈Km ϕ * m,k (u) θY (u) f * ε (u) du 2 ≤ k |ϕ * m,k (u)| |f * ε (u)| du 2 ≤ k |2 -m/2 N * r (u/2 m )| |f * ε (u)| du 2 ≤ C 2 ε k 2 m 2 2mα |N * r (v)|(1 + v 2 ) α/2 dv 2 ≤ C 2 ε D 2α+2 m sin(v/2) v/2 r (1 + v 2 ) α/2 dv 2 ≤ C 1 D 2α+2 m ≤ n 2
where we use

D 2α+1 m ≤ n. The constant is such that C 1 = C 2 ε sin(v/2) v/2 r
(1 + v 2 ) α/2 dv and is finite provided that r > α + 1.

Proof of Proposition 5.3. We start with E sup

t =1 |ν n,1 (t)| 2 . Φ -2 0 E sup t =1 |ν n,1 (t)| 2 ≤ k∈Km E ν 2 n,1 (ϕ m,k ) ≤ 1 (2π) 2 k∈Km E     1 n n j=1 ϕ * m,k (-u)δ j e iuY j -Ee iuY j f * ε (u) du   2   = 1 (2π) 2 k∈Km 1 n Var ϕ * m,k (-u)δ 1 e iuY 1 f * ε (u) du ≤ 1 n 1 (2π) 2 k∈Km E ϕ * m,k (-u)δ 1 e iuY 1 f * ε (u) du 2 = 1 n 1 (2π) 2 k∈Km E ϕ * m,k (-u)δ 1 e iu(X 1 +ε 1 ) f * ε (u) du 2 = 1 n 1 (2π) 2 k∈Km ϕ * m,k (-u) e iu(x+e) f * ε (u) du 2 S C (x)f X (x)f ε (e) dx de ≤ 1 n S C f X ∞ (2π) 2 k∈Km ϕ * m,k (-u) e iuz f * ε (u) du 2 dz ≤ 1 n S C f X ∞ 2π k∈Km ϕ * m,k (-u) f * ε (u) 2 du
by using Parseval equality. Using that the noise is ordinary-smooth with constant α, we obtain

E sup t =1 |ν n,1 (t)| 2 ≤ Φ 2 0 n S C f X ∞ 2π k∈Km |N * r (z)| 2 |f * ε (2 m z)| 2 dz ≤ Φ 2 0 C 2 ε n S C f X ∞ 2π k∈Km |N * r (z)| 2 (1 + (2 m z) 2 ) α dz ≤ Φ 2 0 C 2 ε n S C f X ∞ 2π k∈Km 2 2mα |N * r (z)| 2 (1 + z 2 ) α dz
As we assume that r > α + 1 2 , the integral

|N * r (z)| 2 (1 + z 2 ) α dz is finite. We obtain (24) E sup t =1 |ν n,1 (t)| 2 ≤ K 1 D 2α+1 m n , with K 1 = Φ 2 0 C 2 ε S C f X ∞ 2π |N * r (z)| 2 (1 + z 2 ) α dz
which is the announced result for i = 1.

• Now we consider E sup t =1 |ν n,2 (t)| 2 .
The following inequality will be used:

(25) ∀u ∈ R, ∀a ∈ R, e iua -1 u ≤ |a|.
First, because of convergence problems near 0, we split this term in three parts:

E sup t =1 |ν n,2 (t)| 2 ≤ 3(T 1 + T 2 + T 3 )
where Z j (u) = e iuY j -1 and for = 1, 2, 3,

T = 1 (2π) 2 E   sup t =1 D (th m ) * (u) 1 n 1 iu n j=1 Z j (u) -E[Z j (u)] f * ε (u) du 2   , with D 1 = {|u| ≤ 1}, D 2 = {1 < |u| ≤ 2 m } and D 3 = {|u| > 2 m }. Indeed e iuY j -f * ε (u) -E[e iuY j -f * ε (u)] = Z j (u) -E[Z j (u)].
In all cases we start by decomposing the functions t and h m on the basis (ϕ m,j ) j :

T ≤ Φ 4 0 h m 2 A (2π) 2 k∈Km j,|j-k|<r E   D (ϕ m,k ϕ m,j ) * (u) 1 n 1 iu n j=1 Z j (u) -E[Z j (u)] f * ε (u) du 2   .
For T 1 we write that, by Schwarz's inequality

