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Abstract

In robotics, gradient-free optimization algorithms (e.g. evolu-
tionary algorithms) are often used only in simulation because
they require the evaluation of many candidate solutions. Nev-
ertheless, solutions obtained in simulation often do not work
well on the real device. The transferability approach aims at
crossing this gap between simulation and reality by making
the optimization algorithm aware of the limits of the simula-
tion.

In the present paper, we first describe the transferability func-
tion, that maps solution descriptors to a score representing
how well a simulator matches the reality. We then show that
this function can be learned using a regression algorithm and
a few experiments with the real devices. Our results are sup-
ported by an extensive study of the reality gap for a simple
quadruped robot whose control parameters are optimized. In
particular, we mapped the whole search space in reality and in
simulation to understand the differences between the fitness
landscapes.

Introduction
Gradient-free optimization algorithms underlie many
machine learning methods, from policy search tech-
niques (Whiteson and Stone, 2006; Heidrich-Meisner
and Igel, 2008) to automatic design approaches (Lohn
and Hornby, 2006; Lipson and Pollack, 2000). They are
also one of the tool of choice for researches in embodied
intelligence because they make possible to obtain artifacts
(e.g. neural networks to control a robot) without having to
describe their inner workings (Pfeifer and Bongard, 2006).

In many of their applications, these algorithms spend most
of their running time in evaluating the quality of thousands
of potential solutions. This observation encourages many
researchers to work with simulations instead of real devices,
because simulations are usually cheaper and faster than real
experiments. For instance, most published work in evolu-
tionary robotics (ER) — in which researchers typically aim
at finding original controllers for robots — is carried with
simulated robots (Doncieux et al., 2011; Nelson et al., 2009).
At first sight, robots are articulated rigid bodies for which
many simulations tools exist; it is therefore tempting to sup-
pose that an efficient result obtained by optimizing in simu-

lation will work similarly on the real robot. Unfortunately,
no simulator is perfect and optimization algorithms have no
reason to avoid exploiting every badly modeled phenomena
that increase performance. It is thus often observed that so-
lutions optimized in simulation are inefficient on the real
robot. On the contrary, most engineers intuitively know the
limit of their simulation tools and avoid relying on what is
incorrectly modeled.

This difference in performance with a simulation and with
the real device has been termed the reality gap. It is of
course not restricted to ER since the same issues are encoun-
tered with all the other optimization algorithms and with
many other experimental setups. However, we will restrict
our current discussion to ER because the reality gap is cen-
tral in this community. The reality gap is indeed arguably
one of the main issue that prevent a widespread use of evo-
lutionary algorithms to optimize parameters of robot con-
trollers: evaluating every potential solutions in reality is very
costly because it requires complex experimental setups and
a lot of time; evaluating potential solutions in simulation is
cheaper and faster but it often leads to solutions that cannot
be used on the real device. How could we proceed?

If we do not reject the use of simulators, the first idea
to reduce this gap is to design better simulators. Such an
approach can work up to a certain extent but complex sim-
ulators are slow (e.g. simulating fluids can be slower than
reality) and even the best simulators cannot be infinitely ex-
act. An attractive idea is to automatically design a simula-
tor, for instance by learning a surrogate model of the fitness
function (Jin, 2005), or, following a related idea, to automat-
ically improve an existing simulator (Bongard et al., 2006;
Zagal and Ruiz-Del-Solar, 2007). Nevertheless, creating an
algorithm that automatically designs the perfect simulator
appears at least as difficult as designing evolutionary algo-
rithms to learn the optimal behaviors of a robot. Moreover,
these methods will never accurately model every possible
force that can act on a device. For instance, it is hard to
expect that an algorithm will automatically discover a good
model of fluid dynamics in a classic rigid-body simulator,
whatever the improvements of the simulator are.
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Figure 1: (a) The quadruped robot is based on a Bioloid robotic kit (Robotis). It has 8 degrees of freedom (wheels are not
used in this experiment). We track its movement using a 3D motion capture system. (b) The simulation is based on the Bullet
dynamic simulator (Boeing and Bräunl, 2007).

As an alternative approach, Jakobi (1997) proposed to
prevent the optimization algorithm to exploit badly modeled
phenomena by hiding them in an “envelope of noise”. De-
spite some success with the evolution of a controller for an
hexapod robot, Jakobi did not describe any generic method
to choose what has to be noised and how this noise should be
applied. Applying the “envelope of noise” technique there-
fore often requires a lot of experiments and fine-tuning of
the simulator, which is exactly what researchers try to avoid
when designing optimization algorithms. For instance, it is
hard to know how to add noise when evolving locomotion
controllers for legged robots.

