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Abstract. Using an incremental multi-objective evolutionary algorithm and the
ModNet encoding, we generated working neuro-controllers for target-following
behavior in a simulated flapping-wing animat. To this end, weevolved tail con-
trollers that were combined with two closed-loop wing-beatcontrollers previ-
ously generated, and able to secure straight flight at constant altitude and speed.
The corresponding results demonstrate that a wing-beat strategy that consists in
continuously adapting the twist of the external wing panel leads to better ma-
noeuvring capabilities than another strategy that adapts the beating amplitude.
Such differences suggest that further improvements in flying control should bet-
ter rely on some sort of automatic incremental evolution procedure than on any
hand-designed decomposition of the problem.

1 Introduction

Birds continuously demonstrate capabilities which would be of great interest for most
Unmanned Aerial Vehicles (UAVs). They are highly agile, able to take off without any
runway, to settle on a branch, and to exploit thermals like a sailplane. Consequently, bio-
inspired flapping-wing platforms could represent useful trade-offs able to benefit from
both the manoeuvrability of helicopters and the energy efficiency of standard airplanes.

However, taking inspiration from birds to design a flapping-wing UAV requires a
deep understanding of complex aerodynamic principles thatnature learned to exploit in
about 150 millions years of evolution. In particular, the numerous degrees of freedom
of such UAV must be carefully synchronized to produce adequate thrust and lift forces.
Additionally, the corresponding rhythmic movements must be continuously adapted
to unpredictable changes in the surrounding air mass. To tackle such issues, that are
currently not solved by traditional engineering approaches, the ROBUR project of the
AnimatLab [7] aims at designing the morphology and control of a flapping-wing animat
through artificial evolution.

In a previous work [15], we used a multi-objective evolutionary algorithm to gener-
ate wing-beat neuro-controllers able to secure a straight and horizontal flight at constant
speed, even in cases where the flying animat was artificially slowed down. Two efficient
control strategies emerged, but with no indication about which one should be used in
more challenging conditions.

The goal of the research effort described in this article wasto extend this work to
the control of target-following behavior. To this end, we used an incremental approach



that already proved to be efficient at designing wheeled [19,2], legged [12] and flying
[1] robots. We thus capitalized on the previously evolved wing-beat controllers, and let
evolution combine their effect with that of newly generatedtail controllers that would
force the animat to orient itself towards a targeted direction. We also assumed that the
corresponding results would help better assessing the relative advantages of the two
wing-beat strategies just mentioned.

Fig. 1. The simulated bird is modelled using cones, cylinders and rigid panels. A wings internal
panel can be moved along the dihedral and the twist axis, while its external panel can be moved
along the twist and the sweep axis.

The corresponding experiments called upon a realistic aerodynamic simulator that
computes lift and drag forces whatever the local airflow direction. The underlying aero-
dynamic model has been validated in a wind-tunnel for a fixed-wing UAV.

The simulated bird was made of cones and cylinders which madeup its body, and
of rigid panels that composed its wings and tail (figure 1). The total wingspan was 124
cm. Additional relevant details are to be found in [15].

This article starts with a summary of the previous results weobtained with wing-
beat controllers. The next section describes the evolutionof tail neuro-controllers for
target-following. Sample trajectories and typical neuralnetworks are then exposed, and
the corresponding results are discussed.

2 Wing-beat controllers

Contrary to airplanes which use their wings to sustain themselves, and a propeller to
create thrust, birds use their wings to create both an upwardand a thrust forces. A
wing-beat is made of two distinct phases, the down-stroke and the up-stroke. During
the down-stroke, the wings are fully extended and powered downward. The twist is
tilted down during this phase, particularly towards the tip. As a consequence, the lift
force, created by the pressure difference around the airfoil, is oriented forward and up-
ward. During the up-stroke, the wing is partially folded, toreduce the drag. Additional
information on these bird-flight kinematics can be found in [16, 10].