T 1 ≤ Φ 4 0 h m 2 A (2π) 2 k∈Km j,|j-k|<r |u|≤1 |(ϕ m,k ϕ m,j ) * (u)| 2 E   1 n 1 iu n j=1 Z j (u) -E[Z j (u)] f * ε (u) 2   du ≤ Φ 4 0 h m 2 A (2π) 2 n k∈Km j,|j-k|<r |u|≤1 |(ϕ m,k ϕ m,j ) * (u)| 2 |f * ε (u)| 2 E Z 1 (u) -E(Z 1 (u)) iu 2 du.
Now we use Equation ( 25) and Lemma 5.1, 2) to get

T 1 ≤ Φ 4 0 h m 2 A (2π) 3 n k∈Km j,|j-k|<r |u|≤1 du |f * ε (u)| 2 E[Y 2 1 ] = Φ 4 0 2 α C 2 ε h X 2 A (2r -1)E[Y 2 1 ]D m (2π) 3 n Thus (26) T 1 ≤ C 2,3 D m /n, with C 2,3 = Φ 4 0 C 2 ε 2 α h X 2 A (2r -1)E[Y 2 1 ]/(2π) 3 .
For T 2 , we use Parseval formula and Lemma 5.1, 2) and we obtain

T 2 ≤ Φ 4 0 h m 2 A (2π) 2 n k∈Km j,|j-k|<r E   1<|u|≤2 m (ϕ m,k ϕ m,j ) * (u) 1 iu e iuY 1 f * ε (u) du 2   ≤ Φ 4 0 h m 2 A f Y ∞ 2πn k∈Km j,|j-k|<r 1<|u|≤2 m |(ϕ m,k ϕ m,j ) * (u)| 2 u 2 |f * ε (u)| 2 du ≤ Φ 4 0 h m 2 A f Y ∞ (2π) 2 n k∈Km j,|j-k|<r 1<|u|≤2 m du u 2 |f * ε (u)| 2 ≤ 2(2r -1)D m Φ 4 0 h X 2 A C 2 ε f Y ∞ (2π) 2 n (2 m ) (2α-1) + ≤ 2(2r -1)Φ 4 0 C 2 ε h X 2 A f Y ∞ (2π) 2 n D 2α∨1 m . Thus (27) T 2 ≤ C 2,2 D (2α)∨1 m /n, with C 2,2 = 2(2r -1)C 2 ε Φ 4 0 h X 2 A f Y ∞ /(2π) 2 .
Lastly, for T 3 , we use Lemma 5.1, 2).

T 3 ≤ Φ 4 0 h X 2 A (2π) 2 n k∈Km j,|j-k|<r E   |u|>2 m (ϕ m,k , ϕ m,j ) * (u) 1 iu e iuY 1 f * ε (u) du 2   ≤ C 2 ε Φ 4 0 h X 2 A (2π) 3 n k∈Km j,|j-k|<r |u|>2 m |2 -m u| 1-r (1 + u 2 ) α/2 |u| du 2 ≤ C 2 ε Φ 4 0 h X 2 A (2π) 3 n (2r -1)D m |v|>1 |v| 1-r (1 + 2 2m v 2 ) α/2 2 m |v| 2 m dv 2 ≤ (2r -1)C 2 ε Φ 4 0 h X 2 A D 2α+1 m (2π) 3 n |v|>1 |v| -r (1 + v 2 ) α/2 dv 2 ≤ K 2 D 2α+1 m n , (28) 
with ( 29)

K 2 = (2r -1)C 2 ε Φ 2 0 h X 2 A (2π) 3 |v|>1 |v| -r (1 + v 2 ) α/2 dv 2 ,
if α-r+1 < 0 i.e. r > α+1. Then gathering ( 26), ( 27) and ( 28) implies the result with C 2,1 = K 1 +K 2 with K 1 defined in ( 24) and K 2 in (29).

5.3. Proof of Theorem 3.2. The proof starts similarly as proof of Proposition 3.1 with ĥm replaced by ĥ m until inequality (20) which is now replaced by the fact that ∀m ∈ M n , γ n ( ĥ m ) + pen( m) ≤ γ n (h m ) + pen(m).

Here, we define B(m, m ) = {t ∈ S m + S m , t = 1} and we get Ψ n ( ĥ m -h m ) ≤ 2ν n,1 ( ĥ m -h m ) + 2ν n,2 ( ĥ m -h m ) + 2 ĥ m -h m , h m -h X S X∧C +pen(m) -pen( m)

