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Abstract. Using an incremental multi-objective evolutionary alglom and the

ModNet encoding, we generated working neuro-controllergdrget-following

behavior in a simulated flapping-wing animat. To this end,ewelved tail con-

trollers that were combined with two closed-loop wing-beahtrollers previ-

ously generated, and able to secure straight flight at conattitude and speed.
The corresponding results demonstrate that a wing-bestegly that consists in
continuously adapting the twist of the external wing pameelds to better ma-
noeuvring capabilities than another strategy that addmsbeating amplitude.
Such differences suggest that further improvements ingdlgiontrol should bet-
ter rely on some sort of automatic incremental evolutioncpoure than on any
hand-designed decomposition of the problem.

1 Introduction

Birds continuously demonstrate capabilities which wouddolb great interest for most
Unmanned Aerial Vehicles (UAVs). They are highly agile,eatu take off without any
runway, to settle on a branch, and to exploit thermals likailiplane. Consequently, bio-
inspired flapping-wing platforms could represent usefatle-offs able to benefit from
both the manoeuvrability of helicopters and the energyiefiicy of standard airplanes.

However, taking inspiration from birds to design a flappimog UAV requires a
deep understanding of complex aerodynamic principlesthttre learned to exploitin
about 150 millions years of evolution. In particular, themarous degrees of freedom
of such UAV must be carefully synchronized to produce adegtraust and lift forces.
Additionally, the corresponding rhythmic movements mustdontinuously adapted
to unpredictable changes in the surrounding air mass. Tdeauch issues, that are
currently not solved by traditional engineering approashiee ROBUR project of the
AnimatLab [7] aims at designing the morphology and contfal iapping-wing animat
through artificial evolution.

In a previous work [15], we used a multi-objective evoluaoyalgorithm to gener-
ate wing-beat neuro-controllers able to secure a straigghharizontal flight at constant
speed, even in cases where the flying animat was artificialyexd down. Two efficient
control strategies emerged, but with no indication abouttvione should be used in
more challenging conditions.

The goal of the research effort described in this article twasxtend this work to
the control of target-following behavior. To this end, weedsan incremental approach



that already proved to be efficient at designing wheeledd]l,9egged [12] and flying
[1] robots. We thus capitalized on the previously evolvedgvbeat controllers, and let
evolution combine their effect with that of newly generataill controllers that would
force the animat to orient itself towards a targeted dimettWe also assumed that the
corresponding results would help better assessing théweladvantages of the two
wing-beat strategies just mentioned.

Fig. 1. The simulated bird is modelled using cones, cylinders agid panels. A wings internal
panel can be moved along the dihedral and the twist axisgvitsilexternal panel can be moved
along the twist and the sweep axis.

The corresponding experiments called upon a realisticdye@mic simulator that
computes lift and drag forces whatever the local airflowdticn. The underlying aero-
dynamic model has been validated in a wind-tunnel for a fixaay UAV.

The simulated bird was made of cones and cylinders which mades body, and
of rigid panels that composed its wings and tail (figure 1)e Tdtal wingspan was 124
cm. Additional relevant details are to be found in [15].

This article starts with a summary of the previous resultsobv&ined with wing-
beat controllers. The next section describes the evolufdail neuro-controllers for
target-following. Sample trajectories and typical neuretiworks are then exposed, and
the corresponding results are discussed.

2 Wing-beat controllers

Contrary to airplanes which use their wings to sustain thewes, and a propeller to
create thrust, birds use their wings to create both an upwaria thrust forces. A
wing-beat is made of two distinct phases, the down-stroketha up-stroke. During
the down-stroke, the wings are fully extended and poweredng@rd. The twist is

tited down during this phase, particularly towards the 43 a consequence, the lift
force, created by the pressure difference around the hildariented forward and up-
ward. During the up-stroke, the wing is partially folded rémluce the drag. Additional
information on these bird-flight kinematics can be foundl,[10].