We previously evolved wing-beat neuro-controllers able toexploit such forces and
to maintain a flying animat at a constant speed and altitude despite external distur-
bances. The design of these controllers drew inspiration from the work of biologists on
Central Pattern Generators (CPGs) [5, 3, 13] and called uponboth non-linear oscillators
[3, 13] and standard McCulloch and Pitt’s neurons. These controllers could use a speed
sensor as input, and four actuators as outputs: the dihedraland the twist of a wing’s
internal panel, the twist and the sweep of its external panel. The symmetry between
wing-beats was forced.

Evolutionary algorithms are the only means that allow to optimize both the topology
and the parameters of this kind of neural-networks. The problem to be solved requiring
multiple trade-offs – from the energy consumption minimization to the maximization
of accelerations – the multi-objective evolutionary algorithm MOGA [8] was used, to-
gether with ModNet[6], a modular encoding scheme adapted tothe task of evolving
neural networks. The corresponding fitness function depended upon six objectives [15],
which were evaluated in two stages.

Two different classes of optimal strategies emerged that both relied on the same
kinematic principles. According to the first strategy, the twist of a wing’s external panel
is increased when an acceleration is required, hence increasing the thrust component of
the lift force. The wing being folded during the up-stroke, the twist of this panel is not
changed. The analysis of the corresponding controllers showed that they implement a
simple proportional control of the external twist as a function of the difference between
the current speed and the targeted speed.

According to the second wing-beat strategy, all degrees of freedom of a wing ex-
hibit a sinusoidal movement. When an acceleration is required, the amplitude of the
oscillations is increased and, consequently, the magnitude of the upward and forward
components of the lift force are increased.

Videos of some animats exhibiting these strategies can be downloaded from our
website:http://animatlab.lip6.fr/RoburEvolvingEn. To the best of our knowl-
edge, this is the first time that closed-loops controllers are obtained for flapping-wing
flight.

3 Target following

The detailed kinematics used by birds to change the direction of their flight largely
remain an open question, the answer to which probably variesacross bird species. It
has been suggested that the tail might be used for such use, ina manner similar to the
use of elevators in an aircraft [18]. However, some birds succeed to fly without their
tail, and mostly rely on wing movements for that. For instance, it has been shown that
pigeons use down-stroke velocity asymmetries and rapid alternating wing movements
to turn [21, 20].

Likewise, although the control of standard airplanes and UAVs is a widely studied
topic, described in many textbooks like [14] for instance, it remains to be proved that
classical control methods can be directly used to control anartificial flapping-wing bird
because the dynamics of such an engine are complex to model, and because wing-beats
generate a lot of parasite movements, especially when orienting.



Additionally, it turns out that radio-controlled ornithopters built by hobbyists exploit
their tail to execute simple manoeuvres, as many radio-controlled airplanes do.

For all these reasons, and because the control of a tail can easily be decoupled from
the wing-beat control, in a first approach towards implementing useful flying capac-
ities, we chose to evolve tail controllers that could be combined with the wing-beat
controllers previously evolved (section 2). More precisely, the objective of these addi-
tional controllers was to orient the artificial bird towardsa target point, for instance a
GPS way-point or a visual landmark, while keeping its altitude constant. To this end,
we used exactly the same methodology, calling upon MOGA and ModNet softwares,
that the one evocated above and that led to efficient flapping-wing controllers.

To the best of our knowledge, only two papers previously dealt with the generation
of kinematics for a flapping-wing artificial bird able to turn[22, 17]. But the goal of
these research efforts was to create visually convincing movements and not to design
closed-loop controllers. Consequently, the optimizationof the kinematics parameters
characterizing each trajectory were computationally too greedy to be tested as compet-
itive approaches to the one that has been chosen here.

3.1 Sensors and actuators

In the absence of any a priori knowledge concerning the sensors that birds use to control
their flying manoeuvres, we allowed evolution to incorporate, or not, four sensors in
the neural controllers it would generate: an altitude sensor - assessing the difference
between the current and targeted altitude - a direction sensor - reorienting the animats
relative direction to the target - a roll sensor and a pitch sensor.

Furthermore, in the absence of precise specifications of real sensors to be embedded
on a real platform, in this preliminary stage we chose to use ideal sensors that would
prevent evolution from exploiting specific characteristics of specific devices.