≤ 2ν n,1 ( ĥ m -h m ) + 2ν n,2 ( ĥ m -h m ) + 1 4 ĥ m -h m 2 S X∧C + 4 h X -h m 2 S X∧C + pen(m) -pen( m) ≤ 1 4 ĥ m -h m 2 S X∧C + 8 S 0 sup t∈B(m, m) ν 2 n,1 (t) + 8 S 0 sup t∈B(m, m) ν 2 n,2 (t) + 1 4 ĥ m -h m 2 S X∧C + 4 h X -h m 2 S X∧C + pen(m) -pen( m) ≤ 4 h X -h m 2 S X∧C + pen(m) + 1 2 ĥ m -h m 2 S X∧C + 8 S 0 sup t∈B(m, m) ν 2 n,1 (t) -p 1 (m, m) + + 8 S 0 sup t∈B(m, m) ν 2 n,2 (t) -p 2 (m, m) + + 8 S 0 (p 1 (m, m) + p 2 (m, m)) -pen( m)
We shall choose the penalty so that ∀m, m ∈ M n , (8/S 0 )(p 1 (m, m ) + p 2 (m, m )) ≤ pen(m) + pen(m ).

Therefore we get, on ∆,

Ψ n ( ĥ m -h m ) ≤ 4 h X -h m 2 S X∧C + 2pen(m) + 1 2 ĥ m -h m 2 S X∧C +8 sup t∈B(m, m) ν 2 n,1 (t) -p 1 (m, m) + + 8 sup t∈B(m, m) ν 2 n,2 (t) -p 2 (m, m) + Then, ĥ m -h m 2 S X∧C 1 ∆ ≤ 3 2 Ψ n ( ĥ m -h m ) implies that, on ∆, 1 4 Ψ n ( ĥ m -h m ) ≤ 4 h X -h m 2 S X∧C + 2pen(m) + 8 sup t∈B(m, m) ν 2 n,1 (t) -p 1 (m, m) + +8 sup t∈B(m, m) ν 2 n,2 (t) -p 2 (m, m) +
Now, inserting this in ( 19) with ĥm replaced by h = ĥ m , we get

E h X -h 2 A ≤ C 1 h X -h m 2 A + pen(m) + E sup t∈B(m, m) ν 2 n,1 (t) -p 1 (m, m) + +E sup t∈B(m, m) ν 2 n,2 (t) -p 2 (m, m) + + 4 n 1 + h X 2 A n .
with C 1 = max i=1,2 (C 0,i ) with C 0,1 = 2 + 48/S 0 , C 0,2 = 296/S 2 0 . Now we use the following proposition proved below:

Proposition 5.4. Let, for i = 1, 2, p i (m, m ) = τ i log(n)D 2α+1 m /n with τ i proportional to K i , then E sup t∈B(m, m) ν 2 n,i (t) -p i (m, m) + ≤ C n .
This ends the proof of Theorem 3.2.

5.3.1. Proof of Proposition 5.4. To prove Proposition 5.4, we apply to ν n,1 and ν n,2 the following version of Talagrand inequality.

Lemma 5.5. Let T 1 , . . . , T n be independent random variables and ν n (r) = (1/n) n j=1 (r(T j ) -E[r(T j )]), for r belonging to a countable class R of measurable functions. Then, for > 0, (30) Var[r(T j )] ≤ v.

E sup r∈R |ν n (r)| 2 -(1 + 2 )H 2 + ≤ C v n e -K 1 nH 2 v + M 2 n 2 C 2 ( ) e -K 2 C( ) √ nH M with K 1 = 1/6, K 2 = 1/(21 √ 2), C( ) = √ 1 + -1
Inequality (30) is a straightforward consequence of the Talagrand inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. Moreover, standard density arguments allow to apply it to the unit ball of spaces.

• Study of ν n,1 . We need to compute the three bounds involved in Lemma 5.5. We proved the bound for E sup t =1 |ν n,1 (t)| 2 in Proposition 5.3, and the spaces are nested so that S m + S m is just equal to the largest of the two spaces. Therefore

H 2 = C n (D m ∨ D m ) 2α+1 S C f X ∞ . Now we compute v such that sup t∈Sm∨S m , t =1 Var[δ 1 t * (u) f * ε (u) e iuY 1 du] ≤ v.
For this we denote by S m * = S m ∨ S m and write, using Parseval equality as previously, sup

t∈S m * , t =1 Var δ 1 2π t * (u) f * ε (u) e iuY 1 du ≤ f X S C ∞ 2π sup t∈S m * , t =1 t * (u) f * ε (u) 2 du ≤ f X S C ∞ 2π sup t∈S m * , t =1 t * |t * (u)| 2 |f * ε (u)| 4 du 1/2 ≤ f X S C ∞ Φ 2 0 √ 2π   k∈K m * C 4 ε |N * r (v)| 2 (1 + (2 m * v) 2 )) 2α dv   1/2 ≤ C 2 ε f X S C ∞ D 2α+1/2 m * Φ 2 0 √ 2π |N * r (w)| 2 (1 + w 2 ) α dw 1/2 := v.
The last constant to be computed in order to apply Lemma 5.5 is M .