We previously evolved wing-beat neuro-controllers ablexploit such forces and
to maintain a flying animat at a constant speed and altitudpitkeexternal distur-
bances. The design of these controllers drew inspiratiom fthe work of biologists on
Central Pattern Generators (CPGs) [5, 3, 13] and called bptmnon-linear oscillators
[3,13] and standard McCulloch and Pitt's neurons. Thesé¢robars could use a speed
sensor as input, and four actuators as outputs: the dihaddathe twist of a wing’s
internal panel, the twist and the sweep of its external pafiet symmetry between
wing-beats was forced.

Evolutionary algorithms are the only means that allow tdrojte both the topology
and the parameters of this kind of neural-networks. The lpratio be solved requiring
multiple trade-offs — from the energy consumption minintiza to the maximization
of accelerations — the multi-objective evolutionary alfon MOGA [8] was used, to-
gether with ModNet[6], a modular encoding scheme adaptetiddask of evolving
neural networks. The corresponding fitness function depéngon six objectives [15],
which were evaluated in two stages.

Two different classes of optimal strategies emerged th#t belied on the same
kinematic principles. According to the first strategy, thest of a wing’s external panel
is increased when an acceleration is required, hence isiagethe thrust component of
the lift force. The wing being folded during the up-strokee twist of this panel is not
changed. The analysis of the corresponding controllera/gtidhat they implement a
simple proportional control of the external twist as a fumetof the difference between
the current speed and the targeted speed.

According to the second wing-beat strategy, all degreesegfdom of a wing ex-
hibit a sinusoidal movement. When an acceleration is regithe amplitude of the
oscillations is increased and, consequently, the magaitddhe upward and forward
components of the lift force are increased.

Videos of some animats exhibiting these strategies can baldaded from our
website:ht t p: // ani mat | ab. | i p6. f r/ Robur Evol vi ngEn. To the best of our knowl-
edge, this is the first time that closed-loops controlleesabtained for flapping-wing
flight.

3 Target following

The detailed kinematics used by birds to change the diredafatheir flight largely
remain an open question, the answer to which probably vadesss bird species. It
has been suggested that the tail might be used for such ugenanner similar to the
use of elevators in an aircraft [18]. However, some birdsceed to fly without their
tail, and mostly rely on wing movements for that. For ins&rithas been shown that
pigeons use down-stroke velocity asymmetries and rapédredting wing movements
to turn [21, 20].

Likewise, although the control of standard airplanes an¥&J& a widely studied
topic, described in many textbooks like [14] for instand¢gemains to be proved that
classical control methods can be directly used to contralréficial flapping-wing bird
because the dynamics of such an engine are complex to modddegause wing-beats
generate a lot of parasite movements, especially whentorgen



Additionally, it turns out that radio-controlled ornithtiss built by hobbyists exploit
their tail to execute simple manoeuvres, as many radiorotbed airplanes do.

For all these reasons, and because the control of a tail ciliy ba decoupled from
the wing-beat control, in a first approach towards implermgnuseful flying capac-
ities, we chose to evolve tail controllers that could be comad with the wing-beat
controllers previously evolved (section 2). More pregjséte objective of these addi-
tional controllers was to orient the artificial bird towarddarget point, for instance a
GPS way-point or a visual landmark, while keeping its attéiconstant. To this end,
we used exactly the same methodology, calling upon MOGA andMét softwares,
that the one evocated above and that led to efficient flapping-controllers.

To the best of our knowledge, only two papers previouslytdedh the generation
of kinematics for a flapping-wing artificial bird able to tufg2, 17]. But the goal of
these research efforts was to create visually convincingeaments and not to design
closed-loop controllers. Consequently, the optimizatibithe kinematics parameters
characterizing each trajectory were computationally teedy to be tested as compet-
itive approaches to the one that has been chosen here.

3.1 Sensors and actuators

In the absence of any a priori knowledge concerning the gsitisat birds use to control
their flying manoeuvres, we allowed evolution to incorperair not, four sensors in
the neural controllers it would generate: an altitude sensssessing the difference
between the current and targeted altitude - a directionsgengorienting the animats
relative direction to the target - a roll sensor and a pitaisse

Furthermore, in the absence of precise specifications bfesesors to be embedded
on a real platform, in this preliminary stage we chose to dsali sensors that would
prevent evolution from exploiting specific characteristif specific devices.