In the present paper, we describe a recently introduced ap-
proach to cross the reality gap: the transferability approach
(Koos et al., 2012). Our aim is to give a didactic presenta-
tion of the intuitions that guide this method as well as the
main results obtained so far. The interested reader can refer
to (Koos et al., 2012) for detailed results and discussions.

Experimental Apparatus
Robot and controller We studied the reality gap with an
8-DOFs quadruped robot made from a Bioloid Kit (Fig. 1).
Another experiment inspired by Jakobi’s T-maze is reported
in (Koos et al., 2012).

The angular position of each motor follows a sinusoid.
All these sinusoidal controllers depend on the same two real
parameters (p1, p2) ∈ [0, 1]2 as follows:

α(i, t) =
5π

12
· dir(i) · p1 −

5π

12
· p2 · sin(2πt− φ(i))

where α denotes the desired angular position of the motor
i at time-step t. dir(i) is equals to 1 for both motors of
the front-right leg and for both motors of the rear-left leg;
dir(i) = −1 otherwise (see Fig. 1 for orientation). The
phase angle φ(i) is 0 for the upper leg motors of each leg and
π/2 for the lower leg motors of each leg. Both motors of one

leg consequently have the same control signal with different
phases. Angular positions of the actuators are constrained in
[− 5π

12 ,
5π
12 ].

The fitness is the distance covered by the robot in 10
seconds.

Reality gap We first followed a typical ER approach: we
evolved controllers in simulation and then transferred the
best solution on the robot. On average (10 runs), the best so-
lution in simulation covered 1294 mm (sd = 55mm) whereas
the same controller leads to only 411 mm in reality (sd =
425mm); thus we observe a clear reality gap in this task.

This reality gap mostly stems from classic issues with dy-
namic simulations of legged robots. In particular, contact
models are not accurate enough to finely simulate slippage,
therefore any behavior that relies on non-trivial contacts will
be different in reality and in simulation. Dynamical gaits
(i.e. behaviors for which the robot is often in unstable states)
are also harder to accurately simulate than more static gaits
because the more unstable a system is, the more sensitive it
is to small inaccuracies.

The small number of parameters of this controller allows
the mapping of the whole search space. We realized 5500
experiments on the real robot and interpolated the rest of the
search space (Fig.2(a)). We also mapped the fitness land-
scape in simulation (5500 experiments, Fig.2(b)). To our
knowledge, this is the first time that we are able to visualize
a fitness landscape for a real robot and its simulation.

The differences between the two landscapes correspond
to the reality gap. The landscape in simulation contains four
main fitness peaks and one global optimum. The landscape
obtained in reality is noisier but simpler and it seems to con-
tain only one important fitness peak. In both landscapes, we
observe a large low-fitness zone but the main high-fitness
zones match only a small zone and for only one fitness peak.



0.0 0.1 0.2 0.3 0.4 0.5 0.6
p1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p2

0

150

300

450

600

750

900

1050

1200

1350

1500

fit
ne

ss
 (d

is
ta

nc
e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
p1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p2

0

150

300

450

600

750

900

1050

1200

1350

1500

fit
ne

ss
 (d

is
ta

nc
e)

Figure 2: (left) Fitness landscape in the dynamic simulator (5500 experiments). (right) Fitness landscape with the real robot
(5500 experiments). In both maps, p1 and p2 are the evolved parameters of the controller.
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Figure 3: Superposition of the fitness landscape in reality
with the one obtained in simulation. The contour line de-
notes the zones for which the simulation leads to high fitness
values (greater than 900mm).

A typical example of reality gap will occur if the optimiza-
tion in simulation leads to solutions in the top left corner of
the fitness landscape, for which solutions have a high fitness
in simulation but a very bad one in reality.

While the fitness landscapes in simulation and in reality
are very different, there exist a lot of controllers with a good
fitness (greater than 900 mm; these controllers achieve gaits
comparable to those obtained with hand-tuned controllers)
in both simulation and reality (Fig.3). If we visually com-
pare gaits that correspond to this zone in simulation and in
reality, we observe a good match.

Our interpretation is that the simulation is accurate in at

least this sub-part of the search space

The Transferability Function
This interpretation leads to the fundamental hypothesis of
the transferability approach: for many physical systems, it
is possible to design simulators that work accurately for a
subset of the possible solutions. In the case of dynamic sim-
ulators, physicists work on the dynamic of rigid body since
the XVII-th century and the accumulated knowledge allows
engineers to make good predictions for many physical sys-
tems.

Since simulations will never be perfect, our approach is
to make the system aware of its own limits and hence allows
it to avoid solutions that it cannot correctly simulate. These
limits can be captured by a transferability function:

Definition 1 (Transferability function) A transferability
function is a function that maps, for the whole search
space, descriptors of solutions (e.g. genotypes, phenotypes
or behavior descriptors) to a transferability score that
represents how well the simulation matches the reality.