Fig. 2. A v-tail is used to control the artificial bird. (a) When the the panels are in the neutral
position, the animat move along a straight line. (b) When theleft panel is raised and the right one
lowered, the animat turns right. (c) Symetrically, when theleft panel is lowered and the right one
rised, the animat turns left. (d) When both panels are rised,the animat goes up. (e) Symetricallly,
when both panels are lowered, the animat goes down.

Besides the wing characteristics evocated above, an ideal servo-mechanism was
used to move each of the two panels that constituted the animats V-shaped tail. To
provide an intuitive control of the bird, these two actuators were mixed together in a



way similar to that used in radio-controlled sailplanes. Thus, two virtual actuators are
provided, one to control the pitch angle and one to act on the yaw and roll angles. Figure
2 displays some typical reactions of the simulated bird to various tail configurations.

Fig. 3. Overview of the control loop. The wing-beat controller has been evolved in a previous
work.

3.2 Fitness

A multi-objective evolutionary algorithm was used to seek controllers able to secure
a constant-altitude flight while pointing towards a given target. Figure 3 shows an
overview of the corresponding control loop.

Let us denote byN the total length of the evaluation. The bird started its flight at
15m.s−1 and the position of its center of gravityg(n) was measured at each time-step
n. The altitude objective was written as:

Oalt = −
1
N

n=N

∑
n=0

|gz(n)−Z| (1)

wheregz(n) denotes the altitude of the artificial bird at time-stepn andZ the desired
altitude.

Let first define the vectorv(n) which links the current positiong(n) to the target
positionT:

v(n) = T −g(n) (2)

. We then defined the second objective, which rewarded how close the simulated bird
was to the desired direction:

Otar = −
1
N

n=N

∑
n=0

|atan2(vy(n),vx(n))−θ(n)| (3)



The atan2(y,x) function calculates the arc tangent ofy
x except that the signs of both

arguments are used the determine the quadrant of the result.
These two objectives had to be maximized, with an optimal value of 0. They might

be evaluated fork different targets. In this case, the results of successive evaluations
were summed together.

Oalt =
1
k

i=k

∑
i=0

Oalt,i (4)

Otar =
1
k

i=k

∑
i=0

Otar,i (5)

3.3 Experimental setup

We used the objectives just defined in conjunction with the MOGA algorithm and the
ModNet encoding. Population’s size was 350 with 60 % of elites. Six different targets
were used, towards which the animat was expected to fly. The total evaluation length
was 18000 time-steps, simulating 54 seconds of flight (9 seconds for each target).

Thanks to the use of a so-called model-module pool[6, 15], the neural controllers
that were evolved could incorporate and modify across successive generations any num-
ber of three different modules:

– a “derivative” module, which computed an approximation of the derivative of its
input signal;

– an “integral” module, which computed an approximation of the integral of its input
signal;

– a generic module, made of standard McCulloch and Pitt’s neurons, with an evolv-
able structure.

Using two previously evolved controllers, each exhibitinga different wing-beat
strategy (section 2), three evolutionary runs of 500 generations were performed to
evolve tail controllers likely to complement them. About 12hours on 20 Pentium at
2Ghzwere required for each run.

4 Results

4.1 First wing-beat controller

Starting with a wing-beat controller that adapted the twistof the external panel to main-
tain a targeted flying speed, the individuals that constituted the Pareto front of the last
generation segregated in two populations: those that obtained good results on the al-
titude objective, and those that were efficient with respectto the target objective. The
behavior of two randomly-selected individuals representative of each of these popula-
tions is shown on Figure 4.