sup t∈Sm, t =1 sup z δ 1 1 2π e iuz t * (u) f * ε (u) du ≤ sup t∈Sm, t =1 k∈Km a m,k ϕ * m,k (u) f * ε (u) du ≤   k∈Km ϕ * m,k (u) f * ε (u) du 2   1/2 ≤   k∈Km 2 -m N * r (u/2 m ) f * ε (u) du 2   1/2 ≤ 2 2m N * r (v) f * ε (2 m v) dv 2 1/2 ≤ C 2 2m 2 2mα 1/2 ≤ CD α+1 m =: M Finally, Lemma 5.5 with = 1/2, M = (D * m ) α+1 , v = C(D * m ) 2α+1/2 and H 2 = C(D * m ) 2α+1 /n where D * m = D m ∨ D m yields E sup t∈Sm∨S m ν 2 n,1 (t) -2H 2 ≤ m / D m ∈Mn E sup t∈Sm∨S m ν 2 n,1 (t) -2H 2 ≤ C 0 m (D m ∨ D m ) 2α+1 n e -C 1 √ Dm∨D m + (D m ∨ D m ) 2α+2 n 2 e -C 2 √ n/ √ Dm∨D m ≤ K/n since the first series is convergent and ∀m ∈ M n , D m ≤ √ n (indeed, D 2α+1 m ≤ n and α > 1/2); thus n/D m ∨ D m ≥ n 1/4 and exp(-C 2 √ n/ √ D m ∨ D m ) ≤ exp(-C 2 n 1/4
) for any m.

• Study of ν n,2 . First, because of boundedness problems, we split the expectation in two terms

E sup t∈Sm∨S m ν 2 n,2 (t) -p 2 (m, m) ≤ 2E sup t∈Sm∨S m |ν (1) n,2 (t)| 2 +2E sup t∈Sm∨S m |ν (2) n,2 (t)| 2 -p 2 (m, m)/2 where, for = 1, 2, ν ( ) n,2 (t) = t * h * m (u) 1 n 1 iu n j=1 Z ( ) j (u) -E(Z ( ) j (u)) f * ε (u) du,
with Z

(1) j and Z

(2) j defined, introducing a cut-off c n , as:

Z (1) j (u) = (e iuY j -1)1 {|Y j |>cn} , Z (2) 
j (u) = (e iuY j -1)1 {|Y j |≤cn} . We choose c n = c 0 √ n/ log(n) where c 0 is detailed below.

We start with ν

(1) n,2 . We want to bound E

1 := E sup t =1,t∈Sm+S m |ν (1) n,2 (t)| 2 . Let S n be a nesting space such that ∀m ∈ M n , S m ⊂ S n . Then E 1 ≤ E sup t =1,t∈Sn |ν (1) n,2 (t)| 2 ≤ E   k∈Km n ϕ * mn,k h * m (u) 1 n 1 iu n j=1 Z (1) j (u) -E(Z (1) j (u)) f * ε (u) du 2   = 1 n E   k∈Km n ϕ * mn,k h * m (u) 1 iu Z (1) 1 (u) -E(Z (1) 1 (u)) f * ε (u) du 2   ≤ E[Y 2 1 1 |Y 1 |>cn ] n k∈Km n ϕ * mn,k h * m (u) f * ε (u) du 2
Now, decomposing h m along the ϕ mn, we get

k∈Km n ϕ * mn,k h * m (u) f * ε (u) du 2 ≤ Φ 2 0 h m 2 A k∈Km n ,| -k|<r ϕ * mn,k ϕ * mn, (u) f * ε (u) du 2 .
With Lemma 5.1, 2), we get

k∈Km n ϕ * mn,k h * m (u) f * ε (u) du 2 ≤ 4Φ 2 0 h m 2 A C 2 ε k∈Km n ,| -l|<r |u|≤2 mn (1 + u 2 ) α/2 du + |u|>2 mn |2 -mn u| 1-r (1 + u 2 ) α/2 du 2 ≤ 4Φ 2 0 h X 2 A (2r -1)D mn C 2 ε (2 2mn(α+1) + 2 mn(2α+2) ( |v|>1 |v| 1-r (1 + v 2 ) α/2 dv) 2 ) = O(D 2α+3 n ).
All dimensions considered are such that D 2α+1 m /n ≤ C, so that D 2α+3 n ≤ n 3 . Then for any p, we have We apply Talagrand Inequality and compute the three bounds involved in Lemma 5.5. First, because of convergence problems near 0, similarly to proof of Proposition 5.3, we split this term in three parts: (2 -m * u) 1-r uf * ε (u) n,2 , following the same lines as for ν n,1 .