There are many ways to define a similarity, therefore there
are many possible transferability functions. Describing the
similarity of behaviors in robotics has recently been inves-
tigated in the context of diversity preservation (Mouret and
Doncieux, 2012) and novelty search (Lehman and Stanley,
2011). Many measures have been proposed. For a legged
robot, one can compare covered distance (i.e. compare the
fitness values), trajectory of the center of mass at each time-
step, angular positions of each joint for each time-step, con-
tact of the legs with the ground, ... At any rates, the best
similarity measure highly depends on the task and on the
simulator.
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Figure 4: (left) Transferability function based on the difference of fitness values. (right) Transferability function based on the
difference of trajectories. In both maps, the contour line denotes the zones for which the simulation leads to high fitness values
(greater than 900mm).

The most intuitive input space for the transferability func-
tion is the genotype space. However, the maps from geno-
type to transferability may be very non-linear because the
relationship between genotypes and behaviors is often com-
plex in evolutionary robotics. Many genotypes (e.g. neural
networks or development programs) are also hard to put as
the input of functions. An alternative is to use the behavior in
simulation, which is easy to obtain. The transferability func-
tion then answers the question: “given this behavior in simu-
lation, should we expect a similar behavior in reality?”. For
instance, in many dynamic simulations we observe robots
that unrealistically jump above the ground when they hit it.
If the 3D-trajectory of the center of mass is used as an input
space, then the transferability function will easily detect that
if the z-coordinate is above a threshold, then the correspond-
ing behavior is not transferable at all.

For the considered quadruped robot, we computed two
transferability functions:

• input space: genotype; similarity measure:difference in
covered distance (fitness) (Fig.4(a));

• input space: genotype; similarity measure: sum of the
squared Euclidean distance between each point of the
3D trajectories of the geometrical center of the robot
(Fig.4(b)).

In both cases we observe that the high-fitness zone of the
simulation in the top left corner is not transferable but a large
part of the solutions from the other high fitness zone appears
transferable.

Learning the Transferability Function
For evolutionary robotics, it is obviously unfeasible to com-
pute the transferability score for each solution of the search

space – as we did it in these simple experiments – because
this would require to test every point of the search space
on the real robot. To avoid this issue, the main proposi-
tion of the transferability approach is to automatically learn
the transferability function using supervised learning tech-
niques. Using a few tests on the real system and a few eval-
uations in simulation, we propose to use a regression tech-
nique (e.g. a neural network or a support vector machine) to
predict how well simulation and reality will match for any
solution of the search space. This predictor will thus esti-
mate the transferability of each potential solution. Put dif-
ferently, the transferability approach proposes to learn the
limits of the simulation.

It may seem counter-intuitive and inefficient to approxi-
mate the transferability instead of the fitness (i.e. using a sur-
rogate model of the fitness), but working with the transfer-
ability function is promising for at least two reasons. First,
approximating the fitness function for a dynamic system
(e.g. a robot) means using a few tests on the real robot to
build the whole fitness landscape. In the same way as sim-
ulators will never be perfect, this approximation will not be
perfect, therefore we will likely face reality gap issues. Sec-
ond, learning the fitness function is likely to be harder than
learning the transferability function. Indeed, using a ma-
chine learning technique to learn the fitness function of a
robot is equivalent to automatically design a simulator for a
complex robot: the function has to predict a description of
the behavior (the fitness) from a description of the solution
(the genotype). Such a simulator would therefore need to in-
clude the laws of articulated rigid body dynamics, but these
laws are unlikely to be correctly discovered using a few tra-
jectories of a robot. On the contrary, predicting that a solu-
tion will not be transferable can often be done using a few



Figure 5: Principle of the multi-objective optimization of
both the fitness and the transferability. Individuals from the
population are periodically transfered on the robot to im-
prove the approximation of the transferability function.

simple criteria that a machine learning algorithm can find.
For instance, a classification algorithm could easily predict
that high-frequency gaits are not transferable by applying
a threshold on a frequency parameter (the ease of predic-
tion depends on the input space of the predictor). In sum-
mary, learning the transferability complements a state-of-the
art simulator instead of reinventing or improving it.

Finding Efficient and Transferable Solutions
Using a simulator to find solutions that perform well in real-
ity can be restated as a two-objective optimization problem,
where the objectives are (1) the performance in simulation
and (2) the accuracy of the simulation for the tested solu-
tion. Optimal solutions for this problem will be perfectly
simulated and perfectly efficient in simulation. However,
there is no reason to believe that the best solutions in simu-
lation will correspond to the best solutions in reality. On the
contrary, the best solutions in simulation are often highly dy-
namic behaviors that strongly rely on unrealistic effects; the
best solutions in reality will also be probably highly tuned
behaviors instead of simpler, more robust behaviors.