While both individuals succeeded to execute light turns, especially during the evalu-
ation period (9 s), they didn’t deal successfully with larger changes of directions beyond



01234 567 891 0 1 11 2

 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0x ( m ) 
 
 
 >
 4 0 0
 3 0 0
 2 0 0
 1 0 001 0 02 0 03 0 04 0 0

y( m) ���> d i r e c t i o n o f t a r g e tt r a j e c t o r yt = 9 s

41 0/ 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0x ( m ) / / / >/ 1 . 0/ 0 . 50 . 00 . 51 . 0z( m) ???>
(a)

01234 567 891 0 1 11 2
K 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0x ( m ) K K K >K 3 0 0K 2 0 0K 1 0 001 0 02 0 03 0 0

y( m) [[[>
d i r e c t i o n o f t a r g e tt r a j e c t o r yt = 9 s 34 67 91 0t 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0x ( m ) t t t >t 2 0t 1 5t 1 0t 50 5z( m) ���>

(b)

Fig. 4. (a) Top: Examples of target-following trajectories for an individual using the first type of
wing-beat controller. Bottom: This individual obtained good results on the altitude objective. (b)
Trajectories of another individual (Top) with good resultson the target objective (Bottom).The
targets that were used here were different from those that served to evaluate the individuals. For
flights not exceeding the corresponding evaluation period (9 sec), the corresponding behaviors
were satisfactory. Beyond this period, some trajectories led to stalling, particularly when the
targeted orientation angle was high.

the evaluation period. They used a different approach to handle the latter case. The first
individual, which had the best fitness for the altitude objective, stopped orienting when
the required change in direction was too large. As a consequence, it did not loose al-
titude, but at the price of not aligning correctly with the target. The second individual,
which had a better fitness on the target objective, often started orienting in the right
direction, but ended stalling along a spiral trajectory. However, because such events oc-
curred after the evaluation period, this individual was notmuch penalized with respect
to the altitude objective.

We performed a Multiperturbation Shapley value Analysis (MSA) [11] to under-
stand the inner workings of the first individual’s tail controller (figure 5). The most
useful neurons were those numbered 0, 1, 2, 3, 4 and 5, while the other neurons didn’t
seem to contribute a lot to the animat’s orienting behavior.In particular, neurons 1, 3
and 4 had a large contribution to the first objective, while neurons 0 and 2 mostly con-
tributed to the second objective only. This result indicates that the two objectives were
decoupled by the evolutionary process, a conclusion that isconfirmed by the close ob-



Fig. 5. Left: the neural network that produced the trajectories shown in figure 4 (a). Right: the
results of the corresponding MSA. The y-axis gives the numbers identifying the neurons. The
x-axis gives the Shapley values. High values indicate important contributions to each of the two
considered objectives (altitude and target). Grey levels characterize which neuron is important to
the realization of which objective.

servation of the organization of this controller (Figure 5), which appears as almost split
in two separate networks. The first one, on the left side of thefigure, controls the flight
direction using the target’s direction sensor. The second one, on the right side, controls
the elevator. These two independent controllers are linkedby a connexion with a very
low weight, which explains the null Shapley value of neuron 11.

By assigning a null or negative contribution to neurons 5, 12and 11, the MSA also
indicates that the roll sensor is not useful to this controller. Such could be also the case
with the pitch sensor, as it will be shown later for an other controller, but the MSA is
not conclusive on this point because one cannot decide if theutility of neuron 3 must
be attributed to information brought by the altitude sensor, by the pitch sensor, or by
both sensors. Be that as it may, we believe that the role of theroll sensor would be
much greater if the animat had to fly in an unstable air mass, for instance to secure a
constant roll angle despite external perturbations. This hypothesis could be tested by
adding perturbations during the evaluation procedure, as we did in [15].

4.2 Second wing-beat controller

Figure 6 shows the behavior of two individuals populating the Pareto front of the last
generation, starting with a wing-beat controller that adapted the amplitude of the oscil-
lations to maintain a targeted flying speed. These individuals were randomly-selected
among those that respectively obtained good results on the altitude objective, and good
results on the target objective.

The first individual exhibits a behavior similar to the one displayed on figure 4 be-
cause it stopped orienting when the required changes of direction were large. However,
it stalled after having flied for about 200m. Moreover, the error between the animat’s
direction and the targeted one was larger on figure 6 (a) than on figure 4 (a).

The second individual got the best fitness evaluation according to the angle objec-
tive. Surprisingly, although the animat succeeded to perform the largest turns (labeled
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Fig. 6. (a) Top: Examples of target-following trajectories for an individual using the second type
of wing-beat controller. Bottom: This individual obtainedgood results on the altitude objective.
(b) Trajectories of another individual (Top) with good results on the target objective (Bottom).
Both individuals performed correctly during the evaluation period (9s).