\
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Fig. 2. A v-tail is used to control the artificial bird. (a) When thestpanels are in the neutral
position, the animat move along a straight line. (b) Whenéfiganel is raised and the right one
lowered, the animat turns right. (c) Symetrically, when lsfepanel is lowered and the right one
rised, the animat turns left. (d) When both panels are rifedanimat goes up. (e) Symetricallly,
when both panels are lowered, the animat goes down.

Besides the wing characteristics evocated above, an ideab-snechanism was
used to move each of the two panels that constituted the ésivhahaped tail. To
provide an intuitive control of the bird, these two actuatarere mixed together in a



way similar to that used in radio-controlled sailplanesu3htwo virtual actuators are
provided, one to control the pitch angle and one to act ondmeand roll angles. Figure
2 displays some typical reactions of the simulated bird o tail configurations.
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Fig. 3. Overview of the control loop. The wing-beat controller haeb evolved in a previous
work.

3.2 Fitness

A multi-objective evolutionary algorithm was used to se@ktrollers able to secure
a constant-altitude flight while pointing towards a giverg&. Figure 3 shows an
overview of the corresponding control loop.

Let us denote b\ the total length of the evaluation. The bird started its tligh
15m.s~* and the position of its center of gravigfn) was measured at each time-step
n. The altitude objective was written as:

1 n=N
Oat=—= 3 |8:(n)—Z| (1)
N n=0
whereg,(n) denotes the altitude of the artificial bird at time-stepndZ the desired
altitude.
Let first define the vectov(n) which links the current positiog(n) to the target
positionT:
v(n)=T—g(n) (2)
. We then defined the second objective, which rewarded hosedloe simulated bird
was to the desired direction:
n=N

Gtar = —% n;) |atar12(vy(n),vx(n)) - 9(n)| 3)



The atar2(y,x) function calculates the arc tangent¥)fexcept that the signs of both
arguments are used the determine the quadrant of the result.

These two objectives had to be maximized, with an optimalevalf 0. They might
be evaluated fok different targets. In this case, the results of successmuations
were summed together.

1 i=k

Oalt = E 'Zjoalt.i (4)
1 i=k

Otar = E i;Otar,i (5)

3.3 Experimental setup

We used the objectives just defined in conjunction with the®ACalgorithm and the
ModNet encoding. Population’s size was 350 with 60 % of slitix different targets
were used, towards which the animat was expected to fly. Tiakdwaluation length
was 18000 time-steps, simulating 54 seconds of flight (9re#xtor each target).

Thanks to the use of a so-called model-module pool[6, 1%] ndural controllers
that were evolved could incorporate and modify across ssiee generations any num-
ber of three different modules:

— a “derivative” module, which computed an approximationtod derivative of its
input signal;

— an “integral” module, which computed an approximation & ihtegral of its input
signal;

— a generic module, made of standard McCulloch and Pitt’'savesjwith an evolv-
able structure.

Using two previously evolved controllers, each exhibitiaglifferent wing-beat
strategy (section 2), three evolutionary runs of 500 geiimra were performed to
evolve tail controllers likely to complement them. About A@urs on 20 Pentium at
2Ghzwere required for each run.

4 Results

4.1 First wing-beat controller

Starting with a wing-beat controller that adapted the twfghe external panel to main-
tain a targeted flying speed, the individuals that congtituhe Pareto front of the last
generation segregated in two populations: those that médagood results on the al-
titude objective, and those that were efficient with respeche target objective. The
behavior of two randomly-selected individuals represtveaof each of these popula-
tions is shown on Figure 4.
While both individuals succeeded to execute light turngeeglly during the evalu-

ation period (9 s), they didn't deal successfully with largeanges of directions beyond



--- direction of target
— trajectory
—t=9s

oy (m)-—>

T

185

0 50 100 150 200 250 300 350
x (m) >

(@)

y (m) --->

-100

-200

-30(

z(m) --->

30

200y

100

-- direction of target
trajectory
—t=9s

50 0 50 100 150 200 256 300 350 400
>

x (m)