E 1 ≤ Cn 2 E[Y 2 1 1 |Y 1 |>cn ] ≤ Cn 2 E[|Y 1 | 2+p ]/
E sup t =1 |ν (2) n,2 (t)| 2 ≤ 3E   sup t =1 |u|≤1 t * h * m (u) 1 n n j=1 Z (2) j (u) -E[Z ( 
2 du ≤ f Y ∞ Φ 4 0 h X 2 A (

  the squared bias. The second term C 2 D 2α+1 m /n is the variance term. Inequality (13) gives the bias-variance decomposition, up to the negligible term C 3 /n. Comment about C 2 . We summarize the variance as C 2 D 2α+1 m /n in (13), but it results in fact of three contributions detailed in (12). The first term is really of order D 2α+1 m , the second one has order D 2α∨1 m and the last one is of order D m .

  follows the same line as bounding E[sup t =1 |ν n,2 (t)| 2 ] in the proof of Proposition 5.3, so that we getH 2 = C(D m ∨ D m ) 2α+1 /n. Now we look for v = 3(v 1 + v 2 + v 3) with obvious notation. For the first two terms corresponding to previous T 1 and T 2 , we can clearly obtainv 1 = K 2,1 D m ∨ D m and v 2 = K 2,2 D 2αm under the assumption α > 1/2. For T 3 , we have supt∈S m * , t =1 Var 1 2π |u|≥2 m * (th m ) * (u) iuf * ε (u) e iuY 1 du ≤ f Y ∞ 2π sup t∈S m * , t =1 |u|≥2 m * (th m ) *(u) |j-k|<r |u|≥2 m * (ϕ m * ,k ϕ m * ,j ) * (u) |j-k|<r |u|≥2 m *

  with = 1/2 and c n = c 0 √ n/ log(n) gives the result for ν(2)

Table 1 .

 1 MISE×100 of the estimation of h X , compared with the MISE obtained when data are not censored, or not noisy, or neither censored nor noisy. MISE was averaged over 500 samples (1000 for r quot ). Data are simulated with a Laplace noise, and an exponential censoring variable.

	3.1. Let us define	
	Ψ n (t) =	1 2π	(t 2 )

* (u) S * X∧C (u) du, which is such that, for t ∈ S m , E [Ψ n (t)] = A t 2 (x)S X∧C (x) dx := t 2 S X∧C .

  c p

n so that p = 8 implies that E 1 ≤ CE[|Y 1 | 10 ](log(n)) 8 /n 2 ≤ C/n.

Now we consider ν

(2) n,2 and more precisely,

E sup t =1 |ν (2) n,2 (t)| 2 .

  -2r (1 + z 2 ) α dz = v 3 , for r > α + 1/2. Therefore we obtain v = θ(D m ∨ D m ) 2α .Next, we look for M 1 . The term to be bounded is We split it into two terms as previously, depending on|u| < 2 m or |u| ≥ 2 m . ≤ 2 m |t * h * m (u)| 2 du = 2π2 m th m D m , so that, as h m ∞,A ≤ 2 h X ∞,A , we obtain sup

	As previously, we have		
									2
				sup t =1 |u|≤2 m	|t * h * m (u)| du	2 A
					2 ∞,A t =1 ≤ 2π h m sup y∈R + |u|≤2 m t * h * m (u) f * ε (u) (e iuy -1)1 |y|<cn u	du ≤ Kc n D α+1/2 m	.
	Now, we bound the second part with |u| > 2 m
	sup t =1	sup y∈R +	|u|>2 m	t * h * m (u) f * ε (u)	(e iuy -1)1 |y|<cn u	du
	≤ sup t =1 |u|>2 m	t * h * m (u) f * ε (u)	2 u	du
	≤ h m A	  k∈Km ,|k-|<r	|u|>2 m	ϕ * m,k ϕ * m, (u) f * ε (u)	2 u	du
					2π		2r -1)	D 2α m *	|z|>1
									sup t =1	sup y∈R +	t * h * m (u) f * ε (u)	(e iuy -1)1 |y|<cn u	du
	sup t =1	sup y∈R +	|u|≤2 m	t * h * m (u) f * ε (u)	(e iuy -1)1 |y|<cn u	du ≤ c n sup t =1 |u|≤2 m	t * h * m (u) f * ε (u)	du
									≤ c n 2 mα sup t =1 |u|≤2 m	|t * h * m (u)| du

|z|