We therefore expect to see a trade-off between transfer-
ability and fitness in simulation. Multi-objective evolution-
ary algorithms (MOEA, see Deb (2001)) are well suited
methods for this two-objective optimization:

maximize
{

fitness(x)
approximated transferability(x)

Nonetheless, we are essentially optimizing the fitness under
the constraint of the transferability. While MOEAs are rec-
ognized tools to apply soft constraints (Fonseca and Flem-
ing, 1998), other constrained optimization algorithms could
also be employed.

We chose to use the Inverse Distance Weighting (IDW)
method to approximate the transferability function because
it’s simple and efficient enough. This method can be substi-
tuted with any other regression/interpolation method.

An interesting question is when to improve the approx-
imation, that is when to transfer an individual to evaluate
it in reality. A first option is to transfer solutions before
launching the optimization, build the approximation and do
not modify it during the optimization. Another option is to
transfer a few individuals before the first generation, in order
to initiate the process, and then periodically update the ap-
proximation by transferring one of the candidate solution of
the population. The second option has the advantage of fo-
cusing the approximation on useful candidate solutions be-
cause the population will move towards peaks of high fit-
ness. While the first option is simpler, we chose the second
one in our current implementation: every 20 generations,
the individual from the population that is the most different
from the others is tested on the real robot. At the end of the
optimization, we select the solution with the best fitness and
above a user-defined value for the transferability.

Figure 5 summarizes this process. Our source code
is available on EvoRob db (http://www.isir.fr/
evorob_db).

Experimental Results
The two objectives are optimized with the NSGA-II algo-
rithm because it’s a classic and versatile MOEA. The size of
the population is 40 and the algorithm is stopped after 200
generations. The transferability function takes as input three
behavior descriptors, computed using the dynamic simula-
tor: (1) the distance covered during the experiment, (2) the
average height of the center of the robot and (3) the head-
ing of the robot at the end of the experiment. The similarity
measure is the difference between the trajectories in reality
and in simulation (Fig. 4(b)).

We chose a budget of about 10 evaluations on the real
robot (depending on the treatment). While this number may
appear very small, it is realistic if real experiments are not
automated. Additionally, the problem is simple: only two
parameters have to be optimized and many high-fitness so-
lutions exist.

We compared the transferability approach to four differ-
ent treatments, described belows.

Direct optimization on the robot. We used a population
of 4 individuals and 5 generations. This leads to 20 tests on
the real robot.

Optimization in simulation then transfer to the robot.
We expect to observe a reality gap.

Optimization in simulation, transfer to the robot and lo-
cal search. Parameters of the solutions are modified using
10 steps of a stochastic gradient descent, on the real robot.
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Figure 6: Average distance covered with each of the tested
treatment (at least 10 runs for each treatment). The transfer-
ability approach obtains the best fitness in reality (Welsh’s
t-test, p ≤ 6 · 10−3). Error bars indicate one unit of standard
deviation.

Surrogate model of the fitness function. We tested
IDW (Shepard, 1968) and the Kriging method (Jin, 2005).

Results (Fig.6) show that solutions found with the trans-
ferability approach have a very similar fitness value in real-
ity and in simulation, whereas we observe a large reality gap
when the optimization occurs only in simulation. These so-
lutions are also the ones that work the best on the real robot.
It must be emphasized that the transferability approach did
not find the optimal behavior in simulation (about 1500) nor
in reality (about 1500 too). The algorithm instead found
good solutions that work similarly well in simulation and
in reality.

The surrogate models worked better than the optimization
in simulation but it did not significantly improve the result
of the direct optimization on the robot. The addition of a
local search stage after the transfer from simulation to reality
significantly improved the result but final solutions are much
worse than those found with the transferability approach.

We obtained similar results with a second experiment, in-
spired by Jakobi’s T-maze (Koos et al., 2012).

Conclusion
The experimental results validate the relevance of automati-
cally learning the limits of the simulation to cross the reality
gap. The current implementation relies on several arbitrary
choices and many variants can be designed. More specifi-

cally, the choice of the approximation model and the update
strategy need more investigations.

The transferability approach essentially connects a “slow
but accurate” evaluation process (the reality) and a second
evaluation process that is “fast but partially accurate” (the
simulation). The exact same idea can be used to improve the
generalization and the robustness of optimized controllers
in robotics: the reality corresponds to the evaluation of the
controller in many contexts, whereas the simulation corre-
sponds to its evaluation in a few contexts. We recently ob-
tained promising results based on this idea (Pinville et al.,
2011).

Last, we also found that learning the transferability func-
tion allows the design of a fast on-line adaptation algorithm
that deports most of the optimization in a simulation of a
self-model (Koos and Mouret, 2011).
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