9 and 10), it couldnt avoid climbing up. This was due to the fact that the wing-beat
controller reached a saturated state, according to which the wings were steadily flapped
with a maximum strength, thus producing a maximum thrust. Byflying faster, the bird
generated more lift and, accordingly, went up. This saturated state was not reached for
every target, as demonstrated by the stalling trajectory 7.

The analysis of the corresponding neural controller (figure7) indicates that it is also
split in two sub-networks, one controlling the direction and the other controlling the
altitude. For this controller, both the roll and the pitch sensors seem useless. Again,
these two sensors would probably be required for flights in anunstable air mass.

4.3 Objective space

Figure 8 displays the two objective scores attained by each animat generated during the
three evolutionary runs, for the two wing-beat strategies.

It thus turns out that individuals exploiting the first strategy are distributed in most
of the objective space, with a higher concentration close tothe Pareto front. The shape
of this front expresses the necessity of a trade-off, since no individual gets an optimal
score on both objectives. The evolutionary process generated a lot of such trade-off
solutions situated near the optimum, i.e., at coordinates 0,0.



Fig. 7. Left: The neural network that produced the trajectories shown in figure 6 (a). Right: Its
MSA results.
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Fig. 8. . Exploration of the objective space by all individuals exploiting the first (a) or the sec-
ond (b) wing-beat strategy. Each dot corresponds to an individual. Grey levels denote the last
generation for which this individual was present in the population.

The exploration of the objective space by individuals exploiting the second strategy
was quite different. First, the best scores thus attained are substantially lower than in the
previous case, especially on the target objective. Second,the explored solutions cover a
much limited range of possible scores.

The horizontal line with a target objective value of−0.6 corresponds to individuals
that did not turn at all. These individuals quickly disappeared when we used the first
wing-beat controller, but they were still present after 500generations when the second
controller was used.

All these results suggest that optimizing a target-following behavior is more difficult
with the second controller than with the first.

5 Discussion

The above results demonstrate that, once neural controllers for straight-line flight have
been evolved, it is possible to capitalize on the corresponding networks to evolve ad-
ditional tail controllers that exhibit minimal target-following capacities. However, as



mentioned above, better results would probably be obtainedby relaxing the symmetry
constraint that was imposed here on wing movements, and by exploiting the manoeu-
vrability capacities thus offered. Such approach might entail the joint evolution of wing-
beat and tail control, a task that seems highly challenging according to current technol-
ogy. To raise its chances of success, the recourse to some sort of automatic incremental
methodology seems mandatory. Indeed, it has been shown herethat one cannot rely on
fundamental principles or empirical knowledge to decide which, among two available
wing-beat controllers, would be better suited to pave the way to additional flying ma-
noeuvrability. Nevertheless, their aptitudes for this endeavour ultimately turned out to
be quite different.

Two main reasons motive the use of incremental evolutionaryapproaches to evolu-
tionary robotics:

– The bootstrap problem. In many real-life situations, an intermediate action is re-
quired – e.g. pushing a button to switch-on a light – before receiving any reward
– e.g. going to the light to get food. By decomposing the problem into sub-tasks,
one may guide the evolutionary process towards satisfying solutions that would
otherwise be hard or impossible to discover.

– The search space problem. By imposing intermediary stages,one reduces the size
of the search space, hence speeding-up the evolutionary process.

Some promising work has been carried out to automatize such aprocedure using
cooperative co-evolution [9, 4]. We plan to assess the applicability of similar approaches
to flying behavior in the near future.

6 Conclusion

Although evolving flying robots seems a greater challenge than evolving crawling,
walking, or swimming artefacts, we have shown that a suitable evolutionary algorithm,
combined with an efficient coding and a two-stage approach, made it possible to gen-
erate close-loop controllers for a target-following flyingbehavior. However our results
suggest that future improvements should better rely on somesort of automatic incre-
mental evolution procedure than on any hand-designed decomposition of the considered
problem.
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