50 100 150 200 250 300 350
x (m) >

(b)

Fig. 4. (a) Top: Examples of target-following trajectories for adividual using the first type of
wing-beat controller. Bottom: This individual obtainedagbresults on the altitude objective. (b)
Trajectories of another individual (Top) with good resudts the target objective (Bottom).The
targets that were used here were different from those tmaéddo evaluate the individuals. For
flights not exceeding the corresponding evaluation perbdec), the corresponding behaviors
were satisfactory. Beyond this period, some trajectorgebtb stalling, particularly when the
targeted orientation angle was high.

the evaluation period. They used a different approach tdlleahe latter case. The first
individual, which had the best fithess for the altitude oties stopped orienting when
the required change in direction was too large. As a consemgjet did not loose al-
titude, but at the price of not aligning correctly with theget. The second individual,
which had a better fitness on the target objective, oftertestagrienting in the right
direction, but ended stalling along a spiral trajectorywiéger, because such events oc-
curred after the evaluation period, this individual was metch penalized with respect
to the altitude objective.

We performed a Multiperturbation Shapley value AnalysisS@®) [11] to under-
stand the inner workings of the first individual’s tail cooiter (figure 5). The most
useful neurons were those numbered 0, 1, 2, 3, 4 and 5, wiailettier neurons didn’t
seem to contribute a lot to the animat’s orienting behavioparticular, neurons 1, 3
and 4 had a large contribution to the first objective, whilanoas 0 and 2 mostly con-
tributed to the second objective only. This result indisdteat the two objectives were
decoupled by the evolutionary process, a conclusion thainéirmed by the close ob-
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Fig. 5. Left: the neural network that produced the trajectoriesashn figure 4 (a). Right: the
results of the corresponding MSA. The y-axis gives the numimentifying the neurons. The
x-axis gives the Shapley values. High values indicate ingmbrcontributions to each of the two
considered objectives (altitude and target). Grey levietsacterize which neuron is important to
the realization of which objective.

servation of the organization of this controller (Figurewhich appears as almost split
in two separate networks. The first one, on the left side ofithee, controls the flight
direction using the target’s direction sensor. The secarg] on the right side, controls
the elevator. These two independent controllers are liriked connexion with a very
low weight, which explains the null Shapley value of neurdn 1

By assigning a null or negative contribution to neurons 5até 11, the MSA also
indicates that the roll sensor is not useful to this congrolbuch could be also the case
with the pitch sensor, as it will be shown later for an othemtcoller, but the MSA is
not conclusive on this point because one cannot decide ifititiy of neuron 3 must
be attributed to information brought by the altitude senbgrthe pitch sensor, or by
both sensors. Be that as it may, we believe that the role ofdhesensor would be
much greater if the animat had to fly in an unstable air magsn&tance to secure a
constant roll angle despite external perturbations. Thjsothesis could be tested by
adding perturbations during the evaluation procedure,@adia/in [15].

4.2 Second wing-beat controller

Figure 6 shows the behavior of two individuals populating Bareto front of the last
generation, starting with a wing-beat controller that d@ddphe amplitude of the oscil-
lations to maintain a targeted flying speed. These indidglw@re randomly-selected
among those that respectively obtained good results ontiheda objective, and good
results on the target objective.

The first individual exhibits a behavior similar to the onemlayed on figure 4 be-
cause it stopped orienting when the required changes dftatirewere large. However,
it stalled after having flied for about 260 Moreover, the error between the animat’s
direction and the targeted one was larger on figure 6 (a) th&figare 4 (a).

The second individual got the best fithess evaluation adegitd the angle objec-
tive. Surprisingly, although the animat succeeded to perfine largest turns (labeled
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Fig. 6. (a) Top: Examples of target-following trajectories for adividual using the second type
of wing-beat controller. Bottom: This individual obtaingdod results on the altitude objective.
(b) Trajectories of another individual (Top) with good ritswon the target objective (Bottom).
Both individuals performed correctly during the evaluatjmeriod (%).

9 and 10), it couldnt avoid climbing up. This was due to thd faat the wing-beat
controller reached a saturated state, according to whiglvthgs were steadily flapped
with a maximum strength, thus producing a maximum thrustfl{dng faster, the bird
generated more lift and, accordingly, went up. This saagtatate was not reached for
every target, as demonstrated by the stalling trajectory 7.

The analysis of the corresponding neural controller (fig)radicates that it is also
split in two sub-networks, one controlling the directiordaihe other controlling the
altitude. For this controller, both the roll and the pitcmsers seem useless. Again,
these two sensors would probably be required for flights inrestable air mass.

4.3 Objective space

Figure 8 displays the two objective scores attained by eartha generated during the
three evolutionary runs, for the two wing-beat strategies.

It thus turns out that individuals exploiting the first sergy are distributed in most
of the objective space, with a higher concentration clogbédPareto front. The shape
of this front expresses the necessity of a trade-off, simcandividual gets an optimal
score on both objectives. The evolutionary process geseratiot of such trade-off
solutions situated near the optimum, i.e., at coordinai@s 0O



15
1 —
05 |—
@ Altitude objective 0 - —
OTarget objective X -‘
(D) "useless” 01234567 8910111213

Fig. 7. Left: The neural network that produced the trajectoriesashin figure 6 (a). Right: Its
MSA results.

angle

@ (b)

Fig. 8. . Exploration of the objective space by all individuals eiphg the first (a) or the sec-
ond (b) wing-beat strategy. Each dot corresponds to aniohaiV. Grey levels denote the last
generation for which this individual was present in the gapan.

The exploration of the objective space by individuals eitppig the second strategy
was quite different. First, the best scores thus attainegdapstantially lower than in the
previous case, especially on the target objective. Sed¢badxplored solutions cover a
much limited range of possible scores.

The horizontal line with a target objective value-60.6 corresponds to individuals
that did not turn at all. These individuals quickly disapgehwhen we used the first
wing-beat controller, but they were still present after B@herations when the second
controller was used.

All these results suggest that optimizing a target-follogdbehavior is more difficult
with the second controller than with the first.

5 Discussion

The above results demonstrate that, once neural consddestraight-line flight have
been evolved, it is possible to capitalize on the corresjpmndetworks to evolve ad-
ditional tail controllers that exhibit minimal target-foling capacities. However, as



mentioned above, better results would probably be obtdiyeglaxing the symmetry
constraint that was imposed here on wing movements, and fipierg the manoeu-
vrability capacities thus offered. Such approach mighagtite joint evolution of wing-
beat and tail control, a task that seems highly challengiegi@ing to current technol-
ogy. To raise its chances of success, the recourse to soa sotomatic incremental
methodology seems mandatory. Indeed, it has been showtHagm@ne cannot rely on
fundamental principles or empirical knowledge to decideclwvhamong two available
wing-beat controllers, would be better suited to pave thg twaadditional flying ma-
noeuvrability. Nevertheless, their aptitudes for this @sbur ultimately turned out to
be quite different.

Two main reasons motive the use of incremental evolutioepproaches to evolu-
tionary robotics:

— The bootstrap problem. In many real-life situations, aerimediate action is re-
quired — e.g. pushing a button to switch-on a light — beforeirgng any reward
— e.g. going to the light to get food. By decomposing the probinto sub-tasks,
one may guide the evolutionary process towards satisfyatgtions that would
otherwise be hard or impossible to discover.

— The search space problem. By imposing intermediary stagesreduces the size
of the search space, hence speeding-up the evolutionacggs0

Some promising work has been carried out to automatize symbaedure using
cooperative co-evolution [9, 4]. We plan to assess the eglpility of similar approaches
to flying behavior in the near future.

6 Conclusion

Although evolving flying robots seems a greater challenga thvolving crawling,

walking, or swimming artefacts, we have shown that a sugtablutionary algorithm,

combined with an efficient coding and a two-stage approacuenit possible to gen-
erate close-loop controllers for a target-following flyihghavior. However our results
suggest that future improvements should better rely on ssoneof automatic incre-
mental evolution procedure than on any hand-designed deasition of the considered
problem